The Influence of Probiotic Supplementation on the Severity of Anxiety and Depressive Symptoms; Function and Composition of Gut Microbiota; and Metabolic, Inflammation, and Oxidative Stress Markers in Patients with Depression—A Study Protocol
Abstract
:1. Introduction
- -
- Comorbidity of anxiety symptoms in patients with diagnosed depressive disorders increases the likelihood of therapeutic response to probiotic supplementation in both depressive and anxiety symptoms;
- -
- Metabolic abnormalities, chronic inflammation, and oxidative stress markers may be predictive of probiotic efficacy toward depression;
- -
- Probiotic supplementation increases the concentration of fecal short-chain fatty acids and the level of diversity of gut microbiota composition in depressed subjects;
- -
- Probiotic supplementation improves metabolic parameters in patients with depressive disorders;
- -
- Probiotic supplementation improves inflammation and oxidative stress parameters in patients with depressive disorders;
- -
- Functional biomarkers (the ratio of levels of short-chain fatty acids) but not classification (taxonomic) changes of microbiota are typical for depressive disorders.
2. Materials and Methods
2.1. Scale and Questionnaires
2.2. Biological Parameters
2.3. Ethics
2.4. Statistical Analysis
Sample Size Calculation
3. Results
3.1. Patients
Randomization
3.2. Design
Eligibility Criteria (Table 3)
Inclusion Criteria | Exclusion Criteria | Reasons for the Participant to Be Discontinued from the Study |
---|---|---|
1. Depressive disorders diagnosed according to the ICD-11; 2. Age between 18–70 years; 3. MADRS score > = 13; 4. Anti-depressant and anti-anxiety medications not changed within 3 weeks prior to the recruitment visit. | 1. Pregnancy; 2. An infection/vaccination and/or treatment with antibiotics in the previous 4 weeks; 3. Supplementation with pro- or prebiotics in the previous 4 weeks; 4. Having a diagnosis of an autoimmune disease, being seriously immunocompromised, inflammatory bowel disease, cancer, IgE-dependent allergy, or severe kidney failure in the previous 4 weeks; 5. BMI > 35; 6. GFR < 30 mL/min/1.72 m2; 7. Unstable thyroid dysfunction (TSH < 0.27 or >4.2 µIU/mL) in the previous 4 weeks; 8. Psychiatric comorbidities (except specific personality disorder, additional specific anxiety disorder, and caffeine and nicotine addiction); 9. Regular treatment (more than 3 days a week) with PPIs, metformin, laxatives, systemic steroids, or NSAIDs in the previous 4 weeks; 10. Significant change in dietary pattern in the previous 4 weeks; 11. Significant change in daily physical activity or undertaking an extreme sports activity in the previous 4 weeks; 12. Significant change in dietary supplementation in the previous 4 weeks; 13. Significant change in smoking pattern in the previous 4 weeks; 14. High risk of suicide; 15. Is participating in, or has recently participated in, another research study involving an intervention that may alter the outcomes of interest for this study; 16. Any other condition or situation which, in the view of investigators, would affect the compliance or safety of the individual taking part. | 1. Withdrawal of informed consent; 2. An infection/vaccination and/or treatment with antibiotics during the trial; 3. Consuming any probiotics other than those studied during the trial; 4. Lack of compliance with the probiotic supplementation; 5. Any change in the drug regimen during the study; 6. Exclusion criteria found after enrolment; 7. Any serious adverse event during the trial. |
3.3. Interventions
