Application of Metabolomics in Obesity-Related Childhood Asthma Subtyping: A Narrative Scoping Review
Abstract
:1. Introduction
2. Relevant Sections
2.1. Evidence around the Epidemiology, Respiratory Physiology and Genetic Susceptibility of Obesity-Related Childhood Asthma
2.1.1. Emerging Epidemiological Data on Obesity-Related Childhood Asthma
2.1.2. Respiratory Physiology Profiles in Obesity-Related Childhood Asthma
2.1.3. Genetic Susceptibility in Obesity-Related Childhood Asthma
2.2. Inflammatory and Metabolic Mechanisms Underlying Obesity-Related Childhood Asthma Subtypes
2.2.1. Inflammatory Mechanisms
Role of Obesity in Inflammation in Children with Asthma
Interferons Contributing to Airway Inflammation in Obese Children with Asthma
Role of Obesity in Airway Remodeling in Children with Asthma
2.2.2. Metabolic Mechanisms
Oxidative Stress and Dysregulation of Free Fatty Acid Metabolism Pathways in Childhood Asthma
Oxidative Stress and Peripheral Blood Ketones and Glucose Dysregulation in Obesity-Related Asthma
3. Discussion around Challenges in the Application of Metabolomics in Precision Medicine in Obesity-Related Childhood Asthma
4. Conclusions
5. Future Directions of Research
Author Contributions
Funding
Conflicts of Interest
References
- Di Cesare, M.; Sorić, M.; Bovet, P.; Miranda, J.J.; Bhutta, Z.; Stevens, G.A.; Laxmaiah, A.; Kengne, A.P.; Bentham, J. The epidemiological burden of obesity in childhood: A worldwide epidemic requiring urgent action. BMC Med. 2019, 17, 212. [Google Scholar] [CrossRef] [Green Version]
- Pearce, N.; Aït-Khaled, N.; Beasley, R.; Mallol, J.; Keil, U.; Mitchell, E.; Robertson, C. Worldwide trends in the prevalence of asthma symptoms: Phase III of the International Study of Asthma and Allergies in Childhood (ISAAC). Thorax 2007, 62, 758–766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gold, D.R.; Damokosh, A.I.; Dockery, D.W.; Berkey, C.S. Body-mass index as a predictor of incident asthma in a prospective cohort of children. Pediatr. Pulmonol. 2003, 36, 514–521. [Google Scholar] [CrossRef]
- Zhang, Z.; Lai, H.J.; Roberg, K.A.; Gangnon, R.E.; Evans, M.D.; Anderson, E.L.; Pappas, T.E.; Dasilva, D.F.; Tisler, C.J.; Salazar, L.P.; et al. Early childhood weight status in relation to asthma development in high-risk children. J. Allergy Clin. Immunol. 2010, 126, 1157–1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azizpour, Y.; Delpisheh, A.; Montazeri, Z.; Sayehmiri, K.; Darabi, B. Effect of childhood BMI on asthma: A systematic review and meta-analysis of case-control studies. BMC Pediatr. 2018, 18, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forno, E.; Celedon, J.C. The effect of obesity, weight gain, and weight loss on asthma inception and control. Curr. Opin. Allergy Clin. Immunol. 2017, 17, 123–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, P.C.; Kieckhefer, G.M.; Gau, B.S. A systematic review of the association between obesity and asthma in children. J. Adv. Nurs. 2013, 69, 1446–1465. [Google Scholar] [CrossRef] [Green Version]
- Bønnelykke, K.; Ober, C. Leveraging gene-environment interactions and endotypes for asthma gene discovery. J. Allergy Clin. Immunol. 2016, 137, 667–679. [Google Scholar] [CrossRef] [Green Version]
- Smits, H.H.; van der Vlugt, L.E.; von Mutius, E.; Hiemstra, P.S. Childhood allergies and asthma: New insights on environmental exposures and local immunity at the lung barrier. Curr. Opin. Immunol. 2016, 42, 41–47. [Google Scholar] [CrossRef]
- Reinke, S.N.; Gallart-Ayala, H.; Gomez, C.; Checa, A.; Fauland, A.; Naz, S.; Kamleh, M.A.; Djukanovic, R.; Hinks, T.S.; Wheelock, C.E. Metabolomics analysis identifies different metabotypes of asthma severity. Eur. Respir. J. 2017, 49, 1601740. [Google Scholar] [CrossRef] [Green Version]
- Reinke, S.N.; Naz, S.; Chaleckis, R.; Gallart-Ayala, H.; Kolmert, J.; Kermani, N.Z.; Tiotiu, A.; Broadhurst, D.I.; Lundqvist, A.; Olsson, H.; et al. Urinary metabotype of severe asthma evidences decreased carnitine metabolism independent of oral corticosteroid treatment in the U-BIOPRED study. Eur. Respir. J. 2022, 59, 2101733. [Google Scholar] [CrossRef] [PubMed]
- Favé, M.J.; Lamaze, F.C.; Soave, D.; Hodgkinson, A.; Gauvin, H.; Bruat, V.; Grenier, J.C.; Gbeha, E.; Skead, K.; Smargiassi, A.; et al. Gene-by-environment interactions in urban populations modulate risk phenotypes. Nat. Commun. 2018, 9, 827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raita, Y.; Pérez-Losada, M.; Freishtat, R.J.; Harmon, B.; Mansbach, J.M.; Piedra, P.A.; Zhu, Z.; Camargo, C.A.; Hasegawa, K. Integrated omics endotyping of infants with respiratory syncytial virus bronchiolitis and risk of childhood asthma. Nat. Commun. 2021, 12, 3601. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Camargo, C.A., Jr.; Raita, Y.; Freishtat, R.J.; Fujiogi, M.; Hahn, A.; Mansbach, J.M.; Spergel, J.M.; Pérez-Losada, M.; Hasegawa, K. Nasopharyngeal airway dual-transcriptome of infants with severe bronchiolitis and risk of childhood asthma: A multicenter prospective study. J. Allergy Clin. Immunol. 2022, 150, 806–816. [Google Scholar] [CrossRef]
