Metabolomic Studies in Inborn Errors of Metabolism: Last Years and Future Perspectives
Abstract
:1. Introduction
1.1. Inborn Errors of Metabolism
1.2. Metabolomics
2. Inborn Error of Metabolism and Metabolomic
3. Targeted Metabolomics
3.1. Metabolomics Studies with Cerebrospinal Fluid Samples
3.2. The Lyso-Gb3 Case in Fabry Disease
Author and Year | Patients | Sample | Methods | Relevant Metabolites | Biological Meaning |
---|---|---|---|---|---|
Hitoshi Sakuraba et al., 2018 [23] | 161: 100 controls and 61 patients with FD | Plasma | LC–MS/MS | ↑Lyso-Gb3 in:
| Marker of disesease, renal disfunction and positivity to anti-agalisidase alfa antibodies. Marker in the ERT therapy. |
Christiane Auray-Blais et al., 2017 [24] | 191 patients with FD carrying the IVS4 late onset cardiac variant mutation. | Urine and plasma prior ERT initiation | MS (GB3) UPLC-MS/MS (Lyso-Gb3) | ↑Plasma lyso-Gb3; ↑Urine lyso-Gb3 at m/z (+16), (+34), and (+50). | Positively associated with LVMI (left ventricular mass index) and MSSI (clinical scoring system) in adults, mainly concerning disease severity and predictive value |
Derralynn A Hughes et al., 2017 [26] | 57 (36 patients switched from ERT to migalastat and 21 remained on ERT) | Plasma | LC- | Lyso-Gb3 in coorts: same level, low and stable | Useful for the monitoring and changes of therapy in FD |
Hiroki Maruyama et al., 2019 [27] | 2360 | Plasma | UPLC-MS/MS | ↑lyso-Gb3 levels in 23 in patients with FD. | Promising FD primary screening biomarker |
3.3. Metabolomics Investigations to Monitor the Effect of Different Nutritional Regimens in IEMs Patients
Author and Year | Patients | Sample | Methods | Relevant Metabolites | Biological Meaning |
---|---|---|---|---|---|
Bridget M Stroup et al., 2018 [29] | 10 patients with PKU and 15 controls | Plasma and urine | GC/MS | ↑urinary TMAO in patient with AA-MFs compared with GMP-MFs ↓deoxycarnitine in both diet in PKU patient ↑Phenylacetate in PKU ↓plasma total cholesterol in classical PKU compared to variant PKU and controls ↑isoprenoid intermediate 3-hydroxy-3-methylglutarate in variant PKU | Lower bioavailability of carnitine in AA-MFs diet compared with GMP-Mfs: despite higher l-carnitine supplementation in AA-MFs than in GMP-MFs, there’s a reduced bioavailability of carnitine from AA-MFs due, to degradation of carnitine to proatherosclerotic TMAO by intestinal bacteria. Reduced endogenous synthesis of carnitine in PKU patients compared with control Prove to support that the phenylacetate inhibits endogenous carnitine synthesis Difference between classical and variant PKU ↑Endogenous cholesterol synthesis in variant PKU |
Denise M. Ney et al., 2018 [31] | 27 | Plasma (18 patient) and urine (9 patient) | GC/MS | 40 microbiome-associated metabolites in plasma: 7 of them with different plasma levels in the pastiche with ingestion of AA-MF compared with GMP-MF:
45 microbiome-associated compounds in urine: 7 of these showed differential levels with AA-MF compared with GMP-MF:
↓6-sulfatoxymelatonin excretion: in male with classical PKU | Changes in the intestinal microbiota with ingestion of AA-MFs diet result in degradation of Tyr and Trp reducing their bioavailability for neurotransmitters’ synthesis Different metabolic pathways in variant PKU compared to classical PKU. Difference between AA-MF and GMP-MF Difference in Tryptophan levels from serotonin synthesis in AA-MF compared with GMP-MF. |