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Marazziti, D.; Rutigliano, G.; Baroni, S.; Landi, P.; Dell’Osso, L. Metabolic syndrome and major depression. CNS Spectrums 2014, 19, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Shinkov, A.; Borissova, A.-M.; Kovatcheva, R.; Vlahov, J.; Dakovska, L.; Atanassova, I.; Petkova, P. Increased prevalence of depression and anxiety among subjects with metabolic syndrome and known type 2 diabetes mellitus—A population-based study. Postgrad. Med. 2018, 130, 251–257. [Google Scholar] [CrossRef]
- Penninx, B.W.J.H.; Lange, S.M.M. Metabolic syndrome in psychiatric patients: Overview, mechanisms, and implications. Dialog. Clin. Neurosci. 2018, 20, 63–73. [Google Scholar] [CrossRef]
- Chan, K.L.; Cathomas, F.; Russo, S.J. Central and Peripheral Inflammation Link Metabolic Syndrome and Major Depressive Disorder. Physiology 2019, 34, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Leonard, B.E. Inflammation and depression: A causal or coincidental link to the pathophysiology? Acta Neuropsychiatr. 2018, 30, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vona, R.; Gambardella, L.; Cittadini, C.; Straface, E.; Pietraforte, D. Biomarkers of Oxidative Stress in Metabolic Syndrome and Associated Diseases. Oxidative Med. Cell Longev. 2019, 2019, 8267234. [Google Scholar] [CrossRef] [Green Version]
- Carrier, A. Metabolic Syndrome and Oxidative Stress: A Complex Relationship. Antioxidants Redox Signal. 2017, 26, 429–431. [Google Scholar] [CrossRef]
- Black, C.N.; Bot, M.; Scheffer, P.G.; Cuijpers, P.; Penninx, B.W. Is depression associated with increased oxidative stress? A systematic review and meta-analysis. Psychoneuroendocrinology 2015, 51, 164–175. [Google Scholar] [CrossRef] [Green Version]
- Rani, V.; Deep, G.; Singh, R.K.; Palle, K.; Yadav, U.C.S. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sci. 2016, 148, 183–193. [Google Scholar] [CrossRef]
- Liu, T.; Zhong, S.; Liao, X.; Chen, J.; He, T.; Lai, S.; Jia, Y. A Meta-Analysis of Oxidative Stress Markers in Depression. PLoS ONE 2015, 10, e0138904. [Google Scholar] [CrossRef]
- Kho, Z.Y.; Lal, S.K. The Human Gut Microbiome–A Potential Controller of Wellness and Disease. Front. Microbiol. 2018, 9, 1835. [Google Scholar] [CrossRef] [Green Version]
- Jandhyala, S.M.; Talukdar, R.; Subramanyam, C.; Vuyyuru, H.; Sasikala, M.; Nageshwar Reddy, D. Role of the normal gut microbiota. World J. Gastroenterol. 2015, 21, 8787–8803. [Google Scholar] [CrossRef]
- Tan, J.; McKenzie, C.; Potamitis, M.; Thorburn, A.N.; Mackay, C.R.; Macia, L. The Role of Short-Chain Fatty Acids in Health and Disease. Adv. Immunol. 2014, 121, 91–119. [Google Scholar] [CrossRef]
- De la Cuesta-Zuluaga, J.; Mueller, N.T.; Álvarez-Quintero, R.; Velásquez-Mejía, E.P.; Sierra, J.A.; Corrales-Agudelo, V.; Carmona, J.A.; Abad, J.M.; Escobar, J.S. Higher Fecal Short-Chain Fatty Acid Levels Are Associated with Gut Microbiome Dysbiosis, Obesity, Hypertension and Cardiometabolic Disease Risk Factors. Nutrients 2019, 11, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belkaid, Y.; Hand, T.W. Role of the Microbiota in Immunity and Inflammation. Cell 2014, 157, 121–141. [Google Scholar] [CrossRef] [Green Version]
- Carlessi, A.S.; Borba, L.A.; Zugno, A.I.; Quevedo, J.; Réus, G.Z. Gut microbiota–brain axis in depression: The role of neuroinflammation. Eur. J. Neurosci. 2019, 53, 222–235. [Google Scholar] [CrossRef]
- Dumitrescu, L.; Popescu-Olaru, I.; Cozma, L.; Tulbă, D.; Hinescu, M.E.; Ceafalan, L.C.; Gherghiceanu, M.; Popescu, B.O. Oxidative Stress and the Microbiota-Gut-Brain Axis. Oxidative Med. Cell Longev. 2018, 2018, 2406594. [Google Scholar] [CrossRef] [Green Version]