- Turi, K.N.; Romick-Rosendale, L.; Ryckman, K.K.; Hartert, T.V. A review of metabolomics approaches and their application in identifying causal pathways of childhood asthma. J. Allergy Clin. Immunol. 2018, 141, 1191–1201. [Google Scholar] [CrossRef] [Green Version]
- Jansma, J.; El Aidy, S. Understanding the host-microbe interactions using metabolic modeling. Microbiome 2021, 9, 16. [Google Scholar] [CrossRef]
- Baker, S.A.; Rutter, J. Metabolites as signalling molecules. Nat. Rev. Mol. Cell Biol. 2023. [Google Scholar] [CrossRef]
- Diener, C.; Dai, C.L.; Wilmanski, T.; Baloni, P.; Smith, B.; Rappaport, N.; Hood, L.; Magis, A.T.; Gibbons, S.M. Genome-microbiome interplay provides insight into the determinants of the human blood metabolome. Nat. Metab. 2022, 4, 1560–1572. [Google Scholar] [CrossRef]
- Rinschen, M.M.; Ivanisevic, J.; Giera, M.; Siuzdak, G. Identification of bioactive metabolites using activity metabolomics. Nat. Rev. Mol. Cell Biol. 2019, 20, 353–367. [Google Scholar] [CrossRef]
- Park, E.; Park, P.H.; Huh, J.W.; Yun, H.J.; Lee, H.K.; Yoon, M.H.; Lee, S.; Ko, G. Molecular and clinical characterization of human respiratory syncytial virus in South Korea between 2009 and 2014. Epidemiol. Infect. 2017, 145, 3226–3242. [Google Scholar] [CrossRef] [Green Version]
- Papamichael, M.M.; Katsardis, C.; Sarandi, E.; Georgaki, S.; Frima, E.S.; Varvarigou, A.; Tsoukalas, D. Application of Metabolomics in Pediatric Asthma: Prediction, Diagnosis and Personalized Treatment. Metabolites 2021, 11, 251. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, A.M.; Park, Y.; Brown, L.A.; Jones, D.P. Children with severe asthma have unique oxidative stress-associated metabolomic profiles. J. Allergy Clin. Immunol. 2014, 133, 258–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Z.; Camargo, C.A., Jr.; Raita, Y.; Fujiogi, M.; Liang, L.; Rhee, E.P.; Woodruff, P.G.; Hasegawa, K. Metabolome subtyping of severe bronchiolitis in infancy and risk of childhood asthma. J. Allergy Clin. Immunol. 2022, 149, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Papamichael, M.M.; Katsardis, C.; Tsoukalas, D.; Itsiopoulos, C.; Erbas, B. Plasma lipid biomarkers in relation to BMI, lung function, and airway inflammation in pediatric asthma. Metabolomics 2021, 17, 63. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.Q.; Glessner, J.; Qu, J.; Gilhool, S.; Mentch, F.; Campbell, I.; Sleiman, P.; Connolly, J.J.; Hakonarson, H. Metabolomic profiling of samples from pediatric patients with asthma unveils deficient nutrients in African Americans. iScience 2022, 25, 104650. [Google Scholar] [CrossRef] [PubMed]
- Caruso, C.; Colantuono, S.; Nicoletti, A.; Arasi, S.; Firinu, D.; Gasbarrini, A.; Coppola, A.; Di Michele, L. Metabolomics, Microbiota, and In Vivo and In Vitro Biomarkers in Type 2 Severe Asthma: A Perspective Review. Metabolites 2021, 11, 647. [Google Scholar] [CrossRef]
- Moitra, S.; Carsin, A.E.; Abramson, M.J.; Accordini, S.; Amaral, A.F.S.; Anto, J.; Bono, R.; Casas Ruiz, L.; Cerveri, I.; Chatzi, L.; et al. Long-term effect of asthma on the development of obesity among adults: An international cohort study, ECRHS. Thorax 2022, 78, 128–135. [Google Scholar] [CrossRef]
- Camargo, C.A., Jr.; Weiss, S.T.; Zhang, S.; Willett, W.C.; Speizer, F.E. Prospective study of body mass index, weight change, and risk of adult-onset asthma in women. Arch. Intern. Med. 1999, 159, 2582–2588. [Google Scholar] [CrossRef] [Green Version]
- Shan, L.S.; Zhou, Q.L.; Shang, Y.X. Bidirectional Association Between Asthma and Obesity During Childhood and Adolescence: A Systematic Review and Meta-Analysis. Front. Pediatr. 2020, 8, 576858. [Google Scholar] [CrossRef]
- Nanishi, M.; Fujiogi, M.; Stevenson, M.; Liang, L.; Qi, Y.S.; Raita, Y.; Hasegawa, K.; Camargo, C.A., Jr. Association of Growth Trajectory Profiles with Asthma Development in Infants Hospitalized with Bronchiolitis. J. Allergy Clin. Immunol. Pract. 2022, 10, 723–731.e5. [Google Scholar] [CrossRef]
- Wang, D.; Yan, S.; Yan, J.; Teng, M.; Meng, Z.; Li, R.; Zhou, Z.; Zhu, W. Effects of triphenyl phosphate exposure during fetal development on obesity and metabolic dysfunctions in adult mice: Impaired lipid metabolism and intestinal dysbiosis. Environ. Pollut. 2019, 246, 630–638. [Google Scholar] [CrossRef] [PubMed]
