Global and Partial Effect Assessment in Metabolic Syndrome Explored by Metabolomics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.1.1. Available Data
2.1.2. Path Diagrams
2.2. Effect Assessment
2.2.1. Effect Calculation
2.2.2. Determination of the Models by Means of PLS Regression
2.2.3. Software and Implementation
3. Results
3.1. Global and Partial Effect Estimations and Selected Variables by Means of VIP Indices
3.2. Comparison of Important Variables in the Global and Partial Effects
4. Discussion
4.1. Interest of Path Modeling Approaches
4.2. Concepts of Global and Partial Effects
4.3. Input for the Exploration of Metabolic Syndrome
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haendel, M.A.; Chute, C.G.; Robinson, P.N. Classification, Ontology, and Precision Medicine. N. Engl. J. Med. 2018, 379, 1452–1462. [Google Scholar] [CrossRef]
- Blaise, B.J.; Correia, G.D.S.; Haggart, G.A.; Surowiec, I.; Sands, C.; Lewis, M.R.; Pearce, J.T.M.; Trygg, J.; Nicholson, J.K.; Holmes, E.; et al. Statistical Analysis in Metabolic Phenotyping. Nat. Protoc. 2021, 16, 4299–4326. [Google Scholar] [CrossRef] [PubMed]
- Alyass, A.; Turcotte, M.; Meyre, D. From Big Data Analysis to Personalized Medicine for All: Challenges and Opportunities. BMC Med. Genom. 2015, 8, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alwin, D.F.; Hauser, R.M. The Decomposition of Effects in Path Analysis. Am. Sociol. Rev. 1975, 40, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Finney, J.M. Indirect Effects in Path Analysis. Sociol. Methods Res. 1972, 1, 175–186. [Google Scholar] [CrossRef]
- Gaudreau, P.; Morais, J.A.; Shatenstein, B.; Gray-Donald, K.; Khalil, A.; Dionne, I.; Ferland, G.; Fülöp, T.; Jacques, D.; Kergoat, M.-J.; et al. Nutrition as a Determinant of Successful Aging: Description of the Quebec Longitudinal Study NuAge and Results from Cross-Sectional Pilot Studies. Rejuvenation Res. 2007, 10, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Comte, B.; Monnerie, S.; Brandolini-Bunlon, M.; Canlet, C.; Castelli, F.; Chu-Van, E.; Colsch, B.; Fenaille, F.; Joly, C.; Jourdan, F.; et al. Multiplatform Metabolomics for an Integrative Exploration of Metabolic Syndrome in Older Men. eBioMedicine 2021, 69, 103440. [Google Scholar] [CrossRef] [PubMed]
- Filzmoser, P.; Liebmann, B.; Varmuza, K. Repeated Double Cross Validation. J. Chemom. 2009, 23, 160–171. [Google Scholar] [CrossRef]
- Vigers, T.; Vanderlinden, L.A.; Johnson, R.K.; Carry, P.M.; Yang, I.; DeFelice, B.C.; Kaizer, A.M.; Pyle, L.; Rewers, M.; Fiehn, O.; et al. A Mediation Approach to Discovering Causal Relationships between the Metabolome and DNA Methylation in Type 1 Diabetes. Metabolites 2021, 11, 542. [Google Scholar] [CrossRef]
- Peng, C.; Wang, J.; Asante, I.; Louie, S.; Jin, R.; Chatzi, L.; Casey, G.; Thomas, D.C.; Conti, D.V. A Latent Unknown Clustering Integrating Multi-Omics Data (LUCID) with Phenotypic Traits. Bioinformatics 2020, 36, 842–850. [Google Scholar] [CrossRef]
- Matta, K.; Lefebvre, T.; Vigneau, E.; Cariou, V.; Marchand, P.; Guitton, Y.; Royer, A.-L.; Ploteau, S.; Le Bizec, B.; Antignac, J.-P.; et al. Associations between Persistent Organic Pollutants and Endometriosis: A Multiblock Approach Integrating Metabolic and Cytokine Profiling. Environ. Int. 2022, 158, 106926. [Google Scholar] [CrossRef]
- Lohmöller, J.-B. Latent Variable Path Modeling with Partial Least Squares; Physica-Verlag: Heidelberg, Germany; Springer: New York, NY, USA, 1989; ISBN 3-7908-0437-1. [Google Scholar]