- Zheng, P.; Zeng, B.; Zhou, C.; Liu, M.; Fang, Z.; Xu, X.; Zeng, L.; Chen, J.-J.; Fan, S.-H.; Du, X.; et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol. Psychiatry 2016, 21, 786–796. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Zeng, B.; Zeng, L.; Du, X.; Li, B.; Huo, R.; Liu, L.; Wang, H.; Dong, M.; Pan, J.; et al. Gut microbiota regulates mouse behaviors through glucocorticoid receptor pathway genes in the hippocampus. Transl. Psychiatry 2018, 8, 187. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.-M.; Kim, J.-K.; Joo, M.-K.; Shin, Y.-J.; Lee, K.-E.; Lee, C.K.; Kim, H.-J.; Kim, D.-H. Enterococcus faecium and Pediococcus acidilactici deteriorate Enterobacteriaceae-induced depression and colitis in mice. Sci. Rep. 2022, 12, 9389. [Google Scholar] [CrossRef]
- Yoo, J.-W.; Shin, Y.-J.; Ma, X.; Son, Y.-H.; Jang, H.-M.; Lee, C.K.; Kim, D.-H. The Alleviation of Gut Microbiota-Induced Depression and Colitis in Mice by Anti-Inflammatory Probiotics NK151, NK173, and NK175. Nutrients 2022, 14, 2080. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-J.; Zheng, P.; Liu, Y.-Y.; Zhong, X.-G.; Wang, H.-Y.; Guo, Y.-J.; Xie, P. Sex differences in gut microbiota in patients with major depressive disorder. Neuropsychiatr. Dis. Treat. 2018, 14, 647–655. [Google Scholar] [CrossRef] [Green Version]
- Naseribafrouei, A.; Hestad, K.; Avershina, E.; Sekelja, M.; Linløkken, A.; Wilson, R.; Rudi, K. Correlation between the human fecal microbiota and depression. Neurogastroenterol. Motil. 2014, 26, 1155–1162. [Google Scholar] [CrossRef]
- Dash, S.; Clarke, G.; Berk, M.; Jacka, F.N. The Gut Microbiome and Diet in Psychiatry: Focus on Depression. Curr. Opin. Psychiatry 2015, 28, 1–6. [Google Scholar] [CrossRef]
- Müller, B.; Rasmusson, A.J.; Just, D.; Jayarathna, S.; Moazzami, A.; Novicic, Z.K.; Cunningham, J.L. Fecal Short-Chain Fatty Acid Ratios as Related to Gastrointestinal and Depressive Symptoms in Young Adults. Psychosom. Med. 2021, 83, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Ortega, M.A.; Alvarez-Mon, M.A.; García-Montero, C.; Fraile-Martinez, O.; Guijarro, L.G.; Lahera, G.; Monserrat, J.; Valls, P.; Mora, F.; Rodríguez-Jiménez, R.; et al. Gut Microbiota Metabolites in Major Depressive Disorder—Deep Insights into Their Pathophysiological Role and Potential Translational Applications. Metabolites 2022, 12, 50. [Google Scholar] [CrossRef]
- Caspani, G.; Kennedy, S.; Foster, J.A.; Swann, J. Gut microbial metabolites in depression: Understanding the biochemical mechanisms. Microb. Cell 2019, 6, 454–481. [Google Scholar] [CrossRef] [PubMed]
- Valles-Colomer, M.; Falony, G.; Darzi, Y.; Tigchelaar, E.F.; Wang, J.; Tito, R.Y.; Schiweck, C.; Kurilshikov, A.; Joossens, M.; Wijmenga, C.; et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat. Microbiol. 2019, 4, 623–632. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document: The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.; Wang, K.; Hu, J. Effect of Probiotics on Depression: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2016, 8, 483. [Google Scholar] [CrossRef] [Green Version]
- Ng, Q.X.; Peters, C.; Ho, C.Y.X.; Lim, D.Y.; Yeo, W.-S. A meta-analysis of the use of probiotics to alleviate depressive symptoms. J. Affect. Disord. 2018, 228, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Colica, C.; Avolio, E.; Bollero, P.; Costa de Miranda, R.; Ferraro, S.; Sinibaldi Salimei, P.; De Lorenzo, A.; Di Renzo, L. Evidences of a New Psychobiotic Formulation on Body Composition and Anxiety. Mediat. Inflamm. 2017, 2017, 5650627. [Google Scholar] [CrossRef]
