Acid and Alkali Taste Sensation
Abstract
:1. Introduction
2. pH-Dependent Taste Quality
3. Molecular Mechanism of Acid Sensation
4. Alkali Detection in Taste
5. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bausenwein, Á.; Dittrich, A.; Fischbach, K.-F. The optic lobe of Drosophila melanogaster: II. Sorting of retinotopic pathways in the medulla. Cell Tissue Res. 1992, 267, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Tuthill, J.C.; Wilson, R.I. Mechanosensation and adaptive motor control in insects. Curr. Biol. 2016, 26, R1022–R1038. [Google Scholar] [CrossRef] [PubMed]
- Nadrowski, B.; Effertz, T.; Senthilan, P.R.; Göpfert, M.C. Antennal hearing in insects–new findings, new questions. Hear. Res. 2011, 273, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Boekhoff-Falk, G.; Eberl, D.F. The Drosophila auditory system. Wiley Interdiscip. Rev. Dev. Biol. 2014, 3, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Keil, T.A. Functional morphology of insect mechanoreceptors. MRT 1997, 39, 506–531. [Google Scholar] [CrossRef]
- Vosshall, L.B.; Amrein, H.; Morozov, P.S.; Rzhetsky, A.; Axel, R. A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 1999, 96, 725–736. [Google Scholar] [CrossRef] [PubMed]
- Clyne, P.J.; Warr, C.G.; Carlson, J.R. Candidate taste receptors in Drosophila. Science 2000, 287, 1830–1834. [Google Scholar] [CrossRef]
- Scott, K.; Brady, R.; Cravchik, A.; Morozov, P.; Rzhetsky, A.; Zuker, C.; Axel, R. A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell 2001, 104, 661–673. [Google Scholar] [CrossRef]
- Chyb, S.; Dahanukar, A.; Wickens, A.; Carlson, J.R. Drosophila Gr5a encodes a taste receptor tuned to trehalose. Proc. Natl. Acad. Sci. USA 2003, 100, 14526–14530. [Google Scholar] [CrossRef]
- Chapman, R.F. The Insects: Structure and Function; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Yarmolinsky, D.A.; Zuker, C.S.; Ryba, N.J. Common sense about taste: From mammals to insects. Cell 2009, 139, 234–244. [Google Scholar] [CrossRef]
- Wang, Z.; Singhvi, A.; Kong, P.; Scott, K. Taste representations in the Drosophila brain. Cell 2004, 117, 981–991. [Google Scholar] [CrossRef] [PubMed]
- Falk, R.; Bleiser-Avivi, N.; Atidia, J. Labellar taste organs of Drosophila melanogaster. J. Morphol. 1976, 150, 327–341. [Google Scholar] [CrossRef] [PubMed]
- Ghysen, A.; Dambly-Chaudiere, C. Genesis of the Drosophila peripheral nervous system. TiG 1989, 5, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Dambly-Chaudière, C.; Jamet, E.; Burri, M.; Bopp, D.; Basler, K.; Hafen, E.; Dumont, N.; Spielmann, P.; Ghysen, A.; Noll, M. The paired box gene pox neuro: A determinant of poly-innervated sense organs in Drosophila. Cell 1992, 69, 159–172. [Google Scholar] [CrossRef]
- Stocker, R.F. The organization of the chemosensory system in Drosophila melanogaster: A rewiew. Cell Tissue Res. 1994, 275, 3–26. [Google Scholar] [CrossRef]
- Singh, R.N. Neurobiology of the gustatory systems of Drosophila and some terrestrial insects. MRT 1997, 39, 547–563. [Google Scholar]
- Dethier, V.G. The Hungry Fly: A Physiological Study of the Behavior Associated with Feeding; Harvard University Press: Cambridge, MA, USA, 1976. [Google Scholar]
- Shrestha, B.; Lee, Y. Molecular sensors in the taste system of Drosophila. Genes Genom. 2023, 45, 693–707. [Google Scholar] [CrossRef]