- Polinski, K.J.; Bell, G.A.; Trinh, M.H.; Sundaram, R.; Mendola, P.; Robinson, S.L.; Bell, E.M.; Adeyeye, T.; Lin, T.C.; Yeung, E.H. Maternal obesity, gestational weight gain, and offspring asthma and atopy. Ann. Allergy Asthma Immunol. 2022, 129, 199–204.e3. [Google Scholar] [CrossRef] [PubMed]
- Forno, E.; Young, O.M.; Kumar, R.; Simhan, H.; Celedon, J.C. Maternal obesity in pregnancy, gestational weight gain, and risk of childhood asthma. Pediatrics 2014, 134, e535–e546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malden, S.; Gillespie, J.; Hughes, A.; Gibson, A.M.; Farooq, A.; Martin, A.; Summerbell, C.; Reilly, J.J. Obesity in young children and its relationship with diagnosis of asthma, vitamin D deficiency, iron deficiency, specific allergies and flat-footedness: A systematic review and meta-analysis. Obes. Rev. 2021, 22, e13129. [Google Scholar] [CrossRef]
- Borrell, L.N.; Nguyen, E.A.; Roth, L.A.; Oh, S.S.; Tcheurekdjian, H.; Sen, S.; Davis, A.; Farber, H.J.; Avila, P.C.; Brigino-Buenaventura, E.; et al. Childhood obesity and asthma control in the GALA II and SAGE II studies. Am. J. Respir. Crit. Care Med. 2013, 187, 697–702. [Google Scholar] [CrossRef] [Green Version]
- Forno, E.; Lescher, R.; Strunk, R.; Weiss, S.; Fuhlbrigge, A.; Celedon, J.C.; Childhood Asthma Management Program Research, G. Decreased response to inhaled steroids in overweight and obese asthmatic children. J. Allergy Clin. Immunol. 2011, 127, 741–749. [Google Scholar] [CrossRef] [Green Version]
- Holderness, H.; Chin, N.; Ossip, D.J.; Fagnano, M.; Reznik, M.; Halterman, J.S. Physical activity, restrictions in activity, and body mass index among urban children with persistent asthma. Ann. Allergy Asthma Immunol. 2017, 118, 433–438. [Google Scholar] [CrossRef] [Green Version]
- Chu, Y.T.; Chen, W.Y.; Wang, T.N.; Tseng, H.I.; Wu, J.R.; Ko, Y.C. Extreme BMI predicts higher asthma prevalence and is associated with lung function impairment in school-aged children. Pediatr. Pulmonol. 2009, 44, 472–479. [Google Scholar] [CrossRef]
- Forno, E.; Weiner, D.J.; Mullen, J.; Sawicki, G.; Kurland, G.; Han, Y.Y.; Cloutier, M.M.; Canino, G.; Weiss, S.T.; Litonjua, A.A.; et al. Obesity and Airway Dysanapsis in Children with and without Asthma. Am. J. Respir. Crit. Care Med. 2017, 195, 314–323. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Rennie, D.; Cormier, Y.; Dosman, J.A. Waist circumference associated with pulmonary function in children. Pediatr. Pulmonol. 2009, 44, 216–221. [Google Scholar] [CrossRef]
- Rastogi, D.; Bhalani, K.; Hall, C.B.; Isasi, C.R. Association of pulmonary function with adiposity and metabolic abnormalities in urban minority adolescents. Ann. Am. Thorac. Soc. 2014, 11, 744–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rastogi, D.; Canfield, S.M.; Andrade, A.; Isasi, C.R.; Hall, C.B.; Rubinstein, A.; Arens, R. Obesity-associated asthma in children: A distinct entity. Chest 2012, 141, 895–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melén, E.; Himes, B.E.; Brehm, J.M.; Boutaoui, N.; Klanderman, B.J.; Sylvia, J.S.; Lasky-Su, J. Analyses of shared genetic factors between asthma and obesity in children. J. Allergy Clin. Immunol. 2010, 126, 631–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Z.; Guo, Y.; Shi, H.; Liu, C.L.; Panganiban, R.A.; Chung, W.; O’Connor, L.J.; Himes, B.E.; Gazal, S.; Hasegawa, K.; et al. Shared genetic and experimental links between obesity-related traits and asthma subtypes in UK Biobank. J. Allergy Clin. Immunol. 2020, 145, 537–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, X.; Zhu, Z.; Xiao, Q.; Li, J.; Hong, X.; Wang, X.; Hasegawa, K.; Camargo, C.A., Jr.; Liang, L. Obesity-related biomarkers underlie a shared genetic architecture between childhood body mass index and childhood asthma. Commun. Biol. 2022, 5, 1098. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, J.; Si, J.; Ma, B.; Shi, H.; Lv, J.; Cao, W.; Guo, Y.; Millwood, I.Y.; Walters, R.G.; et al. A large-scale genome-wide association analysis of lung function in the Chinese population identifies novel loci and highlights shared genetic aetiology with obesity. Eur. Respir. J. 2021, 58, 2100199. [Google Scholar] [CrossRef]
- Thomsen, S.F.; Ulrik, C.S.; Kyvik, K.O.; Larsen, K.; Skadhauge, L.R.; Steffensen, I.; Backer, V. The incidence of asthma in young adults. Chest 2005, 127, 1928–1934. [Google Scholar] [CrossRef] [Green Version]
- Licari, A.; Castagnoli, R.; Brambilla, I.; Marseglia, A.; Tosca, M.A.; Marseglia, G.L.; Ciprandi, G. Asthma Endotyping and Biomarkers in Childhood Asthma. Pediatr. Allergy Immunol. Pulmonol. 2018, 31, 44–55. [Google Scholar] [CrossRef] [Green Version]
- Dinger, K.; Kasper, P.; Hucklenbruch-Rother, E.; Vohlen, C.; Jobst, E.; Janoschek, R.; Bae-Gartz, I.; van Koningsbruggen-Rietschel, S.; Plank, C.; Dotsch, J.; et al. Early-onset obesity dysregulates pulmonary adipocytokine/insulin signaling and induces asthma-like disease in mice. Sci. Rep. 2016, 6, 24168. [Google Scholar] [CrossRef] [Green Version]
