Identification of Serum Metabolites as Prognostic Biomarkers Following Spinal Cord Injury: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Characteristics and Sample Collection
2.2. Clinical Assessment
2.3. NMR Sample Preparation, Data Acquisition, and Processing
2.4. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Metabolomic Profiles Show Alterations during Recovery Following SCI
3.3. Relationship between Metabolic Biomarkers and Functional Improvement
4. Discussion
4.1. Pathway Analysis
4.2. Relationship between Metabolite Profiles and SCIM
4.3. Metabolite Alterations across Biofluids
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kirshblum, S.C.; Burns, S.P.; Biering-Sorensen, F.; Donovan, W.; Graves, D.E.; Jha, A.; Johansen, M.; Jones, L.; Krassioukov, A.; Mulcahey, M.J.; et al. International standards for neurological classification of spinal cord injury (revised 2011). J. Spinal Cord Med. 2011, 34, 535–546. [Google Scholar] [CrossRef]
- Nas, K.; Yazmalar, L.; Şah, V.; Aydın, A.; Öneş, K. Rehabilitation of spinal cord injuries. World J. Orthop. 2015, 6, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Marino, R.J.; Barros, T.; Biering-Sorensen, F.; Burns, S.P.; Donovan, W.H.; Graves, D.E.; Haak, M.; Hudson, L.M.; Priebe, M.M. International standards for neurological classification of spinal cord injury. J. Spinal Cord Med. 2016, 26, S50–S56. [Google Scholar] [CrossRef] [PubMed]
- Metz, G.A.S.; Curt, A.; van de Meent, H.; Klusman, I.; Schwab, M.E.; Dietz, V. Validation of the weight-drop contusion model in rats: A comparative study of human spinal cord injury. J. Neurotrauma 2000, 17, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Schwab, M.E.; Bartholdi, D. Degeneration and regeneration of axons in the lesioned spinal cord. Physiol. Rev. 1996, 76, 319–370. [Google Scholar] [CrossRef]
- Allan, S.M.; Rothwell, N.J. Inflammation in central nervous system injury. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2003, 358, 1669–1677. [Google Scholar] [CrossRef]
- Spiess, M.R.; Müller, R.M.; Rupp, R.; Schuld, C.; van Hedel, H.J.A.; EM-SCI Study Grp; EM-SCI Study Group. Conversion in ASIA impairment scale during the first year after traumatic spinal cord injury. J. Neurotrauma 2009, 26, 227–2036. [Google Scholar] [CrossRef] [PubMed]
- Catz, A.; Itzkovich, M.; Agranov, E.; Ring, H.; Tamir, A. SCIM—Spinal cord independence measure: A new disability scale for patients with spinal cord lesions. Spinal Cord 1997, 35, 850–856. [Google Scholar] [CrossRef] [PubMed]
- Spungen, A.M.; Adkins, R.H.; Stewart, C.A.; Wang, J.; Pierson, R.N.; Waters, R.L., Jr.; Bauman, W.A. Factors influencing body composition in persons with spinal cord injury: A cross-sectional study. J. Appl. Physiol. 2003, 95, 2398–2407. [Google Scholar] [CrossRef]
- Gorgey, A.S.; Dolbow, D.R.; Dolbow, J.D.; Khalil, R.K.; Castillo, C.; Gater, D.R. Effects of spinal cord injury on body composition and metabolic profile—Part I. J. Spinal Cord Med. 2014, 37, 693–702. [Google Scholar] [CrossRef] [PubMed]
- Gorgey, A.S.; Wells, K.M.; Austin, T.L. Adiposity and spinal cord injury. World J. Orthop. 2015, 6, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.O.; Battaglino, R.A.; Morse, L.R. Spinal cord injury and osteoporosis: Causes, mechanisms, and rehabilitation strategies. Int. J. Phys. Med. Rehabil. 2013, 1, 127. [Google Scholar]
