Relationship between Blood Volume, Blood Lactate Quantity, and Lactate Concentrations during Exercise
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Anthropometry and Blood Sampling
2.4. Cardio-Pulmonary Exercise Test and Lactate Analysis
2.5. Determination of Hemoglobin Mass and Blood Volume
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferguson, B.S.; Rogatzki, M.J.; Goodwin, M.L.; Kane, D.A.; Rightmire, Z.; Gladden, L.B. Lactate metabolism: Historical context, prior misinterpretations, and current understanding. Eur. J. Appl. Physiol. 2018, 118, 691–728. [Google Scholar] [CrossRef] [PubMed]
- Gladden, L.B. Lactate metabolism: A new paradigm for the third millennium. J. Physiol. 2004, 558, 5–30. [Google Scholar] [CrossRef] [PubMed]
- Billat, V.L.; Sirvent, P.; Py, G.; Koralsztein, J.P.; Mercier, J. The concept of maximal lactate steady state: A bridge between biochemistry, physiology and sport science. Sports Med. 2003, 33, 407–426. [Google Scholar] [CrossRef]
- Glancy, B.; Kane, D.A.; Kavazis, A.N.; Goodwin, M.L.; Willis, W.T.; Gladden, L.B. Mitochondrial lactate metabolism: History and implications for exercise and disease. J. Physiol. 2021, 599, 863–888. [Google Scholar] [CrossRef]
- Adeva-Andany, M.; López-Ojén, M.; Funcasta-Calderón, R.; Ameneiros-Rodríguez, E.; Donapetry-García, C.; Vila-Altesor, M.; Rodríguez-Seijas, J. Comprehensive review on lactate metabolism in human health. Mitochondrion 2014, 17, 76–100. [Google Scholar] [CrossRef] [PubMed]
- Magistretti, P.J.; Allaman, I. Lactate in the brain: From metabolic end-product to signalling molecule. Nat. Rev. Neurosci. 2018, 19, 235–249. [Google Scholar] [CrossRef] [PubMed]
- Brooks, G.A.; Arevalo, J.A.; Osmond, A.D.; Leija, R.G.; Curl, C.C.; Tovar, A.P. Lactate in contemporary biology: A phoenix risen. J. Physiol. 2022, 600, 1229–1251. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, P.; Tschakert, G. Special needs to prescribe exercise intensity for scientific studies. Cardiol. Res. Pract. 2011, 2011, 209302. [Google Scholar] [CrossRef]
- Tschakert, G.; Kroepfl, J.; Mueller, A.; Moser, O.; Groeschl, W.; Hofmann, P. How to regulate the acute physiological response to “aerobic” high-intensity interval exercise. J. Sports Sci. Med. 2014, 14, 29–36. [Google Scholar]
- McLellan, T.M. Ventilatory and Plasma Lactate Response with Different Exercise Protocols: A Comparison of Methods. Int. J. Sports Med. 1985, 6, 30–35. [Google Scholar] [CrossRef]
- Davis, J.A.; Vodak, P.; Wilmore, J.H.; Vodak, J.; Kurtz, P. Anaerobic threshold and maximal aerobic power for three modes of exercise. J. Appl. Physiol. 1976, 41, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Dassonville, J.; Beillot, J.; Lessard, Y.; Jan, J.; André, A.M.; Le Pourcelet, C.; Rochcongar, P.; Carré, F. Blood lactate concentrations during exercise: Effect of sampling site and exercise mode. J. Sports Med. Phys. Fit. 1998, 38, 39–46. [Google Scholar]
- Jacobs, I. Lactate concentrations after short, maximal exercise at various glycogen levels. Acta. Physiol. Scand. 1981, 111, 465–469. [Google Scholar] [CrossRef] [PubMed]
- Lacombe, V.; Hinchcliff, K.W.; Geor, R.J.; Lauderdale, M.A. Exercise that induces substantial muscle glycogen depletion impairs subsequent anaerobic capacity. Equine Vet. J. 1999, 31, 293–297. [Google Scholar] [CrossRef]