- Shanbhag, S.; Park, S.-K.; Pikielny, C.; Steinbrecht, R.A. Gustatory organs of Drosophila melanogaster: Fine structure and expression of the putative odorant-binding protein PBPRP2. Cell Tissue Res. 2001, 304, 423–437. [Google Scholar]
- Hiroi, M.; Marion-Poll, F.; Tanimura, T. Differentiated response to sugars among labellar chemosensilla in Drosophila. Zool. Sci. 2002, 19, 1009–1018. [Google Scholar] [CrossRef]
- Power, M.E. The thoracico-abdominal nervous system of an adult insect, Drosophila melanogaster. J. Com. Neurol. 1948, 88, 347–409. [Google Scholar] [CrossRef]
- Stocker, R.; Schorderet, M. Cobalt filling of sensory projections from internal and external mouthparts in Drosophila. Cell Tissue Res. 1981, 216, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Rajashekhar, K.; Singh, R.N. Neuroarchitecture of the tritocerebrum of Drosophila melanogaster. J. Comp. Neurol. 1994, 349, 633–645. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C.D.; Dahanukar, A. Recent advances in the genetic basis of taste detection in Drosophila. CMLS 2020, 77, 1087–1101. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C.D.; Dahanukar, A. Molecular and cellular organization of taste neurons in adult Drosophila pharynx. Cell Rep. 2017, 21, 2978–2991. [Google Scholar] [CrossRef] [PubMed]
- Weiss, L.A.; Dahanukar, A.; Kwon, J.Y.; Banerjee, D.; Carlson, J.R. The molecular and cellular basis of bitter taste in Drosophila. Neuron 2011, 69, 258–272. [Google Scholar] [CrossRef]
- Zhang, Y.V.; Ni, J.; Montell, C. The molecular basis for attractive salt-taste coding in Drosophila. Science 2013, 340, 1334–1338. [Google Scholar] [CrossRef]
- Rimal, S.; Lee, Y. The multidimensional ionotropic receptors of Drosophila melanogaster. Ins. Mol. Biol. 2018, 27, 1–7. [Google Scholar] [CrossRef]
- Cameron, P.; Hiroi, M.; Ngai, J.; Scott, K. The molecular basis for water taste in Drosophila. Nature 2010, 465, 91–95. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Q.; Wang, Z. The amiloride-sensitive epithelial Na+ channel PPK28 is essential for Drosophila gustatory water reception. J. Neurosci. 2010, 30, 6247–6252. [Google Scholar] [CrossRef]
- Lee, Y.; Poudel, S.; Kim, Y.; Thakur, D.; Montell, C. Calcium taste avoidance in Drosophila. Neuron 2018, 97, 67–74.e64. [Google Scholar] [CrossRef]
- Kang, K.; Pulver, S.R.; Panzano, V.C.; Chang, E.C.; Griffith, L.C.; Theobald, D.L.; Garrity, P.A. Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception. Nature 2010, 464, 597–600. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Lee, Y.; Akitake, B.; Woodward, O.M.; Guggino, W.B.; Montell, C. Drosophila TRPA1 channel mediates chemical avoidance in gustatory receptor neurons. Proc. Natl. Acad. Sci. USA 2010, 107, 8440–8445. [Google Scholar] [CrossRef] [PubMed]
- Fujishiro, N.; Kijima, H.; Morita, H. Impulse frequency and action potential amplitude in labellar chemosensory neurones of Drosophila melanogaster. J. Insect Physiol. 1984, 30, 317–325. [Google Scholar] [CrossRef]
- Nayak, S.V.; Singh, R.N. Sensilla on the tarsal segments and mouthparts of adult Drosophila melanogaster Meigen (Diptera: Drosophilidae). Int. J. Insect Morphol. Embryol. 1983, 12, 273–291. [Google Scholar] [CrossRef]
- McDowell, S.A.; Stanley, M.; Gordon, M.D. A molecular mechanism for high salt taste in Drosophila. Curr. Biol. 2022, 32, 3070–3081.e3075. [Google Scholar] [CrossRef]
- Jaeger, A.H.; Stanley, M.; Weiss, Z.F.; Musso, P.-Y.; Chan, R.C.; Zhang, H.; Feldman-Kiss, D.; Gordon, M.D. A complex peripheral code for salt taste in Drosophila. Elife 2018, 7, e37167. [Google Scholar] [CrossRef]
