Animal Metabolite Database: Metabolite Concentrations in Animal Tissues and Convenient Comparison of Quantitative Metabolomic Data
Abstract
:1. Introduction
2. Database Description and Content
2.1. Database Overview
2.2. Obtaining Samples and Data for the AMDB
3. Browsing and Searching the AMDB
3.1. Species
3.2. Samples, Groups, and Experiments
3.3. Metabolites
3.4. Comparing Groups from Different Experiments
- Search for a group of interest and access its card.
- Scroll down to the bottom of the card, where you will find the ‘Add group to comparison’ button, and click it to add the group to the Cart.
- Repeat the process for searching and selecting additional groups to be compared.
- The Cart will display the list of selected groups, allowing one to review and make further modifications in selection if needed.
- To proceed with the comparison, click the ‘Compare’ button. This action will transfer the selected groups into the Sandbox (Figure 3).
4. Uploading Your Data and Comparing It with the Data Already Present in the AMDB
4.1. Quick Comparison of User Data without Publication in the AMDB
- Download a simplified Excel template from the Data Manager section. This template contains only the required fields that need to be filled (groups, samples, and metabolites).
- Follow the instructions provided in the template. Fill in the rows with the metabolite names and their concentrations (in nmol/g) in the template. Empty and N/A values indicate difficulties in quantification (e.g., overlapping peaks) or omitted values. Zero values indicate that the value is below the LOQ of the instrument.
- Upload the completed template file, and a standard experiment card will be generated. The created experiment is private, and visible only to the User. The groups created by the User are now available for comparison with existing groups in the AMDB groups.
4.2. Uploading and Publishing User Data in the AMDB
5. Database Application Examples
6. Database Implementation
7. Conclusions, Limitations and Future Plans
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holmes, E.; Wilson, I.D.; Lindon, J.C. Chapter 1—An Overview of Metabolic Phenotyping and Its Role in Systems Biology. In The Handbook of Metabolic Phenotyping; Lindon, J.C., Nicholson, J.K., Holmes, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–51. ISBN 978-0-12-812293-8. [Google Scholar]
- Adamski, J. Metabolomics for Biomedical Research; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 978-0-12-812784-1. [Google Scholar]
- Ashrafian, H.; Sounderajah, V.; Glen, R.; Ebbels, T.; Blaise, B.J.; Kalra, D.; Kultima, K.; Spjuth, O.; Tenori, L.; Salek, R.M.; et al. Metabolomics: The Stethoscope for the Twenty-First Century. Med. Princ. Pract. 2020, 30, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Lindon, J.C.; Nicholson, J.K.; Holmes, E. (Eds.) The Handbook of Metabolic Phenotyping; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 978-0-12-812293-8. [Google Scholar]