- Holguin, F.; Cardet, J.C.; Chung, K.F.; Diver, S.; Ferreira, D.S.; Fitzpatrick, A.; Gaga, M.; Kellermeyer, L.; Khurana, S.; Knight, S.; et al. Management of severe asthma: A European Respiratory Society/American Thoracic Society guideline. Eur. Respir. J. 2020, 55, 1900588. [Google Scholar] [CrossRef] [Green Version]
- Kho, A.T.; McGeachie, M.J.; Li, J.; Chase, R.P.; Amr, S.S.; Hastie, A.T.; Hawkins, G.A.; Li, X.; Chupp, G.L.; Meyers, D.A.; et al. Lung function, airway and peripheral basophils and eosinophils are associated with molecular pharmacogenomic endotypes of steroid response in severe asthma. Thorax 2022, 77, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Nam, J.H. Insight into the relationship between obesity-induced low-level chronic inflammation and COVID-19 infection. Int. J. Obes. 2020, 44, 1541–1542. [Google Scholar] [CrossRef] [PubMed]
- Sewter, C.P.; Digby, J.E.; Blows, F.; Prins, J.; O’Rahilly, S. Regulation of tumour necrosis factor-alpha release from human adipose tissue in vitro. J. Endocrinol. 1999, 163, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Baek, H.S.; Kim, Y.D.; Shin, J.H.; Kim, J.H.; Oh, J.W.; Lee, H.B. Serum leptin and adiponectin levels correlate with exercise-induced bronchoconstriction in children with asthma. Ann. Allergy Asthma Immunol. 2011, 107, 14–21. [Google Scholar] [CrossRef]
- Kahn, D.; Macias, E.; Zarini, S.; Garfield, A.; Zemski Berry, K.; MacLean, P.; Gerszten, R.E.; Libby, A.; Solt, C.; Schoen, J.; et al. Exploring visceral and subcutaneous adipose tissue secretomes in human obesity: Implications for metabolic disease. Endocrinology 2022, 163, bqac140. [Google Scholar] [CrossRef]
- Phosat, C.; Panprathip, P.; Chumpathat, N.; Prangthip, P.; Chantratita, N.; Soonthornworasiri, N.; Puduang, S.; Kwanbunjan, K. Elevated C-reactive protein, interleukin 6, tumor necrosis factor alpha and glycemic load associated with type 2 diabetes mellitus in rural Thais: A cross-sectional study. BMC Endocr. Disord. 2017, 17, 44. [Google Scholar] [CrossRef] [Green Version]
- Rader, D.J. Effect of insulin resistance, dyslipidemia, and intra-abdominal adiposity on the development of cardiovascular disease and diabetes mellitus. Am. J. Med. 2007, 120, S12–S18. [Google Scholar] [CrossRef]
- Sood, A.; Qualls, C.; Li, R.; Schuyler, M.; Beckett, W.S.; Smith, L.J.; Thyagarajan, B.; Lewis, C.E.; Jacobs, D.R. Lean mass predicts asthma better than fat mass among females. Eur. Respir. J. 2011, 37, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Balistreri, C.R.; Caruso, C.; Candore, G. The role of adipose tissue and adipokines in obesity-related inflammatory diseases. Mediat. Inflamm. 2010, 2010, 802078. [Google Scholar] [CrossRef] [Green Version]
- Longo, M.; Zatterale, F.; Naderi, J.; Parrillo, L.; Formisano, P.; Raciti, G.A.; Beguinot, F.; Miele, C. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. Int. J. Mol. Sci. 2019, 20, 2358. [Google Scholar] [CrossRef] [Green Version]
- de Castro, L.L.; Xisto, D.G.; Kitoko, J.Z.; Cruz, F.F.; Olsen, P.C.; Redondo, P.A.G.; Ferreira, T.P.T.; Weiss, D.J.; Martins, M.A.; Morales, M.M.; et al. Human adipose tissue mesenchymal stromal cells and their extracellular vesicles act differentially on lung mechanics and inflammation in experimental allergic asthma. Stem Cell Res. Ther. 2017, 8, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kayser, B.D.; Goran, M.I.; Bouret, S.G. Perinatal overnutrition exacerbates adipose tissue inflammation caused by high-fat feeding in C57BL/6J mice. PLoS ONE 2015, 10, e0121954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szymanska, E.; Bouwman, J.; Strassburg, K.; Vervoort, J.; Kangas, A.J.; Soininen, P.; Ala-Korpela, M.; Westerhuis, J.; van Duynhoven, J.P.; Mela, D.J.; et al. Gender-dependent associations of metabolite profiles and body fat distribution in a healthy population with central obesity: Towards metabolomics diagnostics. OMICS 2012, 16, 652–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wouters, E.F.; Reynaert, N.L.; Dentener, M.A.; Vernooy, J.H. Systemic and local inflammation in asthma and chronic obstructive pulmonary disease: Is there a connection? Proc. Am. Thorac. Soc. 2009, 6, 638–647. [Google Scholar] [CrossRef]
- Thompson, D.; Wood, L.G.; Williams, E.J.; McLoughlin, R.F.; Rastogi, D. Endotyping pediatric obesity-related asthma: Contribution of anthropometrics, metabolism, nutrients, and CD4(+) lymphocytes to pulmonary function. J. Allergy Clin. Immunol. 2022, 150, 817–871. [Google Scholar] [CrossRef]
- Bastard, P.; Zhang, Q.; Zhang, S.Y.; Jouanguy, E.; Casanova, J.L. Type I interferons and SARS-CoV-2: From cells to organisms. Curr. Opin. Immunol. 2022, 74, 172–182. [Google Scholar] [CrossRef]