- Yang, H.; Zhao, X.; Tang, S.; Huang, H.; Zhao, X.; Ning, Z.; Fu, X.; Zhang, C. Probiotics reduce psychological stress in patients before laryngeal cancer surgery. Asia Pac. J. Clin. Oncol. 2016, 12, e92–e96. [Google Scholar] [CrossRef]
- Liu, B.; He, Y.; Wang, M.; Liu, J.; Ju, Y.; Zhang, Y.; Liu, T.; Li, L.; Li, Q. Efficacy of probiotics on anxiety-A meta-analysis of randomized controlled trials. Depress. Anxiety 2018, 35, 935–945. [Google Scholar] [CrossRef]
- Reis, D.J.; Ilardi, S.S.; Punt, S.E.W. The anxiolytic effect of probiotics: A systematic review and meta-analysis of the clinical and preclinical literature. PLoS ONE 2018, 13, e0199041. [Google Scholar] [CrossRef] [Green Version]
- Ghanei-Gheshlagh, R.; Parizad, N.; Sayehmiri, K. The Relationship Between Depression and Metabolic Syndrome: Systematic Review and Meta-Analysis Study. Iran. Red Crescent Med. J. 2016, 18, e26523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tenorio-Jiménez, C.; Martínez-Ramírez, M.J.; Gil, Á.; Gómez-Llorente, C. Effects of Probiotics on Metabolic Syndrome: A Systematic Review of Randomized Clinical Trials. Nutrients 2020, 12, 124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amirani, E.; Milajerdi, A.; Mirzaei, H.; Jamilian, H.; Mansournia, M.A.; Hallajzadeh, J.; Ghaderi, A. The Effects of Probiotic Supplementation on Mental Health, Biomarkers of Inflammation and Oxidative Stress in Patients with Psychiatric Disorders: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Complement. Ther. Med. 2020, 49, 102361. [Google Scholar] [CrossRef]
- Maurya, P.K.; Noto, C.; Rizzo, L.B.; Rios, A.C.; Nunes, S.O.; Barbosa, D.S.; Sethi, S.; Zeni, M.; Mansur, R.B.; Maes, M.; et al. The role of oxidative and nitrosative stress in accelerated aging and major depressive disorder. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2016, 65, 134–144. [Google Scholar] [CrossRef]
- Zamani, B.; Sheikhi, A.; Namazi, N.; Larijani, B.; Azadbakht, L. The Effects of Supplementation with Probiotic on Biomarkers of Oxidative Stress in Adult Subjects: A Systematic Review and Meta-analysis of Randomized Trials. Probiotics Antimicrob. Proteins 2020, 12, 102–111. [Google Scholar] [CrossRef]
- Marnett, L.J. Lipid peroxidation—DNA damage by malondialdehyde. Mutat. Res. Mol. Mech. Mutagen. 1999, 424, 83–95. [Google Scholar] [CrossRef]
- Montgomery, S.A.; Åsberg, M. A New Depression Scale Designed to be Sensitive to Change. Br. J. Psychiatry 1979, 134, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Quilty, L.C.; Robinson, J.J.; Rolland, J.-P.; De Fruyt, F.; Rouillon, F.; Bagby, R.M. The structure of the Montgomery-Åsberg depression rating scale over the course of treatment for depression. Int. J. Methods Psychiatr. Res. 2013, 22, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.A.; Chorpita, B.F.; Korotitsch, W.; Barlow, D.H. Psychometric properties of the Depression Anxiety Stress Scales (DASS) in clinical samples. Behav. Res. Ther. 1997, 35, 79–89. [Google Scholar] [CrossRef]
- Skevington, S.; Lotfy, M.; O’Connell, K. The World Health Organization’s WHOQOL-BREF quality of life assessment: Psychometric properties and results of the international field trial. A Report from the WHOQOL Group. Qual. Life Res. 2004, 13, 299–310. [Google Scholar] [CrossRef]
- Wądołowska, L. Validation of Food Frequency Questionnaire (FFQ). Reproducibility Assessment. Bromat. Chem. Toksykol. 2005, 38, 27–33. [Google Scholar]
- WHO. International Statistical Classification of Diseases and Related Health Problems (ICD-11), 11th ed.; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Alberti, K.G.M.M.; Zimmet, P.; Shaw, J. Metabolic syndrome—A new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar] [CrossRef]