- Giera, M.; Yanes, O.; Siuzdak, G. Metabolite Discovery: Biochemistry’s Scientific Driver. Cell Metab. 2022, 34, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Ghini, V.; Stringer, K.A.; Luchinat, C. (Eds.) Metabolomics and Its Impact on Health and Diseases. Handbook of Experimental Pharmacology; Springer International Publishing: Cham, Switzerland, 2023; Volume 277, ISBN 978-3-031-26858-8. [Google Scholar]
- Wishart, D.S.; Guo, A.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, B.L.; et al. HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Res. 2021, 50, D622–D631. [Google Scholar] [CrossRef] [PubMed]
- Griffin, J.L. Chapter 7: The Use of Animal Models in Metabolomics. In Metabolomics for Biomedical Research; Elsevier: Amsterdam, The Netherlands, 2020; pp. 123–136. ISBN 9780128127841. [Google Scholar]
- Verpoorte, R.; Choi, Y.H.; Mustafa, N.R.; Kim, H.K. Metabolomics: Back to Basics. Phytochem. Rev. 2008, 7, 525–537. [Google Scholar] [CrossRef]
- McKay, R.T. Metabolomics and NMR. In Metabolomics and Its Impact on Health and Diseases. Handbook of Experimental Pharmacology; Ghini, V., Stringer, K.A., Luchinat, C., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 73–116. ISBN 978-3-031-26859-5. [Google Scholar]
- Wishart, D.S.; Rout, M.; Lee, B.L.; Berjanskii, M.; LeVatte, M.; Lipfert, M. Practical Aspects of NMR-Based Metabolomics. In Metabolomics and Its Impact on Health and Diseases. Handbook of Experimental Pharmacology; Ghini, V., Stringer, K.A., Luchinat, C., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 1–41. ISBN 978-3-031-26859-5. [Google Scholar]
- Haug, K.; Cochrane, K.; Nainala, V.C.; Williams, M.; Chang, J.; Jayaseelan, K.V.; O’Donovan, C. MetaboLights: A Resource Evolving in Response to the Needs of Its Scientific Community. Nucleic Acids Res. 2020, 48, D440–D444. [Google Scholar] [CrossRef]
- Climaco Pinto, R.; Karaman, I.; Lewis, M.R.; Hällqvist, J.; Kaluarachchi, M.; Graça, G.; Chekmeneva, E.; Durainayagam, B.; Ghanbari, M.; Ikram, M.A.; et al. Finding Correspondence between Metabolomic Features in Untargeted Liquid Chromatography–Mass Spectrometry Metabolomics Datasets. Anal. Chem. 2022, 94, 5493–5503. [Google Scholar] [CrossRef]
- Jarmusch, A.K.; Wang, M.; Aceves, C.M.; Advani, R.S.; Aguirre, S.; Aksenov, A.A.; Aleti, G.; Aron, A.T.; Bauermeister, A.; Bolleddu, S.; et al. ReDU: A Framework to Find and Reanalyze Public Mass Spectrometry Data. Nat. Methods 2020, 17, 901–904. [Google Scholar] [CrossRef]
- Keane, T.M.; O’Donovan, C.; Vizcaíno, J.A. The Growing Need for Controlled Data Access Models in Clinical Proteomics and Metabolomics. Nat. Commun. 2021, 12, 5787. [Google Scholar] [CrossRef]
- Tenenbaum, J.D.; Blach, C. Best Practices and Lessons Learned from Reuse of 4 Patient-Derived Metabolomics Datasets in Alzheimer’s Disease. In Biocomputing 2018; World Scientific: Singapore, 2017; pp. 280–291. ISBN 978-981-323-552-6. [Google Scholar]
- Sarmad, S.; Viant, M.R.; Dunn, W.B.; Goodacre, R.; Wilson, I.D.; Chappell, K.E.; Griffin, J.L.; O’Donnell, V.B.; Naicker, B.; Lewis, M.R.; et al. A Proposed Framework to Evaluate the Quality and Reliability of Targeted Metabolomics Assays from the UK Consortium on Metabolic Phenotyping (MAP/UK). Nat. Protoc. 2023, 18, 1017–1027. [Google Scholar] [CrossRef]
- Haug, K.; Salek, R.M.; Steinbeck, C. Global Open Data Management in Metabolomics. Curr. Opin. Chem. Biol. 2017, 36, 58–63. [Google Scholar] [CrossRef]
- Wishart, D.S.; Oler, E.; Peters, H.; Guo, A.; Girod, S.; Han, S.; Saha, S.; Lui, V.W.; LeVatte, M.; Gautam, V.; et al. MiMeDB: The Human Microbial Metabolome Database. Nucleic Acids Res. 2023, 51, D611–D620. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Brewer, L.K.; Jones, J.W.; Nguyen, A.T.; Marcu, A.; Wishart, D.S.; Oglesby-Sherrouse, A.G.; Kane, M.A.; Wilks, A. PAMDB: A Comprehensive Pseudomonas Aeruginosa Metabolome Database. Nucleic Acids Res. 2018, 46, D575–D580. [Google Scholar] [CrossRef] [PubMed]
- Foroutan, A.; Fitzsimmons, C.; Mandal, R.; Piri-Moghadam, H.; Zheng, J.; Guo, A.; Li, C.; Guan, L.L.; Wishart, D.S. The Bovine Metabolome. Metabolites 2020, 10, 233. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Gaona, M.; Marcu, A.; Pon, A.; Guo, A.C.; Sajed, T.; Wishart, N.A.; Karu, N.; Djoumbou Feunang, Y.; Arndt, D.; Wishart, D.S. YMDB 2.0: A Significantly Expanded Version of the Yeast Metabolome Database. Nucleic Acids Res. 2017, 45, D440–D445. [Google Scholar] [CrossRef]
- Sajed, T.; Marcu, A.; Ramirez, M.; Pon, A.; Guo, A.C.; Knox, C.; Wilson, M.; Grant, J.R.; Djoumbou, Y.; Wishart, D.S. ECMDB 2.0: A Richer Resource for Understanding the Biochemistry of E. Coli. Nucleic Acids Res. 2016, 44, D495–D501. [Google Scholar] [CrossRef]
- Sugimoto, M.; Ikeda, S.; Niigata, K.; Tomita, M.; Sato, H.; Soga, T. MMMDB: Mouse Multiple Tissue Metabolome Database. Nucleic Acids Res. 2012, 40, D809–D814. [Google Scholar] [CrossRef]
- Yanshole, V.V.; Snytnikova, O.A.; Kiryutin, A.S.; Yanshole, L.V.; Sagdeev, R.Z.; Tsentalovich, Y.P. Metabolomics of the Rat Lens: A Combined LC-MS and NMR Study. Exp. Eye Res. 2014, 125, 71–78. [Google Scholar] [CrossRef]
- Yanshole, V.V.; Yanshole, L.V.; Snytnikova, O.A.; Tsentalovich, Y.P. Quantitative Metabolomic Analysis of Changes in the Lens and Aqueous Humor under Development of Age-Related Nuclear Cataract. Metabolomics 2019, 15, 29. [Google Scholar] [CrossRef]
- Tsentalovich, Y.P.; Verkhovod, T.D.; Yanshole, V.V.; Kiryutin, A.S.; Yanshole, L.V.; Fursova, A.Z.; Stepakov, D.A.; Novoselov, V.P.; Sagdeev, R.Z. Metabolomic Composition of Normal Aged and Cataractous Human Lenses. Exp. Eye Res. 2015, 134, 15–23. [Google Scholar] [CrossRef]
- Yanshole, V.V.; Yanshole, L.V.; Zelentsova, E.A.; Tsentalovich, Y.P. Ovothiol A Is the Main Antioxidant in Fish Lens. Metabolites 2019, 9, 95. [Google Scholar] [CrossRef]
- Tsentalovich, Y.P.; Zelentsova, E.A.; Yanshole, L.V.; Yanshole, V.V.; Odud, I.M. Most Abundant Metabolites in Tissues of Freshwater Fish Pike-Perch (Sander lucioperca). Sci. Rep. 2020, 10, 17128. [Google Scholar] [CrossRef]
- Zelentsova, E.A.; Yanshole, L.V.; Tsentalovich, Y.P.; Sharshov, K.A.; Yanshole, V.V. The Application of Quantitative Metabolomics for the Taxonomic Differentiation of Birds. Biology 2022, 11, 1089. [Google Scholar] [CrossRef]
- Truscott, R.J. Age-Related Nuclear Cataract-Oxidation Is the Key. Exp. Eye Res. 2005, 80, 709–725. [Google Scholar] [CrossRef]
- Zelentsova, E.A.; Yanshole, L.V.; Snytnikova, O.A.; Yanshole, V.V.; Tsentalovich, Y.P.; Sagdeev, R.Z. Post-Mortem Changes in the Metabolomic Compositions of Rabbit Blood, Aqueous and Vitreous Humors. Metabolomics 2016, 12, 172. [Google Scholar] [CrossRef]
- Zelentsova, E.A.; Yanshole, L.V.; Melnikov, A.D.; Kudryavtsev, I.S.; Novoselov, V.P.; Tsentalovich, Y.P. Post-Mortem Changes in Metabolomic Profiles of Human Serum, Aqueous Humor and Vitreous Humor. Metabolomics 2020, 16, 80. [Google Scholar] [CrossRef]
- Tsentalovich, Y.P.; Yanshole, V.V.; Yanshole, L.V.; Zelentsova, E.A.; Melnikov, A.D.; Sagdeev, R.Z. Seasonal Variations and Interspecific Differences in Metabolomes of Freshwater Fish Tissues: Quantitative Metabolomic Profiles of Lenses and Gills. Metabolites 2019, 9, 264. [Google Scholar] [CrossRef]
- Castellano, I.; Migliaccio, O.; D’Aniello, S.; Merlino, A.; Napolitano, A.; Palumbo, A. Shedding Light on Ovothiol Biosynthesis in Marine Metazoans. Sci. Rep. 2016, 6, 21506. [Google Scholar] [CrossRef] [PubMed]
- Osik, N.A.; Zelentsova, E.A.; Sharshov, K.A.; Tsentalovich, Y.P. Nicotinamide Adenine Dinucleotide Reduced (NADH) Is a Natural UV Filter of Certain Bird Lens. Sci. Rep. 2022, 12, 16850. [Google Scholar] [CrossRef] [PubMed]
- Tsentalovich, Y.P.; Zelentsova, E.A.; Savina, E.D.; Yanshole, V.V.; Sagdeev, R.Z. Influence of Ecological Factors on the Metabolomic Composition of Fish Lenses. Biology 2022, 11, 1709. [Google Scholar] [CrossRef] [PubMed]
- Shekhovtsov, S.V.; Bulakhova, N.A.; Tsentalovich, Y.P.; Zelentsova, E.A.; Yanshole, L.V.; Meshcheryakova, E.N.; Berman, D.I. Metabolic Response of the Siberian Wood Frog Rana Amurensis to Extreme Hypoxia. Sci. Rep. 2020, 10, 14604. [Google Scholar] [CrossRef]
- Shekhovtsov, S.V.; Bulakhova, N.A.; Tsentalovich, Y.P.; Zelentsova, E.A.; Meshcheryakova, E.N.; Poluboyarova, T.V.; Berman, D.I. Biochemical Response to Freezing in the Siberian Salamander Salamandrella Keyserlingii. Biology 2021, 10, 1172. [Google Scholar] [CrossRef] [PubMed]
- Shekhovtsov, S.V.; Bulakhova, N.A.; Tsentalovich, Y.P.; Zelentsova, E.A.; Meshcheryakova, E.N.; Poluboyarova, T.V.; Berman, D.I. Metabolomic Analysis Reveals That the Moor Frog Rana Arvalis Uses Both Glucose and Glycerol as Cryoprotectants. Animals 2022, 12, 1286. [Google Scholar] [CrossRef] [PubMed]
- Shekhovtsov, S.V.; Zelentsova, E.A.; Bulakhova, N.A.; Meshcheryakova, E.N.; Shishikina, K.I.; Tsentalovich, Y.P.; Berman, D.I. Biochemical Response of Two Earthworm Taxa Exposed to Freezing. J. Comp. Physiol. B 2023, 193, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.-W.; da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for Scientific Data Management and Stewardship. Sci. Data 2016, 3, 160018. [Google Scholar] [CrossRef] [PubMed]
- Schober, D.; Jacob, D.; Wilson, M.; Cruz, J.A.; Marcu, A.; Grant, J.R.; Moing, A.; Deborde, C.; De Figueiredo, L.F.; Haug, K.; et al. NmrML: A Community Supported Open Data Standard for the Description, Storage, and Exchange of NMR Data. Anal. Chem. 2018, 90, 649–656. [Google Scholar] [CrossRef]
- Zanetti, K.A.; Hall, R.D.; Griffn, J.L.; Putri, S.; Salek, R.M.; Styczynski, M.P.; Tugizimana, F.; Van Der Hooft, J.J.J. The Metabolomics Society—Current State of the Membership and Future Directions. Metabolites 2019, 9, 89. [Google Scholar] [CrossRef]
- Salek, R.M. Progress in Standardization of Metabolic Phenotyping Data. In The Handbook of Metabolic Phenotyping; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Spicer, R.A.; Salek, R.; Steinbeck, C. Compliance with Minimum Information Guidelines in Public Metabolomics Repositories. Sci. Data 2017, 4, 170137. [Google Scholar] [CrossRef]
- Considine, E.C.; Salek, R.M. A Tool to Encourage Minimum Reporting Guideline Uptake for Data Analysis in Metabolomics. Metabolites 2019, 9, 43. [Google Scholar] [CrossRef]
- Hoffmann, N.; Rein, J.; Sachsenberg, T.; Hartler, J.; Haug, K.; Mayer, G.; Alka, O.; Dayalan, S.; Pearce, J.T.M.; Rocca-Serra, P.; et al. MzTab-M: A Data Standard for Sharing Quantitative Results in Mass Spectrometry Metabolomics. Anal. Chem. 2019, 91, 3302–3310. [Google Scholar] [CrossRef]
- Verhoeven, A.; Giera, M.; Mayboroda, O.A. Scientific Workflow Managers in Metabolomics: An Overview. Analyst 2020, 145, 3801–3808. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yanshole, V.V.; Melnikov, A.D.; Yanshole, L.V.; Zelentsova, E.A.; Snytnikova, O.A.; Osik, N.A.; Fomenko, M.V.; Savina, E.D.; Kalinina, A.V.; Sharshov, K.A.; et al. Animal Metabolite Database: Metabolite Concentrations in Animal Tissues and Convenient Comparison of Quantitative Metabolomic Data. Metabolites 2023, 13, 1088. https://doi.org/10.3390/metabo13101088
Yanshole VV, Melnikov AD, Yanshole LV, Zelentsova EA, Snytnikova OA, Osik NA, Fomenko MV, Savina ED, Kalinina AV, Sharshov KA, et al. Animal Metabolite Database: Metabolite Concentrations in Animal Tissues and Convenient Comparison of Quantitative Metabolomic Data. Metabolites. 2023; 13(10):1088. https://doi.org/10.3390/metabo13101088
Chicago/Turabian StyleYanshole, Vadim V., Arsenty D. Melnikov, Lyudmila V. Yanshole, Ekaterina A. Zelentsova, Olga A. Snytnikova, Nataliya A. Osik, Maxim V. Fomenko, Ekaterina D. Savina, Anastasia V. Kalinina, Kirill A. Sharshov, and et al. 2023. "Animal Metabolite Database: Metabolite Concentrations in Animal Tissues and Convenient Comparison of Quantitative Metabolomic Data" Metabolites 13, no. 10: 1088. https://doi.org/10.3390/metabo13101088
APA StyleYanshole, V. V., Melnikov, A. D., Yanshole, L. V., Zelentsova, E. A., Snytnikova, O. A., Osik, N. A., Fomenko, M. V., Savina, E. D., Kalinina, A. V., Sharshov, K. A., Dubovitskiy, N. A., Kobtsev, M. S., Zaikovskii, A. A., Mariasina, S. S., & Tsentalovich, Y. P. (2023). Animal Metabolite Database: Metabolite Concentrations in Animal Tissues and Convenient Comparison of Quantitative Metabolomic Data. Metabolites, 13(10), 1088. https://doi.org/10.3390/metabo13101088