Jeannette C. Bleeker et al., 2020 [32] | 5 patients with VLCADD | Plasma | UPLC-MS coupled to Thermo Q Exactive (Plus) Orbitrap mass spectrometer |
| Difference in CHO and KE + CHO diet |
Raaschou-Pedersen DE et al., 2022 [33] | 3 patients with PFKD and 3 controls | Plasma | GC–C–IRMS |
| Evaluation of the compliance to the treatment |
Madsen et al., 2019 [34] | 19 patients with McArdle disesease with 2 groups: 1 with triheptanoin treatment and 1 with placebo | Plasma | GC-MS | ↑Malate and C5-ketones
| Evaluation of the compliance to the treatment |
Lokken et al., 2022 [35] | 8 patients with GSDV and 4 controls | Plasma and breath | GC-MS | ↑Pyruvate, lactate, and AcAc
| Exercises changes and differences between the oral ketone ester supplementation and the healthy control |
Storgaard J.H. et al., 2022 [36] | 8 patients with fatty acid oxidation disorder | Plasma and breath | LC-MS/MS, GC-MS/MS, GC-IRMS | ↑Glucose, ↑glycerol,
| Difference between the RSV treatment group and the placebo one |
4. Untargeted Metabolomic
5. Network Profiling Methods
Author and Year | Patients | Sample | Methods | Relevant Metabolites | Biological Meaning |
---|---|---|---|---|---|
Karlien L. M. Coene et al. 2018 [15] | 92: (46 patients with different IEMs 46 controls) | Plasma | LC-QTOF | ↑N-methylnicotinamide, imidazole, Lactic acid, N-acetylmannosamine ↓N-methylpyridone, carboxamides hydantoin, propionic acid N1-methyl-8-oxoguanine, pyrrolidine-2-one, pyridoxate in different IEMs | Markers of a specific IEM or involved pathways. |
Lillian R. Thistlethwaite et al., 2022 [42] | 539 samples: From meta-analysis of untargeted metabolomics studies and unreported samples | Plasma | CTD Mmethod | Correct diagnosis in 79% of the remaining 137 samples with known diagnoses across the remaining 15 modeled IEMs, 94% of samples had the correct diagnosis
| Powerful when applied to individuals who are undiagnosed by current methods |
6. Future Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Jeanmonod, R.; Asuka, E.; Jeanmonod, D. Inborn errors of metabolism. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Ismail, I.T.; Showalter, M.R.; Fiehn, O. Inborn Errors of Metabolism in the Era of Untargeted Metabolomics and Lipidomics. Metabolites 2019, 9, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mussap, M.; Zaffanello, M.; Fanos, V. Metabolomics: A challenge for detecting and monitoring inborn errors of metabolism. Ann. Transl. Med. 2018, 6, 338. [Google Scholar] [CrossRef]
- Fanos, V.; Van den Anker, J.; Noto, A.; Mussap, M.; Atzori, L. Metabolomics in neonatology: Fact or fiction? Semin. Fetal. Neonatal. Med. 2013, 18, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Piras, D.; Locci, E.; Palmas, F.; Ferino, G.; Fanos, V.; Noto, A.; D’Aloja, E.; Finco, G. Rare disease: A focus on metabolomics. Exp. Opin. Orphan Drugs 2016, 4, 1229–1237. [Google Scholar] [CrossRef]
- Ferreira, C.R.; Rahman, S.; Keller, M.; Zschocke, J. ICIMD Advisory Group. An international classification of inherited metabolic disorders (ICIMD). J. Inherit. Metab. Dis. 2021, 44, 164–177. [Google Scholar] [CrossRef] [PubMed]
- Saudubray, J.M.; Mochel, F.; Lamari, F.; Garcia-Cazorla, A. Proposal for a simplified classification of IMD based on a pathophysiological approach: A practical guide for clinicians. J. Inherit. Metab. Dis. 2019, 42, 706–727. [Google Scholar] [CrossRef]
- Saudubray, J.M.; Garcia-Cazorla, À. Inborn Errors of Metabolism Overview: Pathophysiology, Manifestations, Evaluation, and Management. Pediatr Clin. N. Am. 2018, 65, 179–208. [Google Scholar] [CrossRef]