- Dijkstra, F.M.; van de Loo, A.J.; Abdulahad, S.; Bosma, E.R.; Hartog, M.; Huls, H.; Kuijper, D.C.; de Vries, E.; Solanki, B.; Singh, J.; et al. The effects of intranasal esketamine on on-road driving performance in patients with major depressive disorder or persistent depressive disorder. J. Psychopharmacol. 2022, 36, 614–625. [Google Scholar] [CrossRef]
- Messaoudi, M.; Lalonde, R.; Violle, N.; Javelot, H.; Desor, D.; Nejdi, A.; Bisson, J.F.; Rougeot, C.; Pichelin, M.; Cazaubiel, M.; et al. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br. J. Nutr. 2011, 105, 755–764. [Google Scholar] [CrossRef] [Green Version]
- Arseneault-Bréard, J.; Rondeau, I.; Gilbert, K.; Girard, S.-A.; Tompkins, T.A.; Godbout, R.; Rousseau, G. Combination of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 reduces post-myocardial infarction depression symptoms and restores intestinal permeability in a rat model. Br. J. Nutr. 2012, 107, 1793–1799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilbert, K.; Arseneault-Bréard, J.; Monaco, F.F.; Beaudoin, A.; Bah, T.M.; Tompkins, T.A.; Godbout, R.; Rousseau, G. Attenuation of post-myocardial infarction depression in rats by n-3 fatty acids or probiotics starting after the onset of reperfusion. Br. J. Nutr. 2013, 109, 50–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazemi, A.; Noorbala, A.A.; Azam, K.; Eskandari, M.H.; Djafarian, K. Effect of probiotic and prebiotic vs placebo on psychological outcomes in patients with major depressive disorder: A randomized clinical trial. Clin. Nutr. 2019, 38, 522–528. [Google Scholar] [CrossRef] [PubMed]
- Romijn, A.R.; Rucklidge, J.J.; Kuijer, R.G.; Frampton, C. A double-blind, randomized, placebo-controlled trial of Lactobacillus helveticus and Bifidobacterium longum for the symptoms of depression. Aust. N. Z. J. Psychiatry 2017, 51, 810–821. [Google Scholar] [CrossRef] [Green Version]
- Diop, L.; Guillou, S.; Durand, H. Probiotic food supplement reduces stress-induced gastrointestinal symptoms in volunteers: A double-blind, placebo-controlled, randomized trial. Nutr. Res. 2008, 28, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Pinto-Sanchez, M.I.; Hall, G.B.; Ghajar, K.; Nardelli, A.; Bolino, C.; Lau, J.T.; Martin, F.-P.; Cominetti, O.; Welsh, C.; Rieder, A.; et al. Probiotic Bifidobacterium longum NCC3001 Reduces Depression Scores and Alters Brain Activity: A Pilot Study in Patients with Irritable Bowel Syndrome. Gastroenterology 2017, 153, 448–459. [Google Scholar] [CrossRef]
- Cazzola, M.; Tompkins, T.A.; Matera, M.G. Immunomodulatory impact of a synbiotic in Th1 and Th2 models of infection. Ther. Adv. Respir. Dis. 2010, 4, 259–270. [Google Scholar] [CrossRef] [Green Version]
- Wagar, L.; Champagne, C.; Buckley, N.; Raymond, Y.; Green-Johnson, J. Immunomodulatory Properties of Fermented Soy and Dairy Milks Prepared with Lactic Acid Bacteria. J. Food Sci. 2009, 74, M423–M430. [Google Scholar] [CrossRef]
- Chen, J.J.; Wang, R.; Li, X.; Wang, R. Bifidobacterium Longum Supplementation Improved High-Fat-Fed-Induced Metabolic Syndrome and Promoted Intestinal Reg I Gene Expression. Exp. Biol. Med. 2011, 236, 823–831. [Google Scholar] [CrossRef]
- Gawlik-Kotelnicka, O.; Skowrońska, A.; Margulska, A.; Czarnecka-Chrebelska, K.; Łoniewski, I.; Skonieczna-Żydecka, K.; Strzelecki, D. The Influence of Probiotic Supplementation on Depressive Symptoms, Inflammation, and Oxidative Stress Parameters and Fecal Microbiota in Patients with Depression Depending on Metabolic Syndrome Comorbidity—PRO-DEMET Randomized Study Protocol. J. Clin. Med. 2021, 10, 1342. [Google Scholar] [CrossRef]
