The Protective Role of Exosome-Derived MicroRNAs and Proteins from Human Breast Milk against Infectious Agents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collecting Breast Milk Samples
2.2. HBM-Derived Exosome Isolation
2.3. Nanoparticle Tracking Analysis (NTA)
2.4. Transmission Electron Microscopy (TEM)
2.5. Immunoblot
2.6. RNA Isolation, Library Preparation, and Small RNA Sequencing
2.7. Exosomal Protein Extraction and Quantification
2.8. In-Solution Digestion
2.9. High-pH Reverse-Phase Peptide Fractionation
2.10. Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) Analysis
2.11. Raw Data Processing
2.12. Enrichment Analysis Using GO and KEGG Pathway Signaling
2.13. Statistical Analysis
3. Results
3.1. The Characteristic of HBM-Derived Exosome
3.2. Identification of HBM-Derived Exosomal miRNAs through Small RNA Sequencing
3.3. Assessing HBM-Derived Exosomal miRNA Enrichment through GO Analysis
3.4. Immune-Related KEGG Pathway Analysis of HBM-Derived Exosomal miRNAs
3.5. GO Analysis of HBM-Derived Exosomal Proteins
3.6. KEGG Pathway Analysis of Immune-Related Proteins
3.7. Protein-Protein Interaction in Pathogenic Microbial Infection-Related Proteins
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andreas, N.J.; Kampmann, B.; Mehring Le-Doare, K. Human breast milk: A review on its composition and bioactivity. Early Hum. Dev. 2015, 91, 629–635. [Google Scholar] [CrossRef]
- Kim, Y.J. Immunomodulatory Effects of Human Colostrum and Milk. Pediatr. Gastroenterol. Hepatol. Nutr. 2021, 24, 337–345. [Google Scholar] [CrossRef]
- Mosca, F.; Giannì, M.L. Human milk: Composition and health benefits. Pediatr. Med. Chir. 2017, 39, 155. [Google Scholar] [CrossRef] [PubMed]
- Hauck, F.R.; Thompson, J.M.; Tanabe, K.O.; Moon, R.Y.; Vennemann, M.M. Breastfeeding and reduced risk of sudden infant death syndrome: A meta-analysis. Pediatrics 2011, 128, 103–110. [Google Scholar] [CrossRef]
- Ballard, O.; Morrow, A.L. Human milk composition: Nutrients and bioactive factors. Pediatr. Clin. N. Am. 2013, 60, 49–74. [Google Scholar] [CrossRef] [PubMed]
- Pereira, P.C. Milk nutritional composition and its role in human health. Nutrition 2014, 30, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Newburg, D.S.; Walker, W.A. Protection of the neonate by the innate immune system of developing gut and of human milk. Pediatr. Res. 2007, 61, 2–8. [Google Scholar] [CrossRef]
- Verhasselt, V.; Milcent, V.; Cazareth, J.; Kanda, A.; Fleury, S.; Dombrowicz, D.; Glaichenhaus, N.; Julia, V. Breast milk-mediated transfer of an antigen induces tolerance and protection from allergic asthma. Nat. Med. 2008, 14, 170–175. [Google Scholar] [CrossRef]
- Field, C.J. The immunological components of human milk and their effect on immune development in infants. J. Nutr. 2005, 135, 1–4. [Google Scholar] [CrossRef]
- Casadevall, A.; Pirofski, L.A. What is a host? Incorporating the microbiota into the damage-response framework. Infect. Immun. 2015, 83, 2–7. [Google Scholar] [CrossRef]
- Admyre, C.; Johansson, S.M.; Qazi, K.R.; Filén, J.J.; Lahesmaa, R.; Norman, M.; Neve, E.P.; Scheynius, A.; Gabrielsson, S. Exosomes with immune modulatory features are present in human breast milk. J. Immunol. 2007, 179, 1969–1978. [Google Scholar] [CrossRef]
- van Herwijnen, M.J.; Zonneveld, M.I.; Goerdayal, S.; Nolte-’t Hoen, E.N.; Garssen, J.; Stahl, B.; Maarten Altelaar, A.F.; Redegeld, F.A.; Wauben, M.H. Comprehensive Proteomic Analysis of Human Milk-derived Extracellular Vesicles Unveils a Novel Functional Proteome Distinct from Other Milk Components. Mol. Cell. Proteom. 2016, 15, 3412–3423. [Google Scholar] [CrossRef]
- Kim, S.Y.; Yi, D.Y. Components of human breast milk: From macronutrient to microbiome and microRNA. Clin. Exp. Pediatr. 2020, 63, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Rabinowits, G.; Gerçel-Taylor, C.; Day, J.M.; Taylor, D.D.; Kloecker, G.H. Exosomal microRNA: A diagnostic marker for lung cancer. Clin. Lung Cancer 2009, 10, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Skog, J.; Würdinger, T.; van Rijn, S.; Meijer, D.H.; Gainche, L.; Sena-Esteves, M.; Curry, W.T.; Carter, B.S.; Krichevsky, A.M.; Breakefield, X.O. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol. 2008, 10, 1470–1476. [Google Scholar] [CrossRef] [PubMed]
- Peinado, H.; Alečković, M.; Lavotshkin, S.; Matei, I.; Costa-Silva, B.; Moreno-Bueno, G.; Hergueta-Redondo, M.; Williams, C.; García-Santos, G.; Ghajar, C.M.; et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 2012, 18, 883–891. [Google Scholar] [CrossRef]
- Rupp, A.K.; Rupp, C.; Keller, S.; Brase, J.C.; Ehehalt, R.; Fogel, M.; Moldenhauer, G.; Marmé, F.; Sültmann, H.; Altevogt, P. Loss of EpCAM expression in breast cancer derived serum exosomes: Role of proteolytic cleavage. Gynecol. Oncol. 2011, 122, 437–446. [Google Scholar] [CrossRef]
- Lance, R.S.; Drake, R.R.; Troyer, D.A. Multiple recognition assay reveals prostasomes as promising plasma biomarkers for prostate cancer. Expert. Rev. Anticancer. Ther. 2011, 11, 1341–1343. [Google Scholar] [CrossRef]
- Munch, E.M.; Harris, R.A.; Mohammad, M.; Benham, A.L.; Pejerrey, S.M.; Showalter, L.; Hu, M.; Shope, C.D.; Maningat, P.D.; Gunaratne, P.H.; et al. Transcriptome profiling of microRNA by Next-Gen deep sequencing reveals known and novel miRNA species in the lipid fraction of human breast milk. PLoS ONE 2013, 8, e50564. [Google Scholar] [CrossRef]
- Izumi, H.; Kosaka, N.; Shimizu, T.; Sekine, K.; Ochiya, T.; Takase, M. Time-dependent expression profiles of microRNAs and mRNAs in rat milk whey. PLoS ONE 2014, 9, e88843. [Google Scholar] [CrossRef]
- Jin, X.L.; Wei, Z.H.; Liu, L.; Liu, H.Y.; Liu, J.X. Comparative studies of two methods for miRNA isolation from milk whey. J. Zhejiang Univ. Sci. B 2015, 16, 533–540. [Google Scholar] [CrossRef]
- Huang, X.; Yuan, T.; Tschannen, M.; Sun, Z.; Jacob, H.; Du, M.; Liang, M.; Dittmar, R.L.; Liu, Y.; Kohli, M.; et al. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genom. 2013, 14, 319. [Google Scholar] [CrossRef]
- Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007, 9, 654–659. [Google Scholar] [CrossRef]
- Gu, Y.; Li, M.; Wang, T.; Liang, Y.; Zhong, Z.; Wang, X.; Zhou, Q.; Chen, L.; Lang, Q.; He, Z.; et al. Lactation-related microRNA expression profiles of porcine breast milk exosomes. PLoS ONE 2012, 7, e43691. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Li, M.; Wang, X.; Li, Q.; Wang, T.; Zhu, Q.; Zhou, X.; Gao, X.; Li, X. Immune-related microRNAs are abundant in breast milk exosomes. Int. J. Biol. Sci. 2012, 8, 118–123. [Google Scholar] [CrossRef]
- Tingö, L.; Ahlberg, E.; Johansson, L.; Pedersen, S.A.; Chawla, K.; Sætrom, P.; Cione, E.; Simpson, M.R. Non-Coding RNAs in Human Breast Milk: A Systematic Review. Front. Immunol. 2021, 12, 725323. [Google Scholar] [CrossRef]
- Chutipongtanate, S.; Morrow, A.L.; Newburg, D.S. Human Milk Extracellular Vesicles: A Biological System with Clinical Implications. Cells 2022, 11, 2345. [Google Scholar] [CrossRef]
- Lv, K.T.; Liu, Z.; Feng, J.; Zhao, W.; Hao, T.; Ding, W.Y.; Chu, J.P.; Gao, L.J. MiR-22-3p Regulates Cell Proliferation and Inhibits Cell Apoptosis through Targeting the eIF4EBP3 Gene in Human Cervical Squamous Carcinoma Cells. Int. J. Med. Sci. 2018, 15, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.Y.; Mei, J.W.; Xiang, S.S.; Li, H.F.; Ma, Q.; Song, X.L.; Wang, Z.; Zhang, Y.C.; Liu, Y.C.; Jin, Y.P.; et al. MicroRNA-30a-5p inhibits gallbladder cancer cell proliferation, migration and metastasis by targeting E2F7. Cell Death Dis. 2018, 9, 410. [Google Scholar] [CrossRef]
- Bernstein, D.L.; Jiang, X.; Rom, S. let-7 microRNAs: Their Role in Cerebral and Cardiovascular Diseases, Inflammation, Cancer, and Their Regulation. Biomedicines 2021, 9, 606. [Google Scholar] [CrossRef] [PubMed]
- Correia, N.C.; Fragoso, R.; Carvalho, T.; Enguita, F.J.; Barata, J.T. MiR-146b negatively regulates migration and delays progression of T-cell acute lymphoblastic leukemia. Sci. Rep. 2016, 6, 31894. [Google Scholar] [CrossRef] [PubMed]
- Mitsumura, T.; Ito, Y.; Chiba, T.; Matsushima, T.; Kurimoto, R.; Tanaka, Y.; Kato, T.; Uchida, K.; Ito, T.; Yamamoto, K.; et al. Ablation of miR-146b in mice causes hematopoietic malignancy. Blood Adv. 2018, 2, 3483–3491. [Google Scholar] [CrossRef]
- Ahlberg, E.; Al-Kaabawi, A.; Thune, R.; Simpson, M.R.; Pedersen, S.A.; Cione, E.; Jenmalm, M.C.; Tingö, L. Breast milk microRNAs: Potential players in oral tolerance development. Front. Immunol. 2023, 14, 1154211. [Google Scholar] [CrossRef]
- Bayraktar, R.; Bertilaccio, M.T.S.; Calin, G.A. The Interaction Between Two Worlds: MicroRNAs and Toll-Like Receptors. Front. Immunol. 2019, 10, 1053. [Google Scholar] [CrossRef]
- Reynoso, R.; Laufer, N.; Hackl, M.; Skalicky, S.; Monteforte, R.; Turk, G.; Carobene, M.; Quarleri, J.; Cahn, P.; Werner, R.; et al. MicroRNAs differentially present in the plasma of HIV elite controllers reduce HIV infection in vitro. Sci. Rