Matrix Selection for the Visualization of Small Molecules and Lipids in Brain Tumors Using Untargeted MALDI-TOF Mass Spectrometry Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mouse Model
2.2. Human Samples
2.3. Sample Preparation
2.3.1. MALDI-TOF-Based Mass Spectrometry Experiment
Matrix | Abbreviation | Deposition Method | Adduct Ion/Polarity | Ranges (m/z) |
---|---|---|---|---|
9-Aminoacridine | 9-AA- [27] | Sublimation only | Anionized ([M−H] −) | 70–400 400–1000 |
9-Aminoacridine | 9-AA (2step)- | Sublimation followed by recrystallization | Anionized ([M−H] −) | 70–400 400–1000 |
9-Aminoacridine | 9-AA+ | Sublimation only | Cationized ([M+Na]+; [M+K]+; [M+H]+) | 70–400 |
9-Aminoacridine | 9-AA (2step)+ | Sublimation followed by recrystallization | Cationized ([M+Na]+; [M+K]+; [M+H]+) | 70–400 |
α-cyano-4-hydroxycinnamic acid | CHCA- [28] | Sublimation only | Anionized ([M−H] −) | 70–400 |
α-cyano-4-hydroxycinnamic acid | CHCA (2step)- | Sublimation followed by recrystallization | Anionized ([M−H] −) | 70–400 |
α-cyano-4-hydroxycinnamic acid | CHCA+ | Sublimation only | Cationized ([M+Na]+; [M+K]+; [M+H]+) | 70–400 400–1000 |
α-cyano-4-hydroxycinnamic acid | CHCA (2step)+ | Sublimation followed by recrystallization | Cationized ([M+Na]+; [M+K]+; [M+H]+) | 70–400 400–1000 |
2,5- dihydroxy benzoic acid | DHB- [29] | Sublimation only | Anionized ([M−H] −) | 70–400 |
2,5- dihydroxy benzoic acid | DHB+ | Sublimation only | Cationized ([M+Na]+; [M+K]+; [M+H]+) | 70–400 |
2.3.2. Liquid Chromatography–Mass Spectrometry
2.3.3. Bulk RNA Sequencing
2.4. Computational Analysis
2.4.1. File Conversion
2.4.2. Cardinal Pipeline
- Field of View (FOV) selection;
- Spectrum acquisition and preprocessing;
- Reference peak identification and refinement;
- Spectrum binning;
- Background peak removal.
2.4.3. Annotation of Peaks
2.4.4. Pathway Analysis
2.4.5. Kernel Density Estimation
2.4.6. Wasserstein Distance
2.4.7. Bulk RNA-Sequencing Processing
2.4.8. Comparison with LC-MS Data
2.4.9. Comparison with RNA-Sequencing Data
3. Results
3.1. Matrix Selection for Small Molecules in Murine Glioma
3.2. Matrix Selection for Lipid Detection in Murine CT-2A Glioma
3.3. Differential Abundance between Tumor and Normal Regions in Murine CT-2A Glioma
3.4. Matrix Selection for Metabolite Detection in Human IDH-Mutant Glioma
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maher, E.A.; Marin-Valencia, I.; Bachoo, R.M.; Mashimo, T.; Raisanen, J.; Hatanpaa, K.J.; Jindal, A.; Jeffrey, F.M.; Choi, C.; Madden, C.; et al. Metabolism of [U-13C]Glucose in Human Brain Tumors in Vivo. NMR Biomed. 2012, 25, 1234–1244. [Google Scholar] [CrossRef] [PubMed]
- Warburg, O.; Minami, S. Tests on Surviving Carcinoma Cultures. Biochem. Z. 1923, 142, 317–333. [Google Scholar]
- Parsons, D.W.; Jones, S.; Zhang, X.; Lin, J.C.-H.; Leary, R.J.; Angenendt, P.; Mankoo, P.; Carter, H.; Siu, I.-M.; Gallia, G.L.; et al. An Integrated Genomic Analysis of Human Glioblastoma Multiforme. Science 2008, 321, 1807–1812. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Nobusawa, S.; Kleihues, P.; Ohgaki, H. IDH1 Mutations Are Early Events in the Development of Astrocytomas and Oligodendrogliomas. Am. J. Pathol. 2009, 174, 1149–1153. [Google Scholar] [CrossRef] [PubMed]
- Balss, J.; Meyer, J.; Mueller, W.; Korshunov, A.; Hartmann, C.; von Deimling, A. Analysis of the IDH1 Codon 132 Mutation in Brain Tumors. Acta Neuropathol. 2008, 116, 597–602. [Google Scholar] [CrossRef]
- Abu Sammour, D.; Cairns, J.L.; Boskamp, T.; Marsching, C.; Kessler, T.; Ramallo Guevara, C.; Panitz, V.; Sadik, A.; Cordes, J.; Schmidt, S.; et al. Spatial Probabilistic Mapping of Metabolite Ensembles in Mass Spectrometry Imaging. Nat. Commun. 2023, 14, 1823. [Google Scholar] [CrossRef]
- Ravi, V.M.; Will, P.; Kueckelhaus, J.; Sun, N.; Joseph, K.; Salié, H.; Vollmer, L.; Kuliesiute, U.; von Ehr, J.; Benotmane, J.K.; et al. Spatially Resolved Multi-Omics Deciphers Bidirectional Tumor-Host Interdependence in Glioblastoma. Cancer Cell 2022, 40, 639–655.e13. [Google Scholar] [CrossRef] [PubMed]
- Alexandrov, T. Spatial Metabolomics: From a Niche Field towards a Driver of Innovation. Nat. Metab. 2023, 5, 1443–1445. [Google Scholar] [CrossRef]
- Tuck, M.; Grélard, F.; Blanc, L.; Desbenoit, N. MALDI-MSI Towards Multimodal Imaging: Challenges and Perspectives. Front. Chem. 2022, 10, 904688. [Google Scholar] [CrossRef]
- Angel, P.M.; Caprioli, R.M. Matrix-Assisted Laser Desorption Ionization Imaging Mass Spectrometry: In Situ Molecular Mapping. Biochemistry 2013, 52, 3818–3828. [Google Scholar] [CrossRef]
- Qi, K.; Wu, L.; Liu, C.; Pan, Y. Recent Advances of Ambient Mass Spectrometry Imaging and Its Applications in Lipid and Metabolite Analysis. Metabolites 2021, 11, 780. [Google Scholar] [CrossRef] [PubMed]
- Keller, C.; Maeda, J.; Jayaraman, D.; Chakraborty, S.; Sussman, M.R.; Harris, J.M.; Ané, J.-M.; Li, L. Comparison of Vacuum MALDI and AP-MALDI Platforms for the Mass Spectrometry Imaging of Metabolites Involved in Salt Stress in Medicago Truncatula. Front. Plant Sci. 2018, 9, 1238. [Google Scholar] [CrossRef] [PubMed]
- Angerer, T.B.; Bour, J.; Biagi, J.-L.; Moskovets, E.; Frache, G. Evaluation of 6 MALDI-Matrices for 10 Μm Lipid Imaging and on-Tissue MSn with AP-MALDI-Orbitrap. J. Am. Soc. Mass Spectrom. 2022, 33, 760–771. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Pan, Y.; Xiong, C.; Han, J.; Wang, X.; Chen, J.; Nie, Z. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI MSI) for in Situ Analysis of Endogenous Small Molecules in Biological Samples. Trends Analyt. Chem. 2022, 157, 116809. [Google Scholar] [CrossRef]
- Fitzgerald, M.C.; Parr, G.R.; Smith, L.M. Basic Matrixes for the Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry of Proteins and Oligonucleotides. Anal. Chem. 1993, 65, 3204–3211. [Google Scholar] [CrossRef]
- Kussmann, M.; Roepstorff, P. Sample Preparation Techniques for Peptides and Proteins Analyzed by MALDI-MS. Methods Mol. Biol. 2000, 146, 405–424. [Google Scholar]
- Vorm, O.; Roepstorff, P.; Mann, M. Improved Resolution and Very High Sensitivity in MALDI TOF of Matrix Surfaces Made by Fast Evaporation. Anal. Chem. 1994, 66, 3281–3287. [Google Scholar] [CrossRef]
- Ma, X.; Fernández, F.M. Advances in Mass Spectrometry Imaging for Spatial Cancer Metabolomics. Mass Spectrom. Rev. 2022, 2022, e21804. [Google Scholar] [CrossRef]
- Fuchs, B.; Süss, R.; Schiller, J. An Update of MALDI-TOF Mass Spectrometry in Lipid Research. Prog. Lipid Res. 2011, 50, 132. [Google Scholar] [CrossRef]
- Falkenhagen, J. MALDI MS: A Practical Guide to Instrumentation, Methods, and Applications. Edited by Franz Hillenkamp and Jasna Peter-katalinić. ChemMedChem 2008, 3, 502. [Google Scholar] [CrossRef]
- Matros, A.; Mock, H.-P. Mass Spectrometry Based Imaging Techniques for Spatially Resolved Analysis of Molecules. Front. Plant Sci. 2013, 4, 89. [Google Scholar] [CrossRef]
- Dong, Y.; Li, B.; Malitsky, S.; Rogachev, I.; Aharoni, A.; Kaftan, F.; Svatoš, A.; Franceschi, P. Sample Preparation for Mass Spectrometry Imaging of Plant Tissues: A Review. Front. Plant Sci. 2016, 7, 60. [Google Scholar] [CrossRef] [PubMed]
- Seyfried, T.N.; el-Abbadi, M.; Roy, M.L. Ganglioside Distribution in Murine Neural Tumors. Mol. Chem. Neuropathol. 1992, 17, 147–167. [Google Scholar] [CrossRef] [PubMed]
- Moffet, J.J.D.; Moore, Z.; Oliver, S.J.; Towers, T.; Jenkins, M.R.; Freytag, S.; Whittle, J.R.; Best, S.A. Flow Cytometry Identification of Cell Compartments in the Murine Brain. Methods Mol. Biol. 2023, 2691, 185–198. [Google Scholar] [PubMed]
- Laugesen, S.; Roepstorff, P. Combination of Two Matrices Results in Improved Performance of MALDI MS for Peptide Mass Mapping and Protein Analysis. J. Am. Soc. Mass Spectrom. 2003, 14, 992–1002. [Google Scholar] [CrossRef] [PubMed]
- Islam, A.; Sakamoto, T.; Zhai, Q.; Rahman, M.M.; Mamun, M.A.; Takahashi, Y.; Kahyo, T.; Setou, M. Application of AP-MALDI Imaging Mass Microscope for the Rapid Mapping of Imipramine, Chloroquine, and Their Metabolites in the Kidney and Brain of Wild-Type Mice. Pharmaceuticals 2022, 15, 1314. [Google Scholar] [CrossRef]
- Vermillion-Salsbury, R.L.; Hercules, D.M. 9-Aminoacridine as a Matrix for Negative Mode Matrix-assisted Laser Desorption/Ionization. Rapid Commun. Mass Spectrom. 2002, 16, 1575–1581. [Google Scholar] [CrossRef]
- Beavis, R.C.; Chaudhary, T.; Chait, B.T. A-Cyano-4-hydroxycinnamic Acid as a Matrix for Matrixassisted Laser Desorption Mass Spectromtry. Org. Mass Spectrom. 1992, 27, 156–158. [Google Scholar] [CrossRef]
- Gusev, A.I.; Wilkinson, W.R.; Proctor, A.; Hercules, D.M. Improvement of Signal Reproducibility and Matrix/Comatrix Effects in MALDI Analysis. Anal. Chem. 1995, 67, 1034–1041. [Google Scholar] [CrossRef]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.-M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed Minimum Reporting Standards for Chemical Analysis. Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef]
- Huynh, K.; Barlow, C.K.; Jayawardana, K.S.; Weir, J.M.; Mellett, N.A.; Cinel, M.; Magliano, D.J.; Shaw, J.E.; Drew, B.G.; Meikle, P.J. High-Throughput Plasma Lipidomics: Detailed Mapping of the Associations with Cardiometabolic Risk Factors. Cell Chem. Biol. 2019, 26, 71–84.e4. [Google Scholar] [CrossRef] [PubMed]
- Bemis, K.D.; Harry, A.; Eberlin, L.S.; Ferreira, C.; van de Ven, S.M.; Mallick, P.; Stolowitz, M.; Vitek, O. Cardinal: An R Package for Statistical Analysis of Mass Spectrometry-Based Imaging Experiments. Bioinformatics 2015, 31, 2418–2420. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Guo, A.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, B.L.; et al. HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Res. 2022, 50, D622–D631. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Hu, S.; Baskin, E.; Patt, A.; Siddiqui, J.K.; Mathé, E.A. RaMP: A Comprehensive Relational Database of Metabolomics Pathways for Pathway Enrichment Analysis of Genes and Metabolites. Metabolites 2018, 8, 16. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. EdgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef]
- Korotkevich, G.; Sukhov, V.; Budin, N.; Shpak, B.; Artyomov, M.N.; Sergushichev, A. Fast Gene Set Enrichment Analysis. bioRxiv 2016. [Google Scholar] [CrossRef]
- Kampa, J.M.; Kellner, U.; Marsching, C.; Ramallo Guevara, C.; Knappe, U.J.; Sahin, M.; Giampà, M.; Niehaus, K.; Bednarz, H. Glioblastoma Multiforme: Metabolic Differences to Peritumoral Tissue and IDH-mutated Gliomas Revealed by Mass Spectrometry Imaging. Neuropathology 2020, 40, 546–558. [Google Scholar] [CrossRef]
- Randall, E.C.; Lopez, B.G.C.; Peng, S.; Regan, M.S.; Abdelmoula, W.M.; Basu, S.S.; Santagata, S.; Yoon, H.; Haigis, M.C.; Agar, J.N.; et al. Localized Metabolomic Gradients in Patient-Derived Xenograft Models of Glioblastoma. Cancer Res. 2020, 80, 1258–1267. [Google Scholar] [CrossRef]
- Jacobi, N.; Seeboeck, R.; Hofmann, E.; Eger, A. ErbB Family Signalling: A Paradigm for Oncogene Addiction and Personalized Oncology. Cancers 2017, 9, 33. [Google Scholar] [CrossRef]
- Pegg, A.E. Spermidine/Spermine-N1-Acetyltransferase: A Key Metabolic Regulator. Am. J. Physiol. Endocrinol. Metab. 2008, 294, E995–E1010. [Google Scholar] [CrossRef]
- Liu, F.-M.; Gao, Y.-F.; Kong, Y.; Guan, Y.; Zhang, J.; Li, S.-H.; Ye, D.; Wen, W.; Zuo, C.; Hua, W. The Diagnostic Value of Lower Glucose Consumption for IDH1 Mutated Gliomas on FDG-PET. BMC Cancer 2021, 21, 83. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.L.; Gross, M.L.; Hsu, F.-F. Ionic-Liquid Matrices for Improved Analysis of Phospholipids by MALDI-TOF Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2005, 16, 679–682. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.N.; Muller, L.; Roux, A.; Oktem, B.; Moskovets, E.; Doroshenko, V.M.; Woods, A.S. AP-MALDI Mass Spectrometry Imaging of Gangliosides Using 2,6-Dihydroxyacetophenone. J. Am. Soc. Mass Spectrom. 2018, 29, 1463–1472. [Google Scholar] [CrossRef] [PubMed]
- Calvano, C.D.; Monopoli, A.; Cataldi, T.R.I.; Palmisano, F. MALDI Matrices for Low Molecular Weight Compounds: An Endless Story? Anal. Bioanal. Chem. 2018, 410, 4015–4038. [Google Scholar] [CrossRef]
- Kaya, I.; Jennische, E.; Lange, S.; Malmberg, P. Multimodal Chemical Imaging of a Single Brain Tissue Section Using ToF-SIMS, MALDI-ToF and Immuno/Histochemical Staining. Analyst 2021, 146, 1169–1177. [Google Scholar] [CrossRef]
- Pan, C.; Xu, S.; Zhou, H.; Fu, Y.; Ye, M.; Zou, H. Recent Developments in Methods and Technology for Analysis of Biological Samples by MALDI-TOF-MS. Anal. Bioanal. Chem. 2007, 387, 193–204. [Google Scholar] [CrossRef]
- Leopold, J.; Prabutzki, P.; Engel, K.M.; Schiller, J. A Five-Year Update on Matrix Compounds for MALDI-MS Analysis of Lipids. Biomolecules 2023, 13, 546. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, T.; Freytag, L.; Narayana, V.K.; Moore, Z.; Oliver, S.J.; Valkovic, A.; Nijagal, B.; Peterson, A.L.; de Souza, D.P.; McConville, M.J.; et al. Matrix Selection for the Visualization of Small Molecules and Lipids in Brain Tumors Using Untargeted MALDI-TOF Mass Spectrometry Imaging. Metabolites 2023, 13, 1139. https://doi.org/10.3390/metabo13111139
Lu T, Freytag L, Narayana VK, Moore Z, Oliver SJ, Valkovic A, Nijagal B, Peterson AL, de Souza DP, McConville MJ, et al. Matrix Selection for the Visualization of Small Molecules and Lipids in Brain Tumors Using Untargeted MALDI-TOF Mass Spectrometry Imaging. Metabolites. 2023; 13(11):1139. https://doi.org/10.3390/metabo13111139
Chicago/Turabian StyleLu, Tianyao, Lutz Freytag, Vinod K. Narayana, Zachery Moore, Shannon J. Oliver, Adam Valkovic, Brunda Nijagal, Amanda L. Peterson, David P. de Souza, Malcolm J. McConville, and et al. 2023. "Matrix Selection for the Visualization of Small Molecules and Lipids in Brain Tumors Using Untargeted MALDI-TOF Mass Spectrometry Imaging" Metabolites 13, no. 11: 1139. https://doi.org/10.3390/metabo13111139
APA StyleLu, T., Freytag, L., Narayana, V. K., Moore, Z., Oliver, S. J., Valkovic, A., Nijagal, B., Peterson, A. L., de Souza, D. P., McConville, M. J., Whittle, J. R., Best, S. A., & Freytag, S. (2023). Matrix Selection for the Visualization of Small Molecules and Lipids in Brain Tumors Using Untargeted MALDI-TOF Mass Spectrometry Imaging. Metabolites, 13(11), 1139. https://doi.org/10.3390/metabo13111139