- Tenenhaus, A.; Tenenhaus, M. Regularized Generalized Canonical Correlation Analysis. Psychometrika 2011, 76, 257–284. [Google Scholar] [CrossRef] [Green Version]
- Hwang, H.; Takane, Y. Generalized Structured Component Analysis. Psychometrika 2004, 69, 81–99. [Google Scholar] [CrossRef]
- Romano, R.; Tomic, O.; Liland, K.H.; Smilde, A.; Næs, T. A Comparison of Two PLS-Based Approaches to Structural Equation Modeling. J. Chemom. 2019, 33, e3105. [Google Scholar] [CrossRef]
- Næs, T.; Romano, R.; Tomic, O.; Måge, I.; Smilde, A.; Liland, K.H. Sequential and Orthogonalized PLS (SO-PLS) Regression for Path Analysis: Order of Blocks and Relations between Effects. J. Chemom. 2021, 35, e3243. [Google Scholar] [CrossRef]
- Aung, M.T.; Song, Y.; Ferguson, K.K.; Cantonwine, D.E.; Zeng, L.; McElrath, T.F.; Pennathur, S.; Meeker, J.D.; Mukherjee, B. Application of an Analytical Framework for Multivariate Mediation Analysis of Environmental Data. Nat. Commun. 2020, 11, 5624. [Google Scholar] [CrossRef]
- Richard, A.J.; White, U.; Elks, C.M.; Stephens, J.M. Adipose Tissue: Physiology to Metabolic Dysfunction. In Endotext; MDText.com, Inc.: South Dartmouth, MA, USA, 2020. [Google Scholar]
- Pickens, C.A.; Vazquez, A.I.; Jones, A.D.; Fenton, J.I. Obesity, Adipokines, and C-Peptide Are Associated with Distinct Plasma Phospholipid Profiles in Adult Males, an Untargeted Lipidomic Approach. Sci. Rep. 2017, 7, 6335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monnerie, S.; Comte, B.; Ziegler, D.; Morais, J.A.; Pujos-Guillot, E.; Gaudreau, P. Metabolomic and Lipidomic Signatures of Metabolic Syndrome and Its Physiological Components in Adults: A Systematic Review. Sci. Rep. 2020, 10, 669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suhre, K.; Meisinger, C.; Döring, A.; Altmaier, E.; Belcredi, P.; Gieger, C.; Chang, D.; Milburn, M.V.; Gall, W.E.; Weinberger, K.M.; et al. Metabolic Footprint of Diabetes: A Multiplatform Metabolomics Study in an Epidemiological Setting. PLoS ONE 2010, 5, e13953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drogan, D.; Dunn, W.B.; Lin, W.; Buijsse, B.; Schulze, M.B.; Langenberg, C.; Brown, M.; Floegel, A.; Dietrich, S.; Rolandsson, O.; et al. Untargeted Metabolic Profiling Identifies Altered Serum Metabolites of Type 2 Diabetes Mellitus in a Prospective, Nested Case Control Study. Clin. Chem. 2015, 61, 487–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pujos-Guillot, E.; Brandolini, M.; Pétéra, M.; Grissa, D.; Joly, C.; Lyan, B.; Herquelot, É.; Czernichow, S.; Zins, M.; Goldberg, M.; et al. Systems Metabolomics for Prediction of Metabolic Syndrome. J. Proteome Res. 2017, 16, 2262–2272. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Sánchez, C.; Mezza, T.; Sinturel, F.; Li, L.; Di Giuseppe, G.; Quero, G.; Jornayvaz, F.R.; Guessous, I.; Dibner, C.; Schrauwen, P.; et al. Circulating 1,5-Anhydroglucitol as a Biomarker of ß-Cell Mass Independent of a Diabetes Phenotype in Human Subjects. J. Clin. Endocrinol. Metab. 2022, 107, 2833–2843. [Google Scholar] [CrossRef] [PubMed]
- Craig, S.A. Betaine in Human Nutrition. Am. J. Clin. Nutr. 2004, 80, 539–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lever, M.; Slow, S. The Clinical Significance of Betaine, an Osmolyte with a Key Role in Methyl Group Metabolism. Clin. Biochem. 2010, 43, 732–744. [Google Scholar] [CrossRef]
- Zhao, G.; He, F.; Wu, C.; Li, P.; Li, N.; Deng, J.; Zhu, G.; Ren, W.; Peng, Y. Betaine in Inflammation: Mechanistic Aspects and Applications. Front. Immunol. 2018, 9, 1070. [Google Scholar] [CrossRef] [Green Version]
- Konstantinova, S.V.; Tell, G.S.; Vollset, S.E.; Nygård, O.; Bleie, Ø.; Ueland, P.M. Divergent Associations of Plasma Choline and Betaine with Components of Metabolic Syndrome in Middle Age and Elderly Men and Women. J. Nutr. 2008, 138, 914–920. [Google Scholar] [CrossRef] [Green Version]
Effects | Explained Variance ± SD (%) | Number of PLS Components |
---|---|---|
Path 1 | ||
Clinic => y (global effect) | 52.37 ± 0.74 | 1 |
Clinic => y|Metabo (partial effect) | 22.95 ± 1.85 | 2 |
Path 2 | ||
Metabo => y (global effect) | 53.43 ± 1.47 | 2 |
Metabo => y|Clinic (partial effect) | 21.67 ± 3.83 | 2 |
Important Variable in the Model | Identification | VIP | Mean Bootstrap VIP ± SD | Log2 FC 1 (Cases/ Controls) |
---|---|---|---|---|
Global effect | ||||
WC | waist circumference | 1.53 | 1.50 ± 0.11 | 0.23 |
GLY | glycemia | 1.11 | 1.10 ± 0.13 | 0.36 |
TG | triglyceridemia | 1.08 | 1.08 ± 0.13 | 0.86 |
Partial effect | ||||
WC residual | waist circumference | 1.44 | 1.41 ± 0.24 | |
SBP residual | systolic blood pressure | 1.41 | 1.33 ± 0.24 |
Important Variable in the Model | Identification Reported in Comte et al. [7] | VIP | Mean Bootstrap VIP ± SD | Log2 FC 1 (Cases/Controls) |
---|---|---|---|---|
Global effect | ||||
V5261 | TG(16:0_18:1_18:1) | 2.11 | 2.00 ± 0.26 | 0.06 |
V3854 | PC(18:0_20:3) | 1.94 | 1.79 ± 0.26 | 0.02 |
M179T471 | Hexoses | 1.88 | 1.77 ± 0.17 | 0.02 |
M101.0244T0.93 | Hexoses | 1.83 | 1.72 ± 0.17 | 0.02 |
BV_1.273_NMR | LDL, VLDL | 1.82 | 1.76 ± 0.27 | 0.05 |
BV_5.23745012_NMR | D-α-Glucose | 1.73 | 1.62 ± 0.17 | 0.01 |
V2975 | PE(18:0_20:4) | 1.66 | 1.59 ± 0.28 | 0.04 |
M261.1445T7.64 | ɣ-Glutamyl-leucine | 1.55 | 1.49 ± 0.23 | 0.03 |
M215.0328T0.91 | Hexoses | 1.52 | 1.41 ± 0.18 | 0.04 |
M203.0526T0.91 | Hexoses | 1.52 | 1.40 ± 0.23 | 0.02 |
M163.06T0.91_1 | Hexoses | 1.52 | 1.45 ± 0.24 | 0.04 |
M178T555 | Glucosamine | 1.44 | 1.30 ± 0.20 | −0.04 |
M274T549 | Glutamyl-glutamine | 1.43 | 1.35 ± 0.30 | 0.06 |
M564.3308T14.67 | LPC(18:2_0:0) | 1.43 | 1.37 ± 0.24 | −0.03 |
M146.0459T0.91 | L-Glutamic acid | 1.42 | 1.36 ± 0.28 | −0.02 |
M520.3397T14.67 | LPC(18:2_0:0) | 1.36 | 1.31 ± 0.24 | 0.02 |
M223.0925T0.93 | Hexahydroxyheptane hydrazide | 1.35 | 1.30 ± 0.23 | 0.04 |
M118.0863T1.19 | L-Valine | 1.34 | 1.26 ± 0.21 | 0.01 |
Partial effect | ||||
V3854 residual | PC(18:0_20:3) | 2.21 | 1.71 ± 0.46 | |
M200T324 residual | 1,5-anhydroglucitol | 2.00 | 1.48 ± 0.45 | |
M118.0862T0.92 residual | Betaine | 1.94 | 1.52 ± 0.56 | |
M174.0571T6.89 residual | 2-(methoxyimino)- propanoic acid | 1.26 | 1.24 ± 0.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brandolini-Bunlon, M.; Jaillais, B.; Cariou, V.; Comte, B.; Pujos-Guillot, E.; Vigneau, E. Global and Partial Effect Assessment in Metabolic Syndrome Explored by Metabolomics. Metabolites 2023, 13, 373. https://doi.org/10.3390/metabo13030373
Brandolini-Bunlon M, Jaillais B, Cariou V, Comte B, Pujos-Guillot E, Vigneau E. Global and Partial Effect Assessment in Metabolic Syndrome Explored by Metabolomics. Metabolites. 2023; 13(3):373. https://doi.org/10.3390/metabo13030373
Chicago/Turabian StyleBrandolini-Bunlon, Marion, Benoit Jaillais, Véronique Cariou, Blandine Comte, Estelle Pujos-Guillot, and Evelyne Vigneau. 2023. "Global and Partial Effect Assessment in Metabolic Syndrome Explored by Metabolomics" Metabolites 13, no. 3: 373. https://doi.org/10.3390/metabo13030373
APA StyleBrandolini-Bunlon, M., Jaillais, B., Cariou, V., Comte, B., Pujos-Guillot, E., & Vigneau, E. (2023). Global and Partial Effect Assessment in Metabolic Syndrome Explored by Metabolomics. Metabolites, 13(3), 373. https://doi.org/10.3390/metabo13030373