- Rodrigues, V.; Siddiqi, O. Genetic analysis of chemosensory pathway. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 1978, 87, 147–160. [Google Scholar] [CrossRef]
- Montell, C. A taste of the Drosophila gustatory receptors. Curr. Opin. Neurobiol. 2009, 19, 345–353. [Google Scholar] [CrossRef]
- Hiroi, M.; Meunier, N.; Marion-Poll, F.; Tanimura, T. Two antagonistic gustatory receptor neurons responding to sweet-salty and bitter taste in Drosophila. J. Neurobiol. 2004, 61, 333–342. [Google Scholar] [CrossRef]
- Jiao, Y.; Moon, S.J.; Wang, X.; Ren, Q.; Montell, C. Gr64f is required in combination with other gustatory receptors for sugar detection in Drosophila. Curr. Biol. 2008, 18, 1797–1801. [Google Scholar] [CrossRef]
- Jiao, Y.; Moon, S.J.; Montell, C. A Drosophila gustatory receptor required for the responses to sucrose, glucose, and maltose identified by mRNA tagging. Proc. Natl. Acad. Sci. USA 2007, 104, 14110–14115. [Google Scholar] [CrossRef] [PubMed]
- Dahanukar, A.; Lei, Y.-T.; Kwon, J.Y.; Carlson, J.R. Two Gr genes underlie sugar reception in Drosophila. Neuron 2007, 56, 503–516. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, B.; Aryal, B.; Lee, Y. The taste of vitamin C in Drosophila. EMBO Rep. 2023, 24, e56319. [Google Scholar] [CrossRef] [PubMed]
- French, A.S.; Sellier, M.-J.; Agha, M.A.; Guigue, A.; Chabaud, M.-A.; Reeb, P.D.; Mitra, A.; Grau, Y.; Soustelle, L.; Marion-Poll, F. Dual mechanism for bitter avoidance in Drosophila. J. Neurosci. 2015, 35, 3990–4004. [Google Scholar] [CrossRef] [PubMed]
- Rimal, S.; Sang, J.; Dhakal, S.; Lee, Y. Cucurbitacin B activates bitter-sensing gustatory receptor neurons via gustatory receptor 33a in Drosophila melanogaster. Mol. Cells 2020, 43, 530. [Google Scholar]
- Sang, J.; Rimal, S.; Lee, Y. Gustatory receptor 28b is necessary for avoiding saponin in Drosophila melanogaster. EMBO Rep. 2019, 20, e47328. [Google Scholar] [CrossRef]
- Shrestha, B.; Lee, Y. Mechanisms of DEET gustation in Drosophila. Insect Biochem. Mol. Biol. 2021, 131, 103550. [Google Scholar] [CrossRef]
- Rimal, S.; Lee, Y. Molecular sensor of nicotine in taste of Drosophila melanogaster. Insect Biochem. Mol. Biol. 2019, 111, 103178. [Google Scholar] [CrossRef]
- Dhakal, S.; Ren, Q.; Liu, J.; Akitake, B.; Tekin, I.; Montell, C.; Lee, Y. Drosophila TRPγ is required in neuroendocrine cells for post-ingestive food selection. Elife 2022, 11, e56726. [Google Scholar] [CrossRef]
- Dus, M.; Min, S.; Keene, A.C.; Lee, G.Y.; Suh, G.S. Taste-independent detection of the caloric content of sugar in Drosophila. Proc. Natl. Acad. Sci. USA 2011, 108, 11644–11649. [Google Scholar] [CrossRef]
- Liman, E.R.; Zhang, Y.V.; Montell, C. Peripheral coding of taste. Neuron 2014, 81, 984–1000. [Google Scholar] [CrossRef] [PubMed]
- Rimal, S.; Sang, J.; Poudel, S.; Thakur, D.; Montell, C.; Lee, Y. Mechanism of acetic acid gustatory repulsion in Drosophila. Cell Rep. 2019, 26, 1432–1442.e1434. [Google Scholar] [CrossRef] [PubMed]
- Mi, T.; Mack, J.O.; Lee, C.M.; Zhang, Y.V. Molecular and cellular basis of acid taste sensation in Drosophila. Nat. Commun. 2021, 12, 3730. [Google Scholar] [CrossRef]
- Ganguly, A.; Chandel, A.; Turner, H.; Wang, S.; Liman, E.R.; Montell, C. Requirement for an Otopetrin-like protein for acid taste in Drosophila. Proc. Natl. Acad. Sci. USA 2021, 118, e2110641118. [Google Scholar] [CrossRef]