- Ivashkiv, L.B.; Donlin, L.T. Regulation of type I interferon responses. Nat. Rev. Immunol. 2014, 14, 36–49. [Google Scholar] [CrossRef] [Green Version]
- Saito, T.; Hayashida, H.; Furugen, R. Comment on: Cani et al. (2007) Metabolic endotoxemia initiates obesity and insulin resistance: Diabetes 56:1761–1772. Diabetes 2007, 56, e20, author reply e21. [Google Scholar] [CrossRef] [Green Version]
- Alsaggar, M.; Mills, M.; Liu, D. Interferon beta overexpression attenuates adipose tissue inflammation and high-fat diet-induced obesity and maintains glucose homeostasis. Gene Ther. 2017, 24, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Zauco, N.; Del Rio-Navarro, B.; Gallardo-Casas, C.; Del Rio-Chivardi, J.; Muriel-Vizcaino, R.; Rivera-Pazos, C.; Huerta-Yepez, S.; Cruz-López, M.; Maldonado-Bernal, C. High expression of Toll-like receptors 2 and 9 and Th1/Th2 cytokines profile in obese asthmatic children. Allergy Asthma Proc. 2014, 35, 34–41. [Google Scholar] [CrossRef]
- Kumari, M.; Wang, X.; Lantier, L.; Lyubetskaya, A.; Eguchi, J.; Kang, S.; Tenen, D.; Roh, H.C.; Kong, X.; Kazak, L.; et al. IRF3 promotes adipose inflammation and insulin resistance and represses browning. J. Clin. Investig. 2016, 126, 2839–2854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearce, E.L.; Pearce, E.J. Metabolic pathways in immune cell activation and quiescence. Immunity 2013, 38, 633–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, L.; Roth, M. Airway Wall Remodeling in Childhood Asthma-A Personalized Perspective from Cell Type-Specific Biology. J. Personal. Med. 2021, 11, 1129. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.Y.; Hur, J.; Jeon, S.; Jung, C.K.; Rhee, C.K. Effects of human adipose tissue- and bone marrow-derived mesenchymal stem cells on airway inflammation and remodeling in a murine model of chronic asthma. Sci. Rep. 2022, 12, 12032. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, A.M.; Mutic, A.D.; Mohammad, A.F.; Stephenson, S.T.; Grunwell, J.R. Obesity Is Associated with Sustained Symptomatology and Unique Inflammatory Features in Children with Asthma. J. Allergy Clin. Immunol. Pract. 2022, 10, 815–826.e2. [Google Scholar] [CrossRef]
- Manna, P.; Jain, S.K. Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic Strategies. Metab. Syndr. Relat. Disord. 2015, 13, 423–444. [Google Scholar] [CrossRef] [Green Version]
- Sahiner, U.M.; Birben, E.; Erzurum, S.; Sackesen, C.; Kalayci, O. Oxidative stress in asthma. World Allergy Organ. J. 2011, 4, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Bazan-Socha, S.; Wojcik, K.; Olchawa, M.; Sarna, T.; Pieta, J.; Jakiela, B.; Soja, J.; Okon, K.; Zarychta, J.; Zareba, L.; et al. Increased Oxidative Stress in Asthma-Relation to Inflammatory Blood and Lung Biomarkers and Airway Remodeling Indices. Biomedicines 2022, 10, 1499. [Google Scholar] [CrossRef]
- Wiegman, C.H.; Michaeloudes, C.; Haji, G.; Narang, P.; Clarke, C.J.; Russell, K.E.; Bao, W.; Pavlidis, S.; Barnes, P.J.; Kanerva, J.; et al. Oxidative stress-induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 2015, 136, 769–780. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Litt, L.; Segal, M.R.; Kelly, M.J.; Pelton, J.G.; Kim, M. Metabolomics of oxidative stress in recent studies of endogenous and exogenously administered intermediate metabolites. Int. J. Mol. Sci. 2011, 12, 6469–6501. [Google Scholar] [CrossRef] [Green Version]
- Grasemann, H.; Holguin, F. Oxidative stress and obesity-related asthma. Paediatr. Respir. Rev. 2021, 37, 18–21. [Google Scholar] [CrossRef] [PubMed]
- Corradi, M.; Folesani, G.; Andreoli, R.; Manini, P.; Bodini, A.; Piacentini, G.; Carraro, S.; Zanconato, S.; Baraldi, E. Aldehydes and glutathione in exhaled breath condensate of children with asthma exacerbation. Am. J. Respir. Crit. Care Med. 2003, 167, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, A.M.; Teague, W.G.; Burwell, L.; Brown, M.S.; Brown, L.A. Glutathione oxidation is associated with airway macrophage functional impairment in children with severe asthma. Pediatr. Res. 2011, 69, 154–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyata, J.; Arita, M. Role of omega-3 fatty acids and their metabolites in asthma and allergic diseases. Allergol. Int. 2015, 64, 27–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muley, P.; Shah, M.; Muley, A. Omega-3 Fatty Acids Supplementation in Children to Prevent Asthma: Is It Worthy?-A Systematic Review and Meta-Analysis. J. Allergy 2015, 2015, 312052. [Google Scholar] [CrossRef] [Green Version]
- Rutting, S.; Xenaki, D.; Lau, E.; Horvat, J.; Wood, L.G.; Hansbro, P.M.; Oliver, B.G. Dietary omega-6, but not omega-3, polyunsaturated or saturated fatty acids increase inflammation in primary lung mesenchymal cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2018, 314, L922–L935. [Google Scholar] [CrossRef]