- Witters, P.; Driesen, K. Understanding Inborn Errors of Metabolism through Metabolomics. Metabolites 2022, 12, 398. [Google Scholar]
- Bardanzellu, F.; Fanos, V. How could metabolomics change pediatric health? Ital. J. Pediatr. 2020, 46, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dessì, A.; Marincola, C.; Masili, A.; Gazzolo, D.; Fanos, V. Clinical metabolomics and nutrition: The new frontier in neonatology and pediatrics. Biomed. Res. Int. 2014, 2014, 981219. [Google Scholar] [CrossRef]
- Wishart, D.S. Quantitative metabolomics using NMR. Trends Anal. Chem. 2008, 27, 228–237. [Google Scholar] [CrossRef]
- Xu, Y.F.; Lu, W.; Rabinowitz, J.D. Avoiding misannotation of in-source fragmentation products in liquid chromatography–mass spectrometry-based metabolomics. Anal. Chem. 2015, 87, 2273–2281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emwas, A.H. The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. Methods Mol Biol. 2015, 1277, 161–193. [Google Scholar]
- Coene, K.L.M.; Kluijtmans, L.A.J.; van der Heeft, E.; Engelke, U.F.H.; de Boer, S.; Hoegen, B.; Kwast, H.J.T.; van de Vorst, M.; Huigen, M.C.D.G.; Keularts, I.M.L.W.; et al. Next-generation metabolic screening: Targeted and untargeted metabolomics for the diagnosis of inborn errors of metabolism in individual patients. J. Inherit. Metab. Dis. 2018, 41, 337–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Hattab, A.W.; Almannai, M.; Sutton, V.R. Newborn Screening: History, Current Status, and Future Directions. Pediatr Clin. N. Am. 2018, 65, 389–405. [Google Scholar] [CrossRef]
- Pulido, N.; Guevara-Morales, J.M.; Rodriguez-López, A.; Pulido, A.; Díaz, J.; Edrada-Ebel, E.A.; Echeverri-Peña, O. H-Nuclear Magnetic Resonance Analysis of Urine as Diagnostic Tool for Organic Acidemias and Aminoacidopathies. Metabolites 2021, 11, 891. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Reinstadler, B.; Engelstad, K.; Skinner, O.S.; Stackowitz, E.; Haller, R.G.; Clish, C.B.; Pierce, K.; Walker, M.A.; Fryer, R.; et al. Circulating markers of NADH-reductive stress correlate with mitochondrial disease severity. J. Clin. Investig. 2021, 131, e136055. [Google Scholar] [CrossRef] [PubMed]
- González-Lamuño, D.; Sánchez-Pintos, P.; Andrade, F.; Couce, M.L.; Aldámiz-Echevarría, L. Treatment adherence in tyrosinemia type 1 patients. Orphanet J. Rare Dis. 2021, 16, 256. [Google Scholar] [CrossRef]
- Klinke, G.; Richter, S.; Monostori, P.; Schmidt-Mader, B.; García-Cazorla, A.; Artuch, R.; Christ, S.; Opladen, T.; Hoffmann, G.F.; Blau, N.; et al. Targeted cerebrospinal fluid analysis for inborn errors of metabolism on an LC-MS/MS analysis platform. J. Inherit. Metab. Dis. 2020, 43, 712–725. [Google Scholar] [CrossRef]
- Haijes, H.A.; van der Ham, M.; Gerrits, J.; van Hasselt, P.M.; Prinsen, H.C.M.T.; Sain-van der Velden, M.G.M.; Verhoeven-Duif, N.M.; Jans, J.J.M. Direct-infusion based metabolomics unveils biochemical profiles of inborn errors of metabolism in cerebrospinal fluid. Mol. Genet. Metab. 2019, 127, 51–57. [Google Scholar] [CrossRef]