- Frank, H.E.; Amato, K.; Trautwein, M.; Maia, P.; Liman, E.R.; Nichols, L.M.; Schwenk, K.; Breslin, P.A.; Dunn, R.R. The evolution of sour taste. Proc. R. Soc. 2022, 289, 20211918. [Google Scholar] [CrossRef] [PubMed]
- Mi, T.; Mack, J.O.; Koolmees, W.; Lyon, Q.; Yochimowitz, L.; Teng, Z.-Q.; Jiang, P.; Montell, C.; Zhang, Y.V. Alkaline taste sensation through the alkaliphile chloride channel in Drosophila. Nat. Metabol. 2023, 5, 466–480. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.T.; Ganguly, A.; Ejercito, J.; Luy, M.; Dahanukar, A.; Ray, A. Chemosensory detection of aversive concentrations of ammonia and basic volatile amines in insects. Iscience 2023, 26, 105777. [Google Scholar] [CrossRef]
- Tian, L.; Zhang, H.; Yang, S.; Luo, A.; Kamau, P.M.; Hu, J.; Luo, L.; Lai, R. Vertebrate OTOP1 is also an alkali-activated channel. Nat. Commun. 2023, 14, 26. [Google Scholar] [CrossRef]
- Delventhal, R.; Menuz, K.; Joseph, R.; Park, J.; Sun, J.; Carlson, J. The taste response to ammonia in Drosophila. Sci. Rep. 2017, 7, 43754. [Google Scholar] [CrossRef]
- Min, S.; Ai, M.; Shin, S.A.; Suh, G.S. Dedicated olfactory neurons mediating attraction behavior to ammonia and amines in Drosophila. Proc. Natl. Acad. Sci. USA 2013, 110, E1321–E1329. [Google Scholar] [CrossRef]
- Kloehn, N.W.; Brogden, W. The alkaline taste: A comparison of absolute thresholds for sodium hydroxide on the tip and mid-dorsal surfaces of the tongue. Am. J. Psychol. 1948, 61, 90–93. [Google Scholar] [CrossRef]
- Liljestrand, G.; Zotterman, Y. The alkaline taste. Acta Physiol. Scand. 1955, 35, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Bryant, B.P. Mechanisms of somatosensory neuronal sensitivity to alkaline pH. Chem. Senses 2005, 30, i196–i197. [Google Scholar] [CrossRef] [PubMed]
- Khanna, A.; Kurtzman, N.A. Metabolic alkalosis. Respi. Care 2001, 46, 354–365. [Google Scholar]
- Adrogué, H.E.; Adrogue, H.J. Acid-base physiology. Respi. Care 2001, 46, 328–341. [Google Scholar]
- Godbold, J.A.; Calosi, P. Ocean acidification and climate change: Advances in ecology and evolution. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120448. [Google Scholar] [CrossRef]
- Hartwig, P.; McDANIEL, M.R. Flavor characteristics of lactic, malic, citric, and acetic acids at various pH levels. J. Food Sci. 1995, 60, 384–388. [Google Scholar] [CrossRef]
- Peterson, J.; Johnson, A. Encyclopedia of Food Technology; AVI Publishing Company: Westport, CT, USA, 1974; pp. 889–891. [Google Scholar]
- Gardner, W.H. Acidulants in food processing. Handb. Food Addit. 1972, 2, 225–287. [Google Scholar]
- Ganzevles, P.G.; Kroeze, J.H. The sour taste of acids. The hydrogen ion and the undissociated acid as sour agents. Chem. Senses 1987, 12, 563–576. [Google Scholar] [CrossRef]
- Richards, T.W. The Relation of the Taste of Acids to their Degree of Dissociation, II. J. Phys. Chem. 2002, 4, 207–211. [Google Scholar] [CrossRef]
- da Conceicao Neta, E.R.; Johanningsmeier, S.; Drake, M.; McFeeters, R. A chemical basis for sour taste perception of acid solutions and fresh-pack dill pickles. J. Food Sci. 2007, 72, S352–S359. [Google Scholar] [CrossRef] [PubMed]
- Beatty, R.; Cragg, L. The sourness of acids. J. Am. Chem. Soc. 1935, 57, 2347–2351. [Google Scholar] [CrossRef]
- Chauncey, H.; Feller, R.; Shannon, I. Effect of acid solutions on human gustatory chemoreceptors as determined by parotid gland secretion rate. Proc. Soc. Exp. Biol. Med. 1963, 112, 917–923. [Google Scholar] [CrossRef] [PubMed]