- Rutting, S.; Zakarya, R.; Bozier, J.; Xenaki, D.; Horvat, J.C.; Wood, L.G.; Hansbro, P.M.; Oliver, B.G. Dietary Fatty Acids Amplify Inflammatory Responses to Infection through p38 MAPK Signaling. Am. J. Respir. Cell Mol. Biol. 2019, 60, 554–568. [Google Scholar] [CrossRef]
- Cait, A.; Hughes, M.R.; Antignano, F.; Cait, J.; Dimitriu, P.A.; Maas, K.R.; Reynolds, L.A.; Hacker, L.; Mohr, J.; Finlay, B.B.; et al. Microbiome-driven allergic lung inflammation is ameliorated by short-chain fatty acids. Mucosal Immunol. 2018, 11, 785–795. [Google Scholar] [CrossRef] [Green Version]
- Nogal, A.; Valdes, A.M.; Menni, C. The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health. Gut Microbes 2021, 13, 1–24. [Google Scholar] [CrossRef]
- Zheng, P.; Zhang, K.; Lv, X.; Liu, C.; Wang, Q.; Bai, X. Gut Microbiome and Metabolomics Profiles of Allergic and Non-Allergic Childhood Asthma. J. Asthma Allergy 2022, 15, 419–435. [Google Scholar] [CrossRef]
- Nakajima, A.; Kaga, N.; Nakanishi, Y.; Ohno, H.; Miyamoto, J.; Kimura, I.; Hori, S.; Sasaki, T.; Hiramatsu, K.; Okumura, K.; et al. Maternal High Fiber Diet during Pregnancy and Lactation Influences Regulatory T Cell Differentiation in Offspring in Mice. J. Immunol. 2017, 199, 3516–3524. [Google Scholar] [CrossRef] [Green Version]
- Antunes, K.H.; Singanayagam, A.; Williams, L.; Faiez, T.S.; Farias, A.; Jackson, M.M.; Faizi, F.K.; Aniscenko, J.; Kebadze, T.; Veerati, P.C.; et al. Airway-delivered short-chain fatty acid acetate boosts antiviral immunity during rhinovirus infection. J. Allergy Clin. Immunol. 2023, 151, 447–457.e5. [Google Scholar] [CrossRef]
- Forno, E.; Han, Y.Y.; Muzumdar, R.H.; Celedón, J.C. Insulin resistance, metabolic syndrome, and lung function in US adolescents with and without asthma. J. Allergy Clin. Immunol. 2015, 136, 304–311.e8. [Google Scholar] [CrossRef] [Green Version]
- Cardet, J.C.; Ash, S.; Kusa, T.; Camargo, C.A., Jr.; Israel, E. Insulin resistance modifies the association between obesity and current asthma in adults. Eur. Respir. J. 2016, 48, 403–410. [Google Scholar] [CrossRef] [Green Version]
- Holecek, M. Histidine in Health and Disease: Metabolism, Physiological Importance, and Use as a Supplement. Nutrients 2020, 12, 848. [Google Scholar] [CrossRef] [Green Version]
- Feng, R.N.; Niu, Y.C.; Sun, X.W.; Li, Q.; Zhao, C.; Wang, C.; Guo, F.C.; Sun, C.H.; Li, Y. Histidine supplementation improves insulin resistance through suppressed inflammation in obese women with the metabolic syndrome: A randomised controlled trial. Diabetologia 2013, 56, 985–994. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Feng, R.; Li, Y.; Lin, S.; Zhang, W.; Li, Y.; Sun, C.; Li, S. Histidine supplementation alleviates inflammation in the adipose tissue of high-fat diet-induced obese rats via the NF-kappaB- and PPARgamma-involved pathways. Br. J. Nutr. 2014, 112, 477–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carr, T.F.; Granell, R.; Stern, D.A.; Guerra, S.; Wright, A.; Halonen, M.; Henderson, J.; Martinez, F.D. High Insulin in Early Childhood Is Associated with Subsequent Asthma Risk Independent of Body Mass Index. J. Allergy Clin. Immunol. Pract. 2022, 10, 785–792.e5. [Google Scholar] [CrossRef] [PubMed]
- Proskocil, B.J.; Calco, G.N.; Nie, Z. Insulin acutely increases agonist-induced airway smooth muscle contraction in humans and rats. Am. J. Physiol. Lung Cell Mol. Physiol. 2021, 320, L545–L556. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, D.; Jung, M.; Strizich, G.; Shaw, P.A.; Davis, S.M.; Klein, O.L.; Penedo, F.J.; Ries, A.L.; Daviglus, M.L.; Moreiras, J.J.; et al. Association of systemic inflammation, adiposity, and metabolic dysregulation with asthma burden among Hispanic adults. Respir. Med. 2017, 125, 72–81. [Google Scholar] [CrossRef] [Green Version]
- Kolmert, J.; Gomez, C.; Balgoma, D.; Sjodin, M.; Bood, J.; Konradsen, J.R.; Ericsson, M.; Thorngren, J.O.; James, A.; Mikus, M.; et al. Urinary Leukotriene E(4) and Prostaglandin D(2) Metabolites Increase in Adult and Childhood Severe Asthma Characterized by Type 2 Inflammation. A Clinical Observational Study. Am. J. Respir. Crit. Care Med. 2021, 203, 37–53. [Google Scholar] [CrossRef] [PubMed]
- Tobias, T.A.M.; Wood, L.G.; Rastogi, D. Carotenoids, fatty acids and disease burden in obese minority adolescents with asthma. Clin. Exp. Allergy 2019, 49, 838–846. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zheng, J.; Zhang, H.P.; Zhang, X.; Wang, L.; Wood, L.; Wang, G. Obesity-Associated Metabolic Signatures Correlate to Clinical and Inflammatory Profiles of Asthma: A Pilot Study. Allergy Asthma Immunol. Res. 2018, 10, 628–647. [Google Scholar] [CrossRef] [PubMed]