- El Dib, R.; Gomaa, H.; Ortiz, A.; Politei, J.; Kapoor, A.; Barreto, F. Enzyme replacement therapy for Anderson-Fabry disease: A complementary overview of a Cochrane publication through a linear regression and a pooled analysis of proportions from cohort studies. PLoS ONE 2017, 12, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakuraba, H.; Togawa, T.; Tsukimura, T.; Kato, H. Plasma lyso-Gb3: A biomarker for monitoring fabry patients during enzyme replacement therapy. Clin. Exp. Nephrol. 2018, 22, 843–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auray-Blais, C.; Lavoie, P.; Boutin, M.; Ntwari, A.; Hsu, T.; Huang, C.-K.; Niu, D.M. Biomarkers associated with clinical manifestations in Fabry disease patients with a late-onset cardiac variant mutation. Clin. Chim. Acta. 2017, 466, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Lenders, M.; Brand, E. Effects of Enzyme Replacement Therapy and Antidrug Antibodies in Patients with Fabry Disease. J. Am. Soc. Nephrol. 2018, 29, 2265–2278. [Google Scholar] [CrossRef] [Green Version]
- Hughes, D.; Nicholls, K.; Shankar, S.P.; Sunder-Plassmann, G.; Koeller, D.; Nedd, K.; Vockley, G.; Hamazaki, T.; Lachmann, R.; Ohashi, T.; et al. Oral pharmacological chaperone Migalastat compared with enzyme replacement therapy in Fabry disease: 18 month results from the randomised phase III ATTRACT study. J. Med. Genet. 2017, 54, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, H.; Miyata, K.; Mikame, M.; Taguchi, A.; Guili, C.; Shimura, M.; Murayama, K.; Inoue, T.; Yamamoto, S.; Sugimura, K.; et al. Effectiveness of plasma lyso-Gb3 as a biomarker for selecting high-risk patients with Fabry disease from multispecialty clinics for genetic analysis. Genet. Med. 2019, 21, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Vockley, J.; Andersson, H.C.; Antshel, K.M.; Braverman, N.E.; Burton, B.K.; Frazier, D.M.; Mitchell, J.; Smith, W.E.; Thompson, B.H.; Berry, S.A. Phenylalanine hydroxylase deficiency: Diagnosis and management guideline. Genet. Med. 2014, 16, 188–200. [Google Scholar] [CrossRef] [Green Version]
- Stroup, B.M.; Nair, N.; Murali, S.G.; Broniowska, K.; Rohr, F.; Levy, H.L.; Ney, D.M. Metabolomic Markers of Essential Fatty Acids, Carnitine, and Cholesterol Metabolism in Adults and Adolescents with Phenylketonuria. J. Nutr. 2018, 148, 194–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.H.; Rohr, F.; Frazier, D.; Cunningham, A.; Mofidi, S.; Ogata, B.; Splett, P.L.; Moseley, K.; Huntington, K.; Acosta, P.B.; et al. Recommendations for the nutrition management of phenylalanine hydroxylase deficiency. Genet. Med. 2014, 16, 121–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ney, D.M.; Murali, S.G.; Stroup, B.M.; Nair, N.; Sawin, E.A.; Rohr, F.; Levy, H.L. Metabolomic changes demonstrate reduced bioavailability of tyrosine and altered metabolism of tryptophan via the kynurenine pathway with ingestion of medical foods in phenylketonuria. Mol. Genet. Metab. 2017, 121, 96–103. [Google Scholar] [CrossRef]
- Bleeker, J.C.; Visser, G.; Clarke, K.; Ferdinandusse, S.; de Haan, F.H.; Houtkooper, R.H.; IJlst, L.; Kok, I.L.; Langeveld, M.; van der Pol, W.M.; et al. Nutritional Ketosis improves exercise metabolism in patients with very long-chain acyl-CoA dehydrogenase deificiency. J. Inherit. Metab. Dis. 2020, 43, 787–799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raaschou-Pedersen, D.E.; Madsen, K.L.; Løkken, N.; Storgaard, J.H.; Quinlivan, R.; Laforêt, P.; Lund, A.; Van Hall, G.; Vissing, J.; Ørngreen, M. No effect of triheptanoin in patients with phosphofructokinase deficiency. Neuromuscul. Disord. 2022, 32, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Madsen, K.L.; Laforêt, P.; Buch, A.E.; Stemmerik, M.G.; Ottolenghi, C.; Hatem, S.N.; Raaschou-Pedersen, D.T.; Poulsen, N.S.; Atencio, M.; Luton, M.-P.; et al. No effect of triheptanoin on exercise performance in McArdle disease. Ann. Clin. Transl. Neurol. 2019, 6, 1949–1960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Løkken, N.; Storgaard, J.H.; Revsbech, K.L.; Voermans, N.C.; Van Hall, G.; Vissing, J.; Ørngreen, M.C. No effect of oral ketone ester supplementation on exercise capacity in patients with McArdle disease and healthy controls: A randomized placebo-controlled cross-over study. J. Inherit. Metab. Dis. 2022, 45, 502–516. [Google Scholar] [CrossRef]
- Storgaard, J.H.; Løkken, N.; Madsen, K.L.; Voermans, N.C.; Laforêt, P.; Nadaj-Pakleza, A.; Tard, C.; van Hall, G.; Vissing, J.; Ørngreen, M.C. No effect of resveratrol on fatty acid oxidation or exercise capacity in patients with fatty acid oxidation disorders: A randomized clinical cross-over trial. J. Inherit. Metab. Dis. 2022, 45, 517–528. [Google Scholar] [CrossRef]
- Liu, N.; Xiao, J.; Gijavanekar, C.; Pappan, K.L.; Glinton, K.E.; Shayota, B.J.; Kennedy, A.D.; Sun, Q.; Sutton, V.R.; Elsea, S.H. Comparison of Untargeted Metabolomic Profiling vs Traditional Metabolic Screening to Identify Inborn Errors of Metabolism. JAMA Netw. Open. 2021, 4, e2114155a. [Google Scholar] [CrossRef] [PubMed]
- Shayota, B.J.; Donti, T.R.; Xiao, J.; Gijavanekar, C.; Kennedy, A.D.; Hubert, L.; Rodan, L.; Vanderpluym, C.; Nowak, C.; Bjornsson, H.T.; et al. Untargeted metabolomics as an unbiased approach to the diagnosis of inborn errors of metabolism of the non-oxidative branch of the pentose phosphate pathway. Mol. Genet. Metab. 2020, 131, 147–154. [Google Scholar] [CrossRef]
- Mathis, T.; Poms, M.; Köfeler, H.; Gautschi, M.; Plecko, B.; Baumgartner, M.R.; Hochuli, M. Untargeted plasma metabolomics identifies broad metabolic perturbations in glycogen storage disease type I. J. Inherit. Metab. Dis. 2022, 45, 235–247. [Google Scholar] [CrossRef]
- van Karnebeek, C.D.; Bonafé, L.; Wen, X.Y.; Tarailo-Graovac, M.; Balzano, S.; Royer-Bertrand, B.; Ashikov, A.; Garavelli, L.; Mammi, I.; Turolla, L.; et al. NANS-mediated synthesis of sialic acid is required for brain and skeletal development. Nat. Genet. 2016, 48, 777–784. [Google Scholar] [CrossRef] [Green Version]
- Amara, A.; Fainay, C.; Jourdan, F.; Naake, T.; Neumann, S.; Novoa-del-Toro, E.M.; Salek, R.M.; Salzer, L.; Scharfenberg, S.; Witting, M. Networks and graphs discovery in metabolomics data analysis and interpretation. Front. Mol. Biosci. 2022, 9, 841373. [Google Scholar] [CrossRef]
- Thistlethwaite, L.R.; Li, X.; Burrage, L.C.; Riehle, K.; Hacia, J.G.; Braverman, N.; Wangler, M.F.; Miller, M.J.; Elsea, S.H.; Milosavljevic, A. Clinical diagnosis of metabolic disorders using untargeted metabolomic profiling and disease-specific networks learned from profiling data. Sci. Rep. 2022, 12, 6556. [Google Scholar] [CrossRef] [PubMed]
Author and Year | Patients | Sample | Methods | Relevant Metabolites | Biological Meaning |
---|---|---|---|---|---|
Glynis Klinke et al., 2020 [20] | 131 samples | Cerebrospinal fluid | LC-MS/MS | 38 metabolites from Aromatic l-amino acid, decarboxylase deficiency, guanidinoacetate methyltransferase deficiency, ornithine aminotransferase deficiency, cerebral folate deficiency and methylenetetrahydrofolate reductase deficiency. | analytical validation, establishment of literature-based CSF cut-off values and reference ranges, of available CSF samples obtained |
Hanneke A Haijes et al., 2019 [21] | 41 (30 controls, 11 patients) | Cerebrospinal fluid | DI-HRMS | Non-ketotic hyperglycinaemia: ↑Glycine Propionic aciduria: ↑Propionylcarnitine, ↑2-Methylcitric acid, ↑3-Hydroxypropionic acid, ↑Propionylglycine, ↑Heptadecanoylcarnitine, ↑Glycine, ↑Propionic acid, ↓l-Carnitine Purine nucleoside phosphorylase deficiency: ↑Inosine, ↑Guanosine, ↑Deoxyinosine, ↑Deoxyguanosine, ↓Guanine, ↓Hypoxanthine, ↓Uric acid Argininosuccinic aciduria: ↑Argininosuccinic acid, ↑Citrulline, ↑Orotidine, ↑Glutamine, ↑Uracil, ↑Orotic acid, ↓Arginine Tyrosinaemia (type not specified): ↑L-Tyrosine, ↑Hydroxyphenyllactic acid, ↑Hydroxyphenylacetic acid
↑4-Fumarylacetoacetic acid, ↑Succinylacetone, ↓Fumaric acid, ↓Acetoacetic acid Hyperphenylalaninaemia, non-tetrahydrobiopterin deficient (genetic defect not specified): ↑Phenylalanine/Tyrosine ratio, ↑L-Phenylalanine, ↑Phenylpyruvic acid, ↑Phenylacetic acid
↑Methionine, ↑Homocysteine, ↑Homocysteine thiolactone, ↓S-Adenosylmethionine. | Accurate biochemical profile in a set of patients in CSF, supporting the use of CSF metabolomics in metabolic diagnostic laboratory |
Author and Year | Patients | Sample | Methods | Relevant Metabolites | Biological Meaning |
---|---|---|---|---|---|
Ning Liu et al., 2021 [37] | 4464 clinical samples
| Plasma and urine | GC-MS, LC-MS/MS | 70 conditions:
| Untargeted metabolomics provided a 6-fold higher diagnostic yield compared with the conventional screening approach and identified a broader spectrum of IEMs. |
Brian J. Shayota et al., 2020 [38] | 5 patients with TALDO deficiency and TKT deficiency | Plasma and urine | LC-MS | ↑arabitol/xylitol, ribitol, erythritol, ribose, ribonate and erythronate, kynurenine, xanthurenate, quinolinate, indolelactate, xanthosine, kynurenate, xanthurenate alpha-ketoglutarate and sedoheptulose in plasma ↑ribulose/xylulose kynurenine, 3-hydroxykynurenine, guanosine, quinolinate xanthurenate,
| Untargeted metabolomic approach useful in differential diagnosis for IEMs of the Pentose phosphate pathway |
Tamara Mathis et al., 2022 [39] | 45 samples: 14 patients and 31 controls | Plasma | UHPLC HR-MS/MS GC/EI-MS | Several altered metabolic pathways: Energy, Urea cycle, C1, amino acid Purines and pyrimidines metabolisms | Pathophysiology of glycogen storage disease type I: metabolites alterations are present despite optimized dietary treatment, which may contribute to the risk of developing long-term complications |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cossu, M.; Pintus, R.; Zaffanello, M.; Mussap, M.; Serra, F.; Marcialis, M.A.; Fanos, V. Metabolomic Studies in Inborn Errors of Metabolism: Last Years and Future Perspectives. Metabolites 2023, 13, 447. https://doi.org/10.3390/metabo13030447
Cossu M, Pintus R, Zaffanello M, Mussap M, Serra F, Marcialis MA, Fanos V. Metabolomic Studies in Inborn Errors of Metabolism: Last Years and Future Perspectives. Metabolites. 2023; 13(3):447. https://doi.org/10.3390/metabo13030447
Chicago/Turabian StyleCossu, Marcello, Roberta Pintus, Marco Zaffanello, Michele Mussap, Fabiola Serra, Maria Antonietta Marcialis, and Vassilios Fanos. 2023. "Metabolomic Studies in Inborn Errors of Metabolism: Last Years and Future Perspectives" Metabolites 13, no. 3: 447. https://doi.org/10.3390/metabo13030447
APA StyleCossu, M., Pintus, R., Zaffanello, M., Mussap, M., Serra, F., Marcialis, M. A., & Fanos, V. (2023). Metabolomic Studies in Inborn Errors of Metabolism: Last Years and Future Perspectives. Metabolites, 13(3), 447. https://doi.org/10.3390/metabo13030447