- Da Conceicao Neta, E.R.; Johanningsmeier, S.D.; McFeeters, R.F. The chemistry and physiology of sour taste—A review. J. Food Sci. 2007, 72, R33–R38. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, F. The chemistry of sour taste and the strategy to reduce the sour taste of beer. Food Chem. 2015, 185, 200–204. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, I.J.; Schilman, P.E.; Barrozo, R.B. Impact of alkaloids in food consumption, metabolism and survival in a blood-sucking insect. Sci. Rep. 2020, 10, 9443. [Google Scholar] [CrossRef]
- Dethier, V.; Bowdan, E. The effect of alkaloids on sugar receptors and the feeding behaviour of the blowfly. Physiol. Entomol. 1989, 14, 127–136. [Google Scholar] [CrossRef]
- Lee, Y.; Moon, S.J.; Montell, C. Multiple gustatory receptors required for the caffeine response in Drosophila. Proc. Natl. Acad. Sci. USA 2009, 106, 4495–4500. [Google Scholar] [CrossRef]
- Beidler, L.M.; Gross, G.W. The nature of taste receptor sites. In Contributions to Sensory Physiology; Elsevier: Amsterdam, The Netherlands, 1971; Volume 5, pp. 97–127. [Google Scholar]
- Stanley, M.; Ghosh, B.; Weiss, Z.F.; Christiaanse, J.; Gordon, M.D. Mechanisms of lactic acid gustatory attraction in Drosophila. Curr. Biol. 2021, 31, 3525–3537.e3526. [Google Scholar] [CrossRef]
- Shrestha, B.; Lee, Y. Mechanisms of carboxylic acid attraction in Drosophila melanogaster. Mol. Cells 2021, 44, 900–910. [Google Scholar] [CrossRef]
- Pradhan, R.N.; Shrestha, B.; Lee, Y. Molecular Basis of Hexanoic Acid Taste in Drosophila melanogaster. Mol. Cells 2023, 46, 451. [Google Scholar] [CrossRef] [PubMed]
- Dey, M.; Brown, E.; Charlu, S.; Keene, A.; Dahanukar, A. Evolution of fatty acid taste in drosophilids. Cell Rep. 2023, 42, 113297. [Google Scholar] [CrossRef] [PubMed]
- Tu, Y.-H.; Cooper, A.J.; Teng, B.; Chang, R.B.; Artiga, D.J.; Turner, H.N.; Mulhall, E.M.; Ye, W.; Smith, A.D.; Liman, E.R. An evolutionarily conserved gene family encodes proton-selective ion channels. Science 2018, 359, 1047–1050. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Jin, H.; Zhang, W.; Ding, C.; O’Keeffe, S.; Ye, M.; Zuker, C.S. Sour sensing from the tongue to the brain. Cell 2019, 179, 392–402.e315. [Google Scholar] [CrossRef]
- Teng, B.; Wilson, C.E.; Tu, Y.-H.; Joshi, N.R.; Kinnamon, S.C.; Liman, E.R. Cellular and neural responses to sour stimuli require the proton channel Otop1. Curr. Biol. 2019, 29, 3647–3656.e3645. [Google Scholar] [CrossRef]
- Liang, Z.; Wilson, C.E.; Teng, B.; Kinnamon, S.C.; Liman, E.R. The proton channel OTOP1 is a sensor for the taste of ammonium chloride. Nat. Commun. 2023, 14, 6194. [Google Scholar] [CrossRef]
- Taylor, N.W.; Farthing, F.R.; Berman, R. Quantitative measurements on the acid taste and their bearing on the nature of the nerve receptor. Protoplasma 1930, 10, 84–97. [Google Scholar] [CrossRef]
- Gardner, R. Lipid solubility and the sourness of acids: Implications for models of the acid taste receptor. Chem. Senses 1980, 5, 185–194. [Google Scholar] [CrossRef]
- Lyall, V.; Alam, R.I.; Phan, D.Q.; Ereso, G.L.; Phan, T.-H.T.; Malik, S.A.; Montrose, M.H.; Chu, S.; Heck, G.L.; Feldman, G.M. Decrease in rat taste receptor cell intracellular pH is the proximate stimulus in sour taste transduction. Am. J. Physiol. Cell Physiol. 2001, 281, C1005–C1013. [Google Scholar] [CrossRef]
- Liman, E.R.; Kinnamon, S.C. Sour taste: Receptors, cells and circuits. Curr. Opin. Physiol. 2021, 20, 8–15. [Google Scholar] [CrossRef]