- Maniscalco, M.; Paris, D.; Melck, D.J.; D’Amato, M.; Zedda, A.; Sofia, M.; Stellano, C.; Motta, A. Coexistence of obesity and asthma determines a distinct respiratory metabolic phenotype. J. Allergy Clin. Immunol. 2017, 139, 1536–1547.e5. [Google Scholar] [CrossRef] [Green Version]
- Liao, S.Y.; Linderholm, A.; Showalter, M.R.; Chen, C.H.; Fiehn, O.; Kenyon, N.J. L-arginine as a potential GLP-1-mediated immunomodulator of Th17-related cytokines in people with obesity and asthma. Obes. Res. Clin. Pract. 2021, 7, 339–345. [Google Scholar] [CrossRef]
- Manni, M.L.; Heinrich, V.A.; Buchan, G.J.; O’Brien, J.P.; Uvalle, C.; Cechova, V.; Koudelka, A.; Ukani, D.; Rawas-Qalaji, M.; Oury, T.D.; et al. Nitroalkene fatty acids modulate bile acid metabolism and lung function in obese asthma. Sci. Rep. 2021, 11, 17788. [Google Scholar] [CrossRef]
- Wang, C.N.; Li, Y.L.; Gong, F.L.; Zhang, Y.H.; Fang, S.M.; Zhang, H.L. Advances in Doped ZnO Nanostructures for Gas Sensor. Chem. Rec. 2020, 20, 1553–1567. [Google Scholar] [CrossRef]
- Little, A.C.; Kovalenko, I.; Goo, L.E.; Hong, H.S.; Kerk, S.A.; Yates, J.A.; Purohit, V.; Lombard, D.B.; Merajver, S.D.; Lyssiotis, C.A. High-content fluorescence imaging with the metabolic flux assay reveals insights into mitochondrial properties and functions. Commun. Biol. 2020, 3, 271. [Google Scholar] [CrossRef]
- Wu, D.; Sanin, D.E.; Everts, B.; Chen, Q.; Qiu, J.; Buck, M.D.; Patterson, A.; Smith, A.M.; Chang, C.H.; Liu, Z.; et al. Type 1 Interferons Induce Changes in Core Metabolism that Are Critical for Immune Function. Immunity 2016, 44, 1325–1336. [Google Scholar] [CrossRef] [Green Version]
- Holt, P.G.; Mok, D.; Panda, D.; Renn, L.; Fabozzi, G.; deKlerk, N.H.; Kusel, M.M.H.; Serralha, M.; Hollams, E.M.; Holt, B.J.; et al. Developmental regulation of type 1 and type 3 interferon production and risk for infant infections and asthma development. J. Allergy Clin. Immunol. 2019, 143, 1176–1182.e5. [Google Scholar] [CrossRef]
- Guo, Y.; Shi, J.; Wang, Q.; Hong, L.; Chen, M.; Liu, S.; Yuan, X.; Jiang, S. Metformin alleviates allergic airway inflammation and increases Treg cells in obese asthma. J. Cell. Mol. Med. 2021, 25, 2279–2284. [Google Scholar] [CrossRef] [PubMed]
Citation (Country) | Study Type | Study Population and Size | Exposure(s) or Intervention(s) | Metabolomics Technique | Cellular Location of Metabolic Pathway | Outcome (Incident Asthma or Prevalent Asthma or Asthma Control) | Measure of Association |
---|---|---|---|---|---|---|---|
studies in children | |||||||
Qu H.Q. et al. [25] United States | case-control study | 603 children with asthma (stratification through weight level) and 593 children without asthma | peripheral blood samples ketone bodies, histidine, glutamine, saturated fatty acids, very low-density lipoprotein | NMR spectroscopy | endoplasmic reticulum, nucleus, cytoplasm, mitochondria | prevalent asthma by 18 years | lower plasma levels of histidine and glutamine more prevalent in asthma cases than in controls (p < 0.05) low peripheral blood ratio of ketone bodies, citrate, and fatty acids more prevalent in asthma cases with increased weight than in controls (p < 0.01) |
Rastogi G. et al. [41] United States | case-control study | 82 obese adolescents and 86 non-obese adolescents | peripheral blood samples insulin, lipids, adipokines | NMR spectroscopy | endoplasmic reticulum, cytoplasm, mitochondria | prevalent asthma by 16 years | increased adipokines and lipids levels are independently associated with reduced lung function and asthma prevalence by 16 years |
Thompson D. et al. [65] United States | cohort study analytical study | 26 children with obese asthma phenotype and 28 children with non-obese asthma phenotype | serum glucose, insulin, lipids, fatty acid levels and TH cell transcriptome neck, WHR, and BMI z score | NMR spectroscopy | endoplasmic reticulum, nucleus, and mitochondria | asthma control | decreased lipids and increased fatty acid levels associated with increased asthma control and improved pulmonary function in obese children than in non-obese controls (p < 0.05) |
Fitzpatrick A.M. et al. [83] United States | case-control study | 257 children with asthma | peripheral blood samples leptin, adiponectin, C-reactive protein, total cholesterol, IL-1β, IL-6, IL-17, interferon gamma, tumor necrosis factor alpha, monocyte-chemoattractant protein-1, and amino acid metabolites | NMR spectroscopy | endoplasmic reticulum, cytoplasm, mitochondria | asthma control (6–17 years old) | within the group of obese children, lower concentrations of arginine-related metabolites associated with reduced asthma control lower vs higher (p <0.05) |
Papamichael M.M et al. [24] Greece | case-control study | 64 children with asthma | peripheral blood samples plasma fatty acid metabolites (linoleic, oleic, erucic, cis-11-eicosenoic, arachidic acids, α-linolenic, EPA and DHA) | GM-CS | endoplasmic reticulum, nucleus, cytoplasm, mitochondria | asthma control (5–12 years old) | peripheral blood α-linolenic, EPA and DHA levels not associated with reduced asthma control decreased level of linoleic, oleic, erucic, cis-11-eicosenoic, arachidic acids associated with reduced asthma control increased vs non-increased (p <0.05) |
Tobias T.A.M. et al. [102] United States | case-control study | 39 obese children with asthma, 39 normal weight children with asthma, 38 obese controls and 42 normal weight controls | peripheral blood samples plasma polyunsaturated fatty acids, carotenoids | NMR | endoplasmic reticulum, nucleus, and mitochondria | asthma control (13–18 years old) | increased level of peripheral blood polyunsaturated long-chain fatty acids correlated with improved asthma control (p < 0.01) |
studies in adults | |||||||
Liu Y. et al. [103] China | case-control study | 11 obese adults with asthma and 22 non-obese adults with asthma | peripheral blood and sputum samples peripheral blood cyanoaminoacid, caffeine, valine, uric acid, N-methy-DL-alanine and beta-glycerophosphoric acid metabolism sputum tryptophan and pentose phosphate metabolism | GC-MS | endoplasmic reticulum, nucleus, and mitochondria | prevalent asthma by 57 years (18–57 years old) | decrease in 3-hydroxybutyric acid, linolenic acid, isoleucine in obese vs non-obese adults with asthma (p < 0.05) |
Rastogi D. et al. [100] United States | case-control study | 334 overweight adults, and 648 obese adults | peripheral blood and sputum samples insulin resistance, HDL levels | Elisa in peripheral blood samples | endoplasmic reticulum, nucleus, and mitochondria | prevalent asthma by 60 years | high peripheral blood HDL levels associated with prevalent asthma in obese rather than overweight adults (p < 0.05) |
Maniscalco M. et al. [104] Italy | case-control study | 25 obese adults with asthma and 30 non-obese adults with asthma | EBC samples methane, glyoxylate/dicarboxylate, and pyruvate | NMR spectroscopy | cytoplasm, nucleus, and mitochondria | prevalent asthma by 50 years (30–50 years old) | EBC samples from obese patients with asthma had increased glucose, butyrate, and acetoin levels and decreased formate, tyrosine, ethanol, ethylene glycol, methanol, n-valerate, acetate, saturated fatty acids, and propionate levels as compared to non-obese patients with asthma (p < 0.004) |
S. Y. Liao et al. [105] United States | randomized controlled trial | 19 patients with severe asthma | peripheral blood samples intervention treatment with L-arginine or placebo at 0.05 mg/kg for 12 weeks, then 6-week washout period, and then treatment with L-arginine or placebo at 0.05 mg/kg exposures arginine-related metabolites, GLP-1, insulin | MS | endoplasmic reticulum, cytoplasm | asthma control (5–12 years old) | L-arginine supplementation was associated with increased insulin levels and decreased GLP-1 levels between those who received this and the control group (p = 0.02) |
Mani M.L. et al. [106] United States | case-control study | 19 healthy adults and 34 adults with asthma | peripheral blood samples bile acid levels (glycocholic acid and glycoursodeoxycholic acid) | LC-MS | endoplasmic reticulum, cytoplasm, and mitochondria | asthma control (18–65 years old) | increased peripheral blood glycocholic and glycoursodeoxycholic acid levels associated with reduced asthma control (p < 0.05) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makrinioti, H.; Zhu, Z.; Camargo, C.A., Jr.; Fainardi, V.; Hasegawa, K.; Bush, A.; Saglani, S. Application of Metabolomics in Obesity-Related Childhood Asthma Subtyping: A Narrative Scoping Review. Metabolites 2023, 13, 328. https://doi.org/10.3390/metabo13030328
Makrinioti H, Zhu Z, Camargo CA Jr., Fainardi V, Hasegawa K, Bush A, Saglani S. Application of Metabolomics in Obesity-Related Childhood Asthma Subtyping: A Narrative Scoping Review. Metabolites. 2023; 13(3):328. https://doi.org/10.3390/metabo13030328
Chicago/Turabian StyleMakrinioti, Heidi, Zhaozhong Zhu, Carlos A. Camargo, Jr., Valentina Fainardi, Kohei Hasegawa, Andrew Bush, and Sejal Saglani. 2023. "Application of Metabolomics in Obesity-Related Childhood Asthma Subtyping: A Narrative Scoping Review" Metabolites 13, no. 3: 328. https://doi.org/10.3390/metabo13030328
APA StyleMakrinioti, H., Zhu, Z., Camargo, C. A., Jr., Fainardi, V., Hasegawa, K., Bush, A., & Saglani, S. (2023). Application of Metabolomics in Obesity-Related Childhood Asthma Subtyping: A Narrative Scoping Review. Metabolites, 13(3), 328. https://doi.org/10.3390/metabo13030328