- Park, E.J.; Lee, J.H.; Yu, G.; He, G.; Ali, S.R.; Holzer, R.G.; Österreicher, C.H.; Takahashi, H.; Karin, M. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 2010, 140, 197–208. [Google Scholar] [CrossRef]
- Mizuno, K.; Ueno, Y. Autonomic nervous system and the liver. Hepatol. Res. 2017, 47, 160–165. [Google Scholar] [CrossRef]
- Baumann, W.; Spungen, A. Disorders of carbohydrate and lipid-metabolism in veterans with paraplegia or quadriplegia: A model of premature aging. Metab. Clin. Exp. 1994, 43, 749–756. [Google Scholar] [CrossRef] [PubMed]
- Bykowski, E.A.; Petersson, J.N.; Dukelow, S.; Ho, C.; Debert, C.T.; Montina, T.; Metz, G.A.S. Urinary biomarkers indicative of recovery from spinal cord injury: A pilot study. IBRO Neurosci. Rep. 2021, 10, 178–185. [Google Scholar] [CrossRef]
- Bykowski, E.A.; Petersson, J.N.; Dukelow, S.; Ho, C.; Debert, C.T.; Montina, T.; Metz, G.A.S. Urinary metabolomic signatures as indicators of injury severity following traumatic brain injury: A pilot study. IBRO Neurosci. Rep. 2021, 11, 200–206. [Google Scholar] [CrossRef]
- Wanner, Z.R.; Southam, C.G.; Sanghavi, P.; Boora, N.S.; Paxman, E.J.; Dukelow, S.P.; Benson, B.W.; Montina, T.; Metz, G.A.S.; Debert, C.T. Alterations in urine metabolomics following sport-related concussion: A 1H NMR-based analysis. Front. Neurol. 2021, 12, 645829. [Google Scholar] [CrossRef]
- Psychogios, N.; Hau, D.D.; Peng, J.; Guo, A.C.; Mandal, R.; Bouatra, S.; Sinelnikov, I.; Krishnamurthy, R.; Eisner, R.; Gautam, B.; et al. The human serum metabolome. PLoS ONE 2011, 6, e16957. [Google Scholar] [CrossRef] [PubMed]
- Gil, R.B.; Lehmann, R.; Schmitt-Kopplin, P.; Heinzmann, S.S. 1H NMR-based metabolite profiling workflow to reduce inter-sample chemical shift variations in urine samples for improved biomarker discovery. Anal. Bioanal. 2016, 408, 4683–4691. [Google Scholar] [CrossRef]
- Smelter, A.; Rouchka, E.C.; Moseley, H.N.B. Detecting and accounting for multiple sources of positional variance in peak list registration analysis and spin system grouping. J. Biomol. NMR 2017, 68, 281–296. [Google Scholar] [CrossRef] [PubMed]
- Tiziani, S.; Emwas, A.; Lodi, A.; Ludwig, C.; Bunce, C.M.; Viant, M.R.; Günther, U.L. Optimized metabolite extraction from blood serum for 1H nuclear magnetic resonance spectroscopy. Anal. Biochem. 2008, 377, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Anderson, P.E.; Mahle, D.A.; Doom, T.E.; Reo, N.V.; DelRaso, N.J.; Raymer, M.L. Dynamic adaptive binning: An improved quantification technique for NMR spectroscopic data. Metabolomics 2011, 7, 179–190. [Google Scholar] [CrossRef]
- Kiss, D.; Ambeskovic, M.; Montina, T.; Metz, G.A.S. Stress transgenerationally programs metabolic pathways linked to altered mental health. Cell. Mol. Life Sci. 2016, 73, 4547–4557. [Google Scholar] [CrossRef]
- Paxman, E.J.; Boora, N.S.; Kiss, D.; Laplante, D.P.; King, S.; Montina, T.; Metz, G.A.S. Prenatal maternal stress from a natural disaster alters urinary metabolomic profiles in project ice storm participants. Sci. Rep. 2018, 8, 12932. [Google Scholar] [CrossRef]
- Pang, Z.; Chong, J.; Li, S.; Xia, J. MetaboAnalystR 3.0: Toward an optimized workflow for global metabolomics. Metabolites 2020, 10, 186. [Google Scholar] [CrossRef]
- Craig, A.; Cloarec, O.; Holmes, E.; Nicholson, J.K.; Lindon, J.C. Scaling and normalization effects in NMR spectroscopic metabonomic data sets. Anal. Chem. 2006, 78, 2262–2267. [Google Scholar] [CrossRef]
- Wiklund, S.; Johansson, E.; Sjöström, L.; Mellerowicz, E.J.; Edlund, U.; Shockcor, J.P.; Gottfries, J.; Moritz, T.; Trygg, J. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal. Chem. 2008, 80, 115–122. [Google Scholar] [CrossRef]
- van den Berg, R.A.; Hoefsloot, H.C.J.; Westerhuis, J.A.; Smilde, A.K.; van der Werf, M.J. Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genom. 2006, 7, 142. [Google Scholar] [CrossRef]
- Box, G.E.P.; Cox, D.R. An analysis of transformations. J. R. Stat. Soc. 1964, 26, 211–252. [Google Scholar] [CrossRef]
- Yun, Y.; Liang, F.; Deng, B.; Lai, G.; Vicente Gonçalves, C.M.; Lu, H.; Yan, J.; Huang, X.; Yi, L.; Liang, Y. Informative metabolites identification by variable importance analysis based on random variable combination. Metabolomics 2015, 11, 1539–1551. [Google Scholar] [CrossRef]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Szymanska, E.; Saccenti, E.; Smilde, A.K.; Westerhuis, J.A. Double-check: Validation of diagnostic statistics for PLS-DA models in metabolomics studies. Metabolomics 2012, 8, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Goodpaster, A.M.; Romick-Rosendale, L.E.; Kennedy, M.A. Statistical significance analysis of nuclear magnetic resonance-based metabonomics data. Anal. Biochem. 2010, 401, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vázquez-Fresno, R.; Sajed, T.; Johnson, D.; Li, C.; Karu, N.; et al. HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res. 2018, 46, D608–D617. [Google Scholar] [CrossRef] [PubMed]
- Bouatra, S.; Aziat, F.; Mandal, R.; Guo, A.C.; Wilson, M.R.; Knox, C.; Bjorndahl, T.C.; Krishnamurthy, R.; Saleem, F.; Liu, P.; et al. The human urine metabolome. PLoS ONE 2013, 8, e73076. [Google Scholar] [CrossRef]
- Xia, J.; Wishart, D.S. MetPA: A web-based metabolomics tool for pathway analysis and visualization. Bioinformatics 2010, 26, 2342–2344. [Google Scholar] [CrossRef]
- Das, D.K.; Engelman, R.M.; Rousou, J.A.; Breyer, R.H. Aerobic vs anaerobic metabolism during ischemia in heart muscle. Ann. Chir. Gynaecol. 1987, 76, 68–75. [Google Scholar]
- Mautes, A.; Weinzierl, M.; Donovan, F.; Noble, L. Vascular events after spinal cord injury: Contribution to secondary pathogenesis. Phys. Ther. 2000, 80, 673–687. [Google Scholar] [CrossRef] [PubMed]
- Qaid, M.M.; Abdelrahman, M.M. Role of insulin and other related hormones in energy metabolism-A review. Cogent Food Agric. 2016, 2, 1267691. [Google Scholar] [CrossRef]
- Barthel, A.; Schmoll, D. Novel concepts in insulin regulation of hepatic gluconeogenesis. Am. J. Physiol. Endocrinol. Metab. 2003, 285, E685–E692. [Google Scholar] [CrossRef] [PubMed]
- Hatting, M.; Tavares, C.D.J.; Sharabi, K.; Rines, A.K.; Puigserver, P. Insulin regulation of gluconeogenesis. Ann. N. Y. Acad. Sci. 2018, 1411, 21–35. [Google Scholar] [CrossRef] [PubMed]