- Akkasheh, G.; Kashani-Poor, Z.; Tajabadi-Ebrahimi, M.; Jafari, P.; Akbari, H.; Taghizadeh, M.; Memarzadeh, M.R.; Asemi, Z.; Esmaillzadeh, A. Clinical and metabolic response to probiotic administration in patients with major depressive disorder: A randomized, double-blind, placebo-controlled trial. Nutrition 2016, 32, 315–320. [Google Scholar] [CrossRef]
- Chahwan, B.; Kwan, S.; Isik, A.; van Hemert, S.; Burke, C.; Roberts, L. Gut feelings: A randomised, triple-blind, placebo-controlled trial of probiotics for depressive symptoms. J. Affect. Disord. 2019, 253, 317–326. [Google Scholar] [CrossRef]
- Bambling, M.; Edwards, S.C.; Hall, S.; Vitetta, L. A combination of probiotics and magnesium orotate attenuate depression in a small SSRI resistant cohort: An intestinal anti-inflammatory response is suggested. Inflammopharmacology 2017, 25, 271–274. [Google Scholar] [CrossRef]
- Lenze, E.J.; Mulsant, B.H.; Shear, M.K.; Schulberg, H.C.; Dew, M.A.; Begley, A.E.; Pollock, B.G.; Reynolds, C.F. Comorbid Anxiety Disorders in Depressed Elderly Patients. Am. J. Psychiatry 2000, 157, 722–728. [Google Scholar] [CrossRef] [PubMed]
- Murphy, J.A.; Sarris, J.; Byrne, G.J. A Review of the Conceptualisation and Risk Factors Associated with Treatment-Resistant Depression. Depression Res. Treat. 2017, 2017, 4176825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikolova, V.L.; Cleare, A.J.; Young, A.H.; Stone, J.M. Updated Review and Meta-Analysis of Probiotics for the Treatment of Clinical Depression: Adjunctive vs. Stand-Alone Treatment. J. Clin. Med. 2021, 10, 647. [Google Scholar] [CrossRef]
- Dong, Y.; Xu, M.; Chen, L.; Bhochhibhoya, A. Probiotic Foods and Supplements Interventions for Metabolic Syndromes: A Systematic Review and Meta-Analysis of Recent Clinical Trials. Ann. Nutr. Metab. 2019, 74, 224–241. [Google Scholar] [CrossRef]
- Reed, G.M.; First, M.B.; Kogan, C.S.; Hyman, S.E.; Gureje, O.; Gaebel, W.; Maj, M.; Stein, D.J.; Maercker, A.; Tyrer, P.; et al. Innovations and changes in the ICD-11 classification of mental, behavioural and neurodevelopmental disorders. World Psychiatry 2019, 18, 3–19. [Google Scholar] [CrossRef] [Green Version]
- Ziebold, C.; Goldberg, D.P.; Reed, G.M.; Minhas, F.; Razzaque, B.; Fortes, S.; Robles, R.; Lam, T.P.; Bobes, J.; Iglesias, C.; et al. Dimensional analysis of depressive, anxious and somatic symptoms presented by primary care patients and their relationship with ICD-11 PHC proposed diagnoses. Psychol. Med. 2018, 49, 764–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vich Vila, A.; Collij, V.; Sanna, S.; Sinha, T.; Imhann, F.; Bourgonje, A.; Mujagic, Z.; Jonkers, D.M.A.E.; Masclee, A.A.M.; Fu, J.; et al. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat. Commun. 2020, 11, 362. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Yun, Y.; Kim, S.J.; Lee, E.-J.; Chang, Y.; Ryu, S.; Shin, H.; Kim, H.-L.; Kim, H.-N.; Lee, J.H. Association between Cigarette Smoking Status and Composition of Gut Microbiota: Population-Based Cross-Sectional Study. J. Clin. Med. 2018, 7, 282. [Google Scholar] [CrossRef] [Green Version]
- Lloyd-Price, J.; Abu-Ali, G.; Huttenhower, C. The healthy human microbiome. Genome Med. 2016, 8, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salim, S.Y.; Kaplan, G.G.; Madsen, K.L. Air pollution effects on the gut microbiota: A Link between Exposure and Inflammatory Disease. Gut Microbes 2013, 5, 215–219. [Google Scholar] [CrossRef]