- Blomstrand, E.; Saltin, B. Effect of muscle glycogen on glucose, lactate and amino acid metabolism during exercise and recovery in human subjects. J. Physiol. 1999, 514, 293. [Google Scholar] [CrossRef]
- Podolin, D.A.; Munger, P.A.; Mazzeo, R.S. Plasma catecholamine and lactate response during graded exercise with varied glycogen conditions. J. Appl. Physiol. 1985, 71, 1427–1433. [Google Scholar] [CrossRef]
- Stallknecht, B.; Vissing, J.; Galbo, H. Lactate production and clearance in exercise. Effetcs of training. A mini-review. Scand. J. Med. Sci. Sports 1998, 8, 127–131. [Google Scholar] [CrossRef]
- Ivy, J.L.; Withers, R.T.; van Handel, P.J.; Elger, D.H.; Costill, D.L. Muscle respiratory capacity and fiber type as determinants of the lactate threshold. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1980, 48, 523–527. [Google Scholar] [CrossRef]
- Karlsson, J.; Sjödin, B.; Jacobs, I.; Kaiser, P. Relevance of muscle fibre type to fatigue in short intense and prolonged exercise in man. Ciba. Found. Symp. 1981, 82, 59–74. [Google Scholar] [CrossRef]
- Yeh, M.P.; Gardner, R.M.; Adams, T.D.; Yanowitz, F.G.; Crapo, R.O. “Anaerobic threshold”: Problems of determination and validation. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1983, 55, 1178–1186. [Google Scholar] [CrossRef]
- Dennis, S.C.; Noakes, T.D.; Bosch, A.N. Ventilation and blood lactate increase exponentially during incremental exercise. J. Sports Sci. 1992, 10, 437–449. [Google Scholar] [CrossRef] [PubMed]
- Siebenmann, C.; Sørensen, H.; Bonne, T.C.; Zaar, M.; Aachmann-Andersen, N.J.; Nordsborg, N.B.; Nielsen, H.B.; Secher, N.H.; Lundby, C.; Rasmussen, P. Cerebral lactate uptake during exercise is driven by the increased arterial lactate concentration. J. Appl. Physiol. 2021, 131, 1824–1830. [Google Scholar] [CrossRef] [PubMed]
- Martino, M.; Gledhill, N.; Jamnik, V. High VO2max with no history of training is primarily due to high blood volume. Med. Sci. Sports Exerc. 2002, 34, 966–971. [Google Scholar] [CrossRef] [PubMed]
- Convertino, V.A. Blood volume response to physical activity and inactivity. Am. J. Med. Sci. 2007, 334, 72–79. [Google Scholar] [CrossRef]
- Convertino, V.A. Blood volume: Its adaptation to endurance training. Med. Sci. Sports Exerc. 1991, 23, 1338–1348. [Google Scholar] [CrossRef]
- Prommer, N.; Wachsmuth, N.; Thieme, I.; Wachsmuth, C.; Mancera-Soto, E.M.; Hohmann, A.; Schmidt, W.F.J. Influence of Endurance Training During Childhood on Total Hemoglobin Mass. Front. Physiol. 2018, 9, 251. [Google Scholar] [CrossRef]
- Schierbauer, J.; Hoffmeister, T.; Treff, G.; Wachsmuth, N.B.; Schmidt, W.F.J. Effect of Exercise-Induced Reductions in Blood Volume on Cardiac Output and Oxygen Transport Capacity. Front. Physiol. 2021, 12, 1–10. [Google Scholar] [CrossRef]
- Kawabata, T.; Suzuki, T.; Miyagawa, T. Effect of blood volume on plasma volume shift during exercise. J. Therm. Biol. 2004, 29, 775–778. [Google Scholar] [CrossRef]
- Davis, J.A.; Rozenek, R.; DeCicco, D.M.; Carizzi, M.T.; Pham, P.H. Effect of plasma volume loss during graded exercise testing on blood lactate concentration. J. Physiol. Sci. 2007, 57, 95–99. [Google Scholar] [CrossRef]
- Foxdal, P.; Sjödin, B.; Rudstam, H.; Östman, C.; Östman, B.; Hedenstierna, G.C. Lactate concentration differences in plasma, whole blood, capillary finger blood and erythrocytes during submaximal graded exercise in humans. Eur. J. Appl. Physiol. Occup. Physiol. 1990, 61, 218–222. [Google Scholar] [CrossRef]