- Faden, A.; Demediuk, P.; Panter, S.; Vink, R. The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science 1989, 244, 798–800. [Google Scholar] [CrossRef] [PubMed]
- Panter, S.; Yum, S.; Faden, A. Alteration in extracellular amino-acids after traumatic spinal-cord injury. Ann. Neurol. 1990, 27, 96–99. [Google Scholar] [CrossRef]
- Park, E.; Velumian, A.; Fehlings, M. The role of excitotoxicity in secondary mechanisms of spinal cord injury: A review with an emphasis on the implications for white matter degeneration. J. Neurotrauma 2004, 21, 754–774. [Google Scholar] [CrossRef]
- Oyinbo, C.A. Secondary injury mechanisms in traumatic spinal cord injury: A nugget of this multiply cascade. Acta Neurobiol. Exp. 2011, 71, 281–299. [Google Scholar]
- Xu, G.; Hughes, M.G.; Ye, Z.; Hulsebosch, C.E.; McAdoo, D.J. Concentrations of glutamate released following spinal cord injury kill oligodendrocytes in the spinal cord. Exp. Neurol. 2004, 187, 329–336. [Google Scholar] [CrossRef]
- Watanabe, M.; Fujimura, Y.; Nakamura, M.; Yato, Y.; Ohta, K.; Okai, H.; Ogawa, Y. Changes of amino acid levels and aspartate distribution in the cervical spinal cord after traumatic spinal cord injury. J. Neurotrauma 1998, 15, 285–293. [Google Scholar] [CrossRef]
- Saransaari, P.; Oja, S.S. β-alanine release from the adult and developing hippocampus is enhanced by ionotropic glutamate receptor agonists and cell-damaging conditions. Neurochem. Res. 1999, 24, 407–414. [Google Scholar] [CrossRef]
- Nikiforova, V.J.; Giesbertz, P.; Wiemer, J.; Bethan, B.; Looser, R.; Liebenberg, V.; Ruiz Noppinger, P.; Daniel, H.; Rein, D. Glyoxylate, a new marker metabolite of type 2 diabetes. J. Diabetes Res. 2014, 2014, 685204. [Google Scholar] [CrossRef]
- Ahn, S.; Jung, J.; Jang, I.; Madsen, E.L.; Park, W. Role of glyoxylate shunt in oxidative stress response. J. Biol. Chem. 2016, 291, 11928–11938. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.J.; Wen, H.; Kim, H.S.; Ko, Y.; Dong, S.; Park, I.; Yook, J.I.; Park, S. Observation of acetyl phosphate formation in mammalian mitochondria using real-time in-organelle NMR metabolomics. Proc. Natl. Acad. Sci. USA 2018, 115, 4152–4157. [Google Scholar] [CrossRef] [PubMed]
- Porter, C.; Wall, B.T. Skeletal muscle mitochondrial function: Is it quality or quantity that makes the difference in insulin resistance? J. Physiol. 2012, 590, 5935–5936. [Google Scholar] [CrossRef]
- Yekutiel, M.; Brooks, M.E.; Ohry, A.; Yarom, J.; Carel, R. The prevalence of hypertension, ischaemic heart disease and diabetes in traumatic spinal cord injured patients and amputees. Spinal Cord 1989, 27, 58. [Google Scholar] [CrossRef]
- Jackson, E.K.; Boison, D.; Schwarzschild, M.A.; Kochanek, P.M. Purines: Forgotten mediators in traumatic brain injury. J. Neurochem. 2016, 137, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, K.; Matsumura, N.; Watabe, M.; Wang, F.; Kikuchi-Utsumi, K.; Nakaki, T. Caffeine and uric acid mediate glutathione synthesis for neuroprotection. Neuroscience 2011, 181, 206–215. [Google Scholar] [CrossRef]
- Dringen, R. Metabolism and functions of glutathione in brain. Prog. Neurobiol. 2000, 62, 649–671. [Google Scholar] [CrossRef] [PubMed]
- Akram, M. Citric acid cycle and role of its intermediates in metabolism. Cell Biochem. Biophys. 2014, 68, 475–478. [Google Scholar] [CrossRef]
- Richter, E.A.; Hargreaves, M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol. Rev. 2013, 93, 993–1017. [Google Scholar] [CrossRef]
- Lambernd, S.; Taube, A.; Schober, A.; Platzbecker, B.; Görgens, S.W.; Schlich, R.; Jeruschke, K.; Weiss, J.; Eckardt, K.; Eckel, J. Contractile activity of human skeletal muscle cells prevents insulin resistance by inhibiting pro-inflammatory signalling pathways. Diabetologia 2012, 55, 1128–1139. [Google Scholar] [CrossRef]
- Carlsen, E.M.; Perrier, J. Purines released from astrocytes inhibit excitatory synaptic transmission in the ventral horn of the spinal cord. Front. Neural Circuits 2014, 8, 60. [Google Scholar] [CrossRef]
- Liu, G.J.; Kalous, A.; Werry, E.L.; Bennett, M.R. Purine release from spinal cord microglia after elevation of calcium by glutamate. Mol. Pharmacol. 2006, 70, 851–859. [Google Scholar] [CrossRef] [PubMed]
- Witts, E.C.; Nascimento, F.; Miles, G.B. Adenosine-mediated modulation of ventral horn interneurons and spinal motoneurons in neonatal mice. J. Neurophysiol. 2015, 114, 2305–2315. [Google Scholar] [CrossRef] [PubMed]
- Paterniti, I.; Melani, A.; Cipriani, S.; Corti, F.; Mello, T.; Mazzon, E.; Esposito, E.; Bramanti, P.; Cuzzocrea, S.; Pedata, F. Selective adenosine A2A receptor agonists and antagonists protect against spinal cord injury through peripheral and central effects. J. Neuroinflamm. 2011, 8, 31. [Google Scholar] [CrossRef]
- Tang-Liu, D.D.; Williams, R.L.; Riegelman, S. Disposition of caffeine and its metabolites in man. J. Pharmacol. Exp. Ther. 1983, 224, 180. [Google Scholar] [PubMed]
- Nishida, Y. Inhibition of lipid-peroxidation by methylated analogs of uric-acid. J. Pharm. Pharmacol. 1991, 43, 885–887. [Google Scholar] [CrossRef]
- Snyder, S.H.; Katims, J.J.; Annau, Z.; Bruns, R.F.; Daly, J.W. Adenosine receptors and behavioral actions of methylxanthines. Proc. Natl. Acad. Sci. USA 1981, 78, 3260–3264. [Google Scholar] [CrossRef]
- Corallo, V.; Torre, M.; Ferrara, G.; Guerra, F.; Nicosia, G.; Romanelli, E.; Lopopolo, A.; Onesta, M.P.; Fiore, P.; Falcone, R.; et al. What do spinal cord injury patients think of their improvement? A study of the minimal clinically important difference of the spinal cord independence measure III. Eur. J. Phys. Rehabil. Med. 2017, 53, 508–515. [Google Scholar] [CrossRef]
Participant Code | SCI Type | ASIA Score | Sex | Age | Blood Collection (Days Post-Injury) | Neurological Level of Injury | Co-Morbidities | Medications | Ambulatory | Gait Aids and AFOs | SCIM | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Initial | 6 Month | Initial | 6 Month | Initial | 6 Month | Initial | 6 Month | ||||||||
SCI_01 | Incomplete | D | Male | 80 | 74 | 213 | Central Cord (C1–C2) | Yes | Yes | No | No | 84 | 89 | ||
SCI_02 | Complete | A | Male | 29 | 73 | 203 | T7 | No | No | 70 | 70 | ||||
SCI_03 | Incomplete | D | Male | 48 | 21 | 182 | Central Cord (C5–C6) | Yes | Yes | Yes | No | 66 | 97 | ||
SCI_05 | Incomplete | D | Male | 38 | 31 | 199 | C4 | * | No | Yes | 72 | 92 | |||
SCI_06 | Complete | A | Male | 50 | 30 | 177 | T6 (Dislocation) | No | No | 49 | 66 | ||||
SCI_08 | Incomplete | D | Male | 59 | 90 | 188 | C6–C7 | Yes | Yes | No | No | 100 | 100 | ||
SCI_11 | Incomplete | B | Male | 73 | 38 | 201 | C2–C4 | UTI, C2-C3 spinal artery infarct | Yes | Yes | No | No | 77 | 100 |
Metabolite | Chemical Shift (ppm) | Paired t/Wilcoxon p-Value | Regulation (% Difference) | Heat Map Number |
---|---|---|---|---|
Acetic Acid.1 † | 1.925 | 0.0022 | Up (22.77%) | 13 |
Dimethyl Sulfone | 3.162 | 0.0156 (W) | Up (64.73%) | 16 |
Citric Acid.1 † | 2.518 | 0.0187 | Up (24.88%) | 9 |
Citric Acid.2 †† | 2.540 | 0.0192 | Up (26.01%) | 8 |
Citric Acid.3 †† | 1.654 | 0.0202 | Up (28.15%) | 7 |
Acetic Acid.2 † | 1.931 | 0.0247 | Up (15.15%) | 14 |
1,9-Dimethyluric Acid.1 | 3.301 | 0.027 | Up (11.47%) | 18 |
Citric Acid.4 †† | 2.675 | 0.028 | Up (23.59%) | 6 |
1,9-Dimethyluric Acid.2 † | 3.294 | 0.0306 | Up (13.31%) | 19 |
1,5-Anhydrosorbitol.1 | 3.973 | 0.0361 | Up (15.18%) | 12 |
Succinic Acid | 2.407 | 0.0361 | Up (8.03%) | 11 |
Methanol | 3.367 | 0.04 | Up (21.37%) | 17 |
1,3,7-Trimethyluric Acid.1 | 3.222 | 0.0435 | Down (−6.36%) | 3 |
D-Glucose | 5.239 | 0.0445 | Down (−9.26%) | 4 |
D-Mannose | 5.197 | 0.0469 (W) | Down (−43.00%) | 5 |
Undefined doublet | 1.141 | 0.0469 (W) | Up (60.96%) | 15 |
Lactate | 4.145 | 0.0484 | Up (18.57%) | 10 |
1,3,7-Trimethyluric Acid.2 †† | 3.385 | >0.05 | Down (−5.30%) | 2 |
Acetylphosphate.1 †† | 2.115 | >0.05 | Down (−4.83%) | 1 |
Pantothenic Acid † | 3.376 | >0.05 | Up (0.95%) | |
Acetylphosphate.2 † | 2.122 | >0.05 | Down (−1.56%) | |
Acetylphosphate.3 † | 2.110 | >0.05 | Down (−2.39%) | |
1,5-Anhydrosorbitol.2 † | 3.276 | >0.05 | Up (15.24%) |
Metabolite | Correlation Values |
---|---|
Metabolite Initial Concentration to Percent Difference SCIM | |
Acetyl Phosphate | R = −0.66, p = 0.011 |
Metabolite Delta Concentration to Percent Difference SCIM | |
1,3,7-Trimethyluric Acid | R = 0.57, p = 0.035 |
1,9-Dimethyluric Acid | R = 0.76, p = 0.002 * |
Acetic Acid | R = 0.74, p = 0.0026 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bykowski, E.A.; Petersson, J.N.; Dukelow, S.; Ho, C.; Debert, C.T.; Montina, T.; Metz, G.A.S. Identification of Serum Metabolites as Prognostic Biomarkers Following Spinal Cord Injury: A Pilot Study. Metabolites 2023, 13, 605. https://doi.org/10.3390/metabo13050605
Bykowski EA, Petersson JN, Dukelow S, Ho C, Debert CT, Montina T, Metz GAS. Identification of Serum Metabolites as Prognostic Biomarkers Following Spinal Cord Injury: A Pilot Study. Metabolites. 2023; 13(5):605. https://doi.org/10.3390/metabo13050605
Chicago/Turabian StyleBykowski, Elani A., Jamie N. Petersson, Sean Dukelow, Chester Ho, Chantel T. Debert, Tony Montina, and Gerlinde A. S. Metz. 2023. "Identification of Serum Metabolites as Prognostic Biomarkers Following Spinal Cord Injury: A Pilot Study" Metabolites 13, no. 5: 605. https://doi.org/10.3390/metabo13050605
APA StyleBykowski, E. A., Petersson, J. N., Dukelow, S., Ho, C., Debert, C. T., Montina, T., & Metz, G. A. S. (2023). Identification of Serum Metabolites as Prognostic Biomarkers Following Spinal Cord Injury: A Pilot Study. Metabolites, 13(5), 605. https://doi.org/10.3390/metabo13050605