- Nadeem, I.; Rahman, M.Z.; Ad-Dab’Bagh, Y.; Akhtar, M. Effect of probiotic interventions on depressive symptoms: A narrative review evaluating systematic reviews. Psychiatry Clin. Neurosci. 2019, 73, 154–162. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, S.; Zhang, M.; Ren, F.; Ren, Y.; Li, Y.; Liu, N.; Zhang, Y.; Zhang, Q.; Wang, R. Effects of Fermented Milk Containing Lacticaseibacillus paracasei Strain Shirota on Constipation in Patients with Depression: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2021, 13, 2238. [Google Scholar] [CrossRef]
- Chamberlain, S.R.; Cavanagh, J.; de Boer, P.; Mondelli, V.; Jones, D.N.; Drevets, W.C.; Cowen, P.J.; Harrison, N.A.; Pointon, L.; Pariante, C.M.; et al. Treatment-resistant depression and peripheral C-reactive protein. Br. J. Psychiatry 2019, 214, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Pitharouli, M.C.; Hagenaars, S.P.; Glanville, K.P.; Coleman, J.R.; Hotopf, M.; Lewis, C.M.; Pariante, C.M. Elevated C-Reactive Protein in Patients with Depression, Independent of Genetic, Health, and Psychosocial Factors: Results From the UK Biobank. Am. J. Psychiatry 2021, 178, 522–529. [Google Scholar] [CrossRef]
- Panagiotakos, D.B.; Chrysohoou, C.; Pitsavos, C.; Skoumas, J.; Lentzas, Y.; Katinioti, A.; Stefanadis, C. Hierarchical analysis of anthropometric indices in the prediction of 5-year incidence of hypertension in apparently healthy adults: The ATTICA study. Atherosclerosis 2009, 206, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Ivey, K.L.; Hodgson, J.M.; Kerr, D.A.; Thompson, P.L.; Stojceski, B.; Prince, R.L. The effect of yoghurt and its probiotics on blood pressure and serum lipid profile; a randomised controlled trial. Nutr. Metab. Cardiovasc. Dis. NMCD 2015, 25, 46–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niyonsenga, T.; Carroll, S.J.; Coffee, N.; Taylor, A.W.; Daniel, M. Are changes in depressive symptoms, general health and residential area socio-economic status associated with trajectories of waist circumference and body mass index? PLoS ONE 2020, 15, e0227029. [Google Scholar] [CrossRef]
- Martinac, M.; Karlovic, D.; Vrkić, N.; Marčinko, D.; Bazina, N.; Babić, D. Serum lipids in a depressive disorder with regard to depression type. Biochem. Med. 2007, 17, 94–101. [Google Scholar] [CrossRef]
Materials and Methods | ||||
---|---|---|---|---|
Psychometric Tools | Biological Samples | Physical Examination | ||
Blood | Feces | |||
Primary outcome measures | ||||
Depressive symptoms | MADRS | |||
Secondary outcome measures | ||||
Anxiety symptoms | DASS | |||
Stress level | DASS | |||
Quality of life | WHOQOL-BREF | |||
Metabolic parameters | fGlc, HDL-C, TG | BP, BMI, WC | ||
Microbiota function | MC, SCFAs | |||
Inflammations parameters | WBC, NEU, CRP | |||
Oxidative stress parameters | TAC, MDA |
Depressive Disorders in the ICD 11 | Code |
---|---|
Single-episode depressive disorder | 6A70 |
Recurrent depressive disorder | 6A71 |
Dysthymic disorder | 6A72 |
Mixed depressive and anxiety disorder | 6A73 |
Other specified depressive disorders | 6A7Y |
Depressive disorders, unspecified | 6A7Z |
The List of the Recent Clinical Trials That Demonstrated the Efficacy of Bifidobacterium longum and Lactobacillus helveticus toward Depressive, Anxiety, and Stress Symptoms | ||||
---|---|---|---|---|
The Authors | Animal/Human Studies | Duration | Population | Results |
Kazemi et al., 2018 [53] | Humans | 8 weeks | 110 depressed patients | ”A significant decrease in BDI score (17.39–9.1) compared to the placebo (18.18–15.55) and prebiotic (19.72–14.14) supplementation (p = 0.042)”. |
Romijin et al., 2017 [54] | Humans | 8 weeks | 79 participants (10 dropouts) with at least moderate scores on self-report mood measures | No significant impact on any psychological outcome measure. |
Messaoudi et al., 2011 [50] | Animals (rats) and humans | 4 weeks | 66 participants based on a score of ≤12 in the HADS-anxiety subscale (HADS-A) and the HADS-depression subscale (HADS-D) and equal to or less than 20 in the HADS total score on the initial examination | A significant reduction in anxiety-like behavior in rats (p < 0.05) and alleviated psychological distress in volunteers, as measured particularly by the HSCL-90 scale, HADS, and CCL. |
Pinto-Sanchez et al., 2017 [56] | Humans | 6 weeks | 44 adults with IBS and diarrhea or a mixed-stool pattern (based on the Rome III criteria) and mild-to-moderate anxiety and/or depression (based on the Hospital Anxiety and Depression Scale) | 14 of 22 patients in the BL (Bifidobacterium longum) group had a reduction in depression scores of 2 points or more on the Hospital Anxiety and Depression Scale vs. 7 of 22 patients in the placebo group (p = 0.04). BL had no significant effect on anxiety or IBS symptoms. |
Arseneault-Bréard et al., 2012 [51] | Animals (rats) | - | - | ”Probiotics reversed the behavioural effects of myocardial infarction (MI) (p < 0.05), but did not alter the behaviour of sham rats. Intestinal permeability was increased in MI rats and reversed by probiotics. In conclusion, L. helveticus R0052 and B. longum R0175 combination interferes with the development of post-MI depressive behaviour and restores intestinal barrier integrity in MI rats.” |
Diop et al., 2008 [55] | Humans | 3 weeks | 75 healthy volunteers with symptoms of stress | Significant reduction in 2 stress-induced gastrointestinal symptoms (abdominal pain and nausea/vomiting) and no significant modification of the other physical and psychological symptoms and sleep problems. |
Gilbert et al., 2012 [52] | Animals (rats) | - | - | ”administration of probiotics, starting after the onset of reperfusion, are beneficial to attenuate apoptosis in the limbic system and post-MI depression in the rat”. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skowrońska, A.; Gawlik-Kotelnicka, O.; Margulska, A.; Strzelecki, D. The Influence of Probiotic Supplementation on the Severity of Anxiety and Depressive Symptoms; Function and Composition of Gut Microbiota; and Metabolic, Inflammation, and Oxidative Stress Markers in Patients with Depression—A Study Protocol. Metabolites 2023, 13, 182. https://doi.org/10.3390/metabo13020182
Skowrońska A, Gawlik-Kotelnicka O, Margulska A, Strzelecki D. The Influence of Probiotic Supplementation on the Severity of Anxiety and Depressive Symptoms; Function and Composition of Gut Microbiota; and Metabolic, Inflammation, and Oxidative Stress Markers in Patients with Depression—A Study Protocol. Metabolites. 2023; 13(2):182. https://doi.org/10.3390/metabo13020182
Chicago/Turabian StyleSkowrońska, Anna, Oliwia Gawlik-Kotelnicka, Aleksandra Margulska, and Dominik Strzelecki. 2023. "The Influence of Probiotic Supplementation on the Severity of Anxiety and Depressive Symptoms; Function and Composition of Gut Microbiota; and Metabolic, Inflammation, and Oxidative Stress Markers in Patients with Depression—A Study Protocol" Metabolites 13, no. 2: 182. https://doi.org/10.3390/metabo13020182
APA StyleSkowrońska, A., Gawlik-Kotelnicka, O., Margulska, A., & Strzelecki, D. (2023). The Influence of Probiotic Supplementation on the Severity of Anxiety and Depressive Symptoms; Function and Composition of Gut Microbiota; and Metabolic, Inflammation, and Oxidative Stress Markers in Patients with Depression—A Study Protocol. Metabolites, 13(2), 182. https://doi.org/10.3390/metabo13020182