- Ugawa, S.; Minami, Y.; Guo, W.; Saishin, Y.; Takatsuji, K.; Yamamoto, T.; Tohyama, M.; Shimada, S. Receptor that leaves a sour taste in the mouth. Nature 1998, 395, 555–556. [Google Scholar] [CrossRef] [PubMed]
- Stevens, D.R.; Seifert, R.; Bufe, B.; Müller, F.; Kremmer, E.; Gauss, R.; Meyerhof, W.; Kaupp, U.B.; Lindemann, B. Hyperpolarization-activated channels HCN1 and HCN4 mediate responses to sour stimuli. Nature 2001, 413, 631–635. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.L.; Chen, X.; Hoon, M.A.; Chandrashekar, J.; Guo, W.; Tränkner, D.; Ryba, N.J.; Zuker, C.S. The cells and logic for mammalian sour taste detection. Nature 2006, 442, 934–938. [Google Scholar] [CrossRef]
- Richter, T.A.; Dvoryanchikov, G.A.; Roper, S.D.; Chaudhari, N. Acid-sensing ion channel-2 is not necessary for sour taste in mice. J. Neurosci. 2004, 24, 4088–4091. [Google Scholar] [CrossRef]
- Richter, T.; Caicedo, A.; Roper, S. Sour taste stimuli evoke Ca2+ and pH responses in mouse taste cells. J. Physiol. 2003, 547, 475–483. [Google Scholar] [CrossRef]
- Ishimaru, Y.; Inada, H.; Kubota, M.; Zhuang, H.; Tominaga, M.; Matsunami, H. Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc. Natl. Acad. Sci. USA 2006, 103, 12569–12574. [Google Scholar] [CrossRef] [PubMed]
- LopezJimenez, N.D.; Cavenagh, M.M.; Sainz, E.; Cruz-Ithier, M.A.; Battey, J.F.; Sullivan, S.L. Two members of the TRPP family of ion channels, Pkd1l3 and Pkd2l1, are co-expressed in a subset of taste receptor cells. J. Neurochem. 2006, 98, 68–77. [Google Scholar] [CrossRef]
- Horio, N.; Yoshida, R.; Yasumatsu, K.; Yanagawa, Y.; Ishimaru, Y.; Matsunami, H.; Ninomiya, Y. Sour taste responses in mice lacking PKD channels. PLoS ONE 2011, 6, e20007. [Google Scholar] [CrossRef]
- Nelson, T.M.; LopezJimenez, N.D.; Tessarollo, L.; Inoue, M.; Bachmanov, A.A.; Sullivan, S.L. Taste function in mice with a targeted mutation of the pkd1l3 gene. Chem. Senses 2010, 35, 565–577. [Google Scholar] [CrossRef]
- Chang, R.B.; Waters, H.; Liman, E.R. A proton current drives action potentials in genetically identified sour taste cells. Proc. Natl. Acad. Sci. USA 2010, 107, 22320–22325. [Google Scholar] [CrossRef]
- Hughes, I.; Binkley, J.; Hurle, B.; Green, E.D.; Sidow, A.; Ornitz, D.M. Identification of the Otopetrin Domain, a conserved domain in vertebrate otopetrins and invertebrate otopetrin-like family members. BMC Evol. Biol. 2008, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Charlu, S.; Wisotsky, Z.; Medina, A.; Dahanukar, A. Acid sensing by sweet and bitter taste neurons in Drosophila melanogaster. Nat. Commun. 2013, 4, 2042. [Google Scholar] [CrossRef] [PubMed]
- Dweck, H.K.; Talross, G.J.; Luo, Y.; Ebrahim, S.A.; Carlson, J.R. Ir56b is an atypical ionotropic receptor that underlies appetitive salt response in Drosophila. Curr. Biol. 2022, 32, 1776–1787.e1774. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Amrein, H. Ionotropic receptors mediate Drosophila oviposition preference through sour gustatory receptor neurons. Curr. Biol. 2017, 27, 2741–2750.e2744. [Google Scholar] [CrossRef]
- Kim, H.; Kim, H.; Kwon, J.Y.; Seo, J.T.; Shin, D.M.; Moon, S.J. Drosophila Gr64e mediates fatty acid sensing via the phospholipase C pathway. PLoS Genet. 2018, 14, e1007229. [Google Scholar] [CrossRef]
- Ahn, J.-E.; Chen, Y.; Amrein, H. Molecular basis of fatty acid taste in Drosophila. Elife 2017, 6, e30115. [Google Scholar] [CrossRef]