- Schierbauer, J.; Ficher, S.; Zimmermann, P.; Wachsmuth, N.B.; Schmidt, W.F.J. Cardiac stroke volume in females and its correlation to blood volume and cardiac dimensions. Front. Physiol. 2022, 13, 895805. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, W.; Prommer, N. The optimised CO-rebreathing method: A new tool to determine total haemoglobin mass routinely. Eur. J. Appl. Physiol. 2005, 95, 486–495. [Google Scholar] [CrossRef]
- Prommer, N.; Schmidt, W. Loss of CO from the intravascular bed and its impact on the optimised CO-rebreathing method. Eur. J. Appl. Physiol. 2007, 100, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Gore, C.J.; Bourdon, P.C.; Woolford, S.M.; Ostler, L.M.; Eastwood, A.; Scroop, G.C. Time and Sample Site Dependency of the Optimized CO-Rebreathing Method. Med. Sci. Sports Exerc. 2006, 38, 1187–1193. [Google Scholar] [CrossRef] [PubMed]
- Hütler, M.; Beneke, R.; Böning, D. Determination of circulating hemoglobin mass and related quantities by using capillary blood. Med. Sci. Sports Exerc. 2000, 32, 1024–1027. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.J.; Wesley, R.; Leitman, S.F.; Bryant, B.J. Capillary versus venous haemoglobin determination in the assessment of healthy blood donors. Vox. Sang. 2013, 104, 317–323. [Google Scholar] [CrossRef]
- Costill, D.L.; Branam, L.; Eddy, D.; Fink, W. Alterations in red cell volume following exercise and dehydration. J. Appl. Physiol. 1974, 37, 912–916. [Google Scholar] [CrossRef]
- Fricke, G. On the behavior of the cell factor during physical work. Determinations with T-1824 (Evans blue) and radioactive chromate. Cardiologia 1965, 47, 25–44. [Google Scholar] [CrossRef]
- Schmidt, W.; Brabant, G.; Kröger, C.; Strauch, S.; Hilgendorf, A. Atrial natriuretic peptide during and after maximal and submaximal exercise under normoxic and hypoxic conditions. Eur. J. Appl. Physiol. 1990, 61, 398–407. [Google Scholar] [CrossRef]
- Eastwood, A.; Hopkins, W.G.; Bourdon, P.C.; Withers, R.T.; Gore, C.J. Stability of hemoglobin mass over 100 days in active men. J. Appl. Physiol. 2008, 104, 982–985. [Google Scholar] [CrossRef]
- Robertson, E.; Saunders, P.; Pyne, D.; Gore, C.; Anson, J. Effectiveness of intermittent training in hypoxia combined with live high/train low. Eur. J. Appl. Physiol. 2010, 110, 379–387. [Google Scholar] [CrossRef]
- Maassen, N.; Schneider, G. The Capillary Lactate Concentration as an Indicator for Exercise Intensity. Ger. J. Sportsmed. 2011, 62, 92–97. [Google Scholar]
- Schrader, M.; Treff, B.; Sandholtet, T.; Maassen, N.; Shushakov, V.; Kaesebieter, J.; Maassen, M. Carbohydrate supplementation stabilises plasma sodium during training with high intensity. Eur. J. Appl. Physiol. 2016, 116, 1841–1853. [Google Scholar] [CrossRef] [PubMed]
- Chatel, B.; Bret, C.; Edouard, P.; Oullion, R.; Freund, H.; Messonnier, L.A. Lactate recovery kinetics in response to high-intensity exercises. Eur. J. Appl. Physiol. 2016, 116, 1455–1465. [Google Scholar] [CrossRef] [PubMed]
- Juel, C.; Bangsbo, J.; Graham, T.; Saltin, B. Lactate and potassium fluxes from human skeletal muscle during and after intense, dynamic, knee extensor exercise. Acta. Physiol. Scand. 1990, 140, 147–159. [Google Scholar] [CrossRef]
- Durand, R.; Galli, M.; Chenavard, M.; Bandiera, D.; Freund, H.; Messonnier, L.A. Modelling of Blood Lactate Time-Courses During Exercise and/or the Subsequent Recovery: Limitations and Few Perspectives. Front. Physiol. 2021, 12, 1700. [Google Scholar] [CrossRef] [PubMed]
- Buono, M.J.; Yeager, J.E. Intraerythrocyte and plasma lactate concentrations during exercise in humans. Eur. J. Appl. Physiol. Occup. Physiol. 1986, 55, 326–329. [Google Scholar] [CrossRef]
- Nadel, E.R.; Fortney, S.M.; Wenger, C.B. Effect of hydration state of circulatory and thermal regulations. J. Appl. Physiol. 1980, 49, 715–721. [Google Scholar] [CrossRef]
- Steinach, M.; Lichti, J.; Maggioni, M.A.; Fähling, M. A fluid shift for endurance exercise—Why hydration matters. Acta. Physiol. 2019, 227, e13347. [Google Scholar] [CrossRef]
- Beneke, R.; Pollmann, C.; Bleif, I.; Leithäuser, R.M.; Hütler, H. How anaerobic is the wingate anaerobic test for humans? Eur. J. Appl. Physiol. 2002, 87, 388–392. [Google Scholar] [CrossRef]
- MacRae, H.S.H.; Dennis, S.C.; Bosch, A.N.; Noakes, T.D. Effects of training on lactate production and removal during progressive exercise in humans. J. Appl. Physiol. 1992, 72, 1649–1656. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Choi, Y.; Jeong, E.; Park, J.; Kim, J.; Tanaka, M.; Choi, J. Physiological significance of elevated levels of lactate by exercise training in the brain and body. J. Biosci. Bioeng. 2023, 135, 167–175. [Google Scholar] [CrossRef]
- Heinicke, K.; Wolfarth, B.; Winchenbach, P.; Biermann, B.; Schmid, A.; Huber, G.; Friedmann, B.; Schmidt, W. Blood Volume and Hemoglobin Mass in Elite Athletes of Different Disciplines. Int. J. Sports Med. 2001, 22, 504–512. [Google Scholar] [CrossRef]
- Bloomer, R.J.; Farney, T.M. Acute Plasma Volume Change With High-Intensity Sprint Exercise. J. Strength Cond. Res. 2013, 27, 2874–2878. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, W.; Prommer, N. Effects of various training modalities on blood volume. Scand. J. Med. Sci. Sports 2008, 18, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Montero, D.; Breenfeldt-Andersen, A.; Oberholzer, L.; Haider, T.; Goetze, J.P.; Meinild-Lundby, A.-K.; Lundby, C. Erythropoiesis with endurance training: Dynamics and mechanisms. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017, 312, R894–R902. [Google Scholar] [CrossRef] [PubMed]
- Sawka, M.; Convertino, V.; Eichner, E.; Schnieder, S.; Young, A. Blood Volume. Importance and Adaptations to Exercise Training, Environmental Stresses and Trauma/Sickness. Med. Sci. Sports Exerc. 2000, 32, 332–348. [Google Scholar] [CrossRef]
- Kenefick, R.W.; Sollanek, K.J.; Charkoudian, N.; Sawka, M.N. Impact of skin temperature and hydration on plasma volume responses during exercise. J. Appl. Physiol. 2014, 117, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Fortney, S.M.; Nadel, E.R.; Wenger, C.B.; Bove, J.R. Effect of blood volume on sweating rate and body fluids in exercising humans. J. Appl. Physiol. 1981, 51, 1594–1600. [Google Scholar] [CrossRef]
- Jimenez, C.; Melin, B.; Koulmann, N.; Allevard, A.M.; Launay, J.C.; Savourey, G. Plasma volume changes during and after acute variations of body hydration level in humans. Eur. J. Appl. Physiol. Occup. Physiol. 1999, 80, 1–8. [Google Scholar] [CrossRef]
- Yamagata, T.; Shigemori, Y. Relationship between sweat lactate secretion rate and blood lactate concentration during exercise near the lactate threshold. Gazz. Med. Ital. Arch. Per Le Sci. Med. 2022, 181, 833–840. [Google Scholar] [CrossRef]
- Travers, G.; González-Alonso, J.; Riding, N.; Nichols, D.; Shaw, A.; Périard, J.D. Exercise heat acclimation has minimal effects on left ventricular volumes, function and systemic hemodynamics in euhydrated and dehydrated trained humans. Am. J. Physiology. Heart Circ. Physiol. 2020, 319, 965–979. [Google Scholar] [CrossRef] [PubMed]
- Øian, P.; Tollan, A.; Fadnes, H.O.; Noddeland, H.; Maltau, J.M. Transcapillary fluid dynamics during the menstrual cycle. Am. J. Obstet. Gynecol. 1987, 156, 952–955. [Google Scholar] [CrossRef] [PubMed]
- Messonnier, L.A.; Emhoff, C.A.W.; Fattor, J.A.; Horning, M.A.; Carlson, T.J.; Brooks, G.A. Lactate kinetics at the lactate threshold in trained and untrained men. J. Appl. Physiol. 2013, 114, 1593–1602. [Google Scholar] [CrossRef]
Mean ± SD | Min | Max | 95% CI | |
---|---|---|---|---|
Age (y) | 27.5 ± 5.9 | 19 | 40 | 25.1–29.9 |
Height (cm) | 167.7 ± 6.5 | 154 | 180 | 165–170 |
Body mass (kg) | 60.1 ± 7.0 | 47.5 | 73.5 | 58.1–63.9 |
Body mass index (kg·m−2) | 21.6 ± 1.6 | 18.6 | 25.1 | 20.9–22.3 |
Lean body mass (kg) | 47.4 ± 5.9 | 35.9 | 56.9 | 44.9–49.9 |
Fat mass (%) | 22.2 ± 5.6 | 9.4 | 35.0 | 19.8–24.6 |
Ferritin (μg·L−1) | 44 ± 24 | 16 | 105 | 34.2–54.0 |
C-reactive protein (mg·dL−1) | 1.37 ± 1.26 | 0.3 | 4.9 | 1.43–2.52 |
O2max (mL·min−1·kg−1) | 49.0 ± 8.1 | 31.8 | 61.7 | 45.7–52.3 |
Pmax (W·kg−1) | 4.2 ± 0.8 | 117 | 334 | 236–282 |
Hbmass (g·kg−1) | 9.8 ± 1.2 | 7.8 | 12.7 | 9.3–10.3 |
Mean ± SD | Min | Max | 95% CI | |
---|---|---|---|---|
[La−]60% (mmol·L−1) | 2.5 ± 0.9 | 1.1 | 4.5 | 2.1–2.9 |
La−60% (mmol) | 11.4 ± 4.2 | 5.6 | 20.8 | 9.6–13.1 |
La−60% (mmol·kg−1 LBM) | 0.11 ± 0.04 | 0.06 | 0.22 | 0.09–0.14 |
[La−]end (mmol·L−1) | 11.3 ± 2.2 | 8.5 | 17.2 | 10.3–12.1 |
La−end (mmol) | 52 ± 12.2 | 28.6 | 75.3 | 46.7–56.8 |
La−end (mmol·kg−1 LBM) | 1.08 ± 0.19 | 0.79 | 1.46 | 1.01–1.16 |
[La−]max (mmol·L−1) | 12.1 ± 2.4 | 8.5 | 18.4 | 11.2–13.1 |
BVrest (mL) | 4889 ± 836 | 3306 | 6461 | 4551–5227 |
BVrest (mL·kg−1 LBM) | 102.0 ± 9.9 | 81 | 121 | 99–107 |
BVend (mL) | 4609 ± 799 | 3063 | 6298 | 4286–4932 |
BVend (mL·kg−1 LBM) | 97.0 ± 9.5 | 75 | 116 | 92–100 |
[Hb]rest (g·dL−1) | 13.4 ± 0.75 | 11.5 | 15.3 | 13.1–13.7 |
[Hb]end (g·dL−1) | 14.2 ± 0.78 | 12.2 | 16.0 | 13.9–14.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schierbauer, J.; Wolf, A.; Wachsmuth, N.B.; Maassen, N.; Schmidt, W.F.J. Relationship between Blood Volume, Blood Lactate Quantity, and Lactate Concentrations during Exercise. Metabolites 2023, 13, 632. https://doi.org/10.3390/metabo13050632
Schierbauer J, Wolf A, Wachsmuth NB, Maassen N, Schmidt WFJ. Relationship between Blood Volume, Blood Lactate Quantity, and Lactate Concentrations during Exercise. Metabolites. 2023; 13(5):632. https://doi.org/10.3390/metabo13050632
Chicago/Turabian StyleSchierbauer, Janis, Alina Wolf, Nadine B. Wachsmuth, Norbert Maassen, and Walter F. J. Schmidt. 2023. "Relationship between Blood Volume, Blood Lactate Quantity, and Lactate Concentrations during Exercise" Metabolites 13, no. 5: 632. https://doi.org/10.3390/metabo13050632
APA StyleSchierbauer, J., Wolf, A., Wachsmuth, N. B., Maassen, N., & Schmidt, W. F. J. (2023). Relationship between Blood Volume, Blood Lactate Quantity, and Lactate Concentrations during Exercise. Metabolites, 13(5), 632. https://doi.org/10.3390/metabo13050632