- Brown, E.B.; Shah, K.D.; Palermo, J.; Dey, M.; Dahanukar, A.; Keene, A.C. Ir56d-dependent fatty acid responses in Drosophila uncover taste discrimination between different classes of fatty acids. Elife 2021, 10, e67878. [Google Scholar] [CrossRef]
- Masek, P.; Keene, A.C. Drosophila fatty acid taste signals through the PLC pathway in sugar-sensing neurons. PLoS Genet. 2013, 9, e1003710. [Google Scholar] [CrossRef]
- Devineni, A.V.; Sun, B.; Zhukovskaya, A.; Axel, R. Acetic acid activates distinct taste pathways in Drosophila to elicit opposing, state-dependent feeding responses. Elife 2019, 8, e47677. [Google Scholar] [CrossRef]
- Öhrwall, H. Untersuchungen über den Geschmackssinn 1. Skand. Arch. Für Physiol. 1891, 2, 1–69. [Google Scholar] [CrossRef]
- Henning, H. Physiologie und Psychologie des Geschmacks. Ergeb. Physiol. 1921, 19, 1–78. [Google Scholar] [CrossRef]
- de la Roche, J.; Eberhardt, M.J.; Klinger, A.B.; Stanslowsky, N.; Wegner, F.; Koppert, W.; Reeh, P.W.; Lampert, A.; Fischer, M.J.; Leffler, A. The molecular basis for species-specific activation of human TRPA1 protein by protons involves poorly conserved residues within transmembrane domains 5 and 6. J. Biol. Chem. 2013, 288, 20280–20292. [Google Scholar] [CrossRef] [PubMed]
- Tominaga, M.; Caterina, M.J.; Malmberg, A.B.; Rosen, T.A.; Gilbert, H.; Skinner, K.; Raumann, B.E.; Basbaum, A.I.; Julius, D. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 1998, 21, 531–543. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, G.; Liu, J.; Liu, J.; Xu, X.S. TMC-1 mediates alkaline sensation in C. elegans through nociceptive neurons. Neuron 2016, 91, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Paje, F.; Mossakowski, D. pH-preferences and habitat selection in carabid beetles. Oecologia 1984, 64, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, B.; Nhuchhen Pradhan, R.; Nath, D.K.; Lee, Y. Cellular and molecular basis of IR3535 perception in Drosophila. Pest Manag. Sci. 2022, 78, 793–802. [Google Scholar] [CrossRef]
Category | Stimuli | Receptors | Reference |
---|---|---|---|
Acid (attractive) | hydrochloric acid (low) and other organic acids | Otop-La | [55,56] |
lactic acid, citric acid | IR25a, IR76b, GR5a, GR61a, GR64c, GR64d, and GR64e | [83,84] | |
glycolic acid | IR25a, IR76b, GR5a, GR61a, GR64c, and GR64d | [45,84] | |
vitamin C | IR25a, IR76b, GR5a, GR61a, GR64b, GR64c, and GR64e | [45] | |
hexanoic acid (low), octanoic acid, oleic acid, and linoleic acid | GR64d, GR64e, GR64af, IR25a, IR56d, and IR76b | [85,86,87,88] | |
Acid (aversive) | HCl (high) and other organic acids | Otop-La | [55,56] |
acetic acid | IR7a | [54] | |
hexanoic acid (high), octanoic acid, and decanoic acid | GR32a, GR33a, GR66a, IR47a, and IR76b | [85,86] | |
Alkali | NaOH and Na2CO3 | Alka | [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pandey, P.; Shrestha, B.; Lee, Y. Acid and Alkali Taste Sensation. Metabolites 2023, 13, 1131. https://doi.org/10.3390/metabo13111131
Pandey P, Shrestha B, Lee Y. Acid and Alkali Taste Sensation. Metabolites. 2023; 13(11):1131. https://doi.org/10.3390/metabo13111131
Chicago/Turabian StylePandey, Prakash, Bhanu Shrestha, and Youngseok Lee. 2023. "Acid and Alkali Taste Sensation" Metabolites 13, no. 11: 1131. https://doi.org/10.3390/metabo13111131
APA StylePandey, P., Shrestha, B., & Lee, Y. (2023). Acid and Alkali Taste Sensation. Metabolites, 13(11), 1131. https://doi.org/10.3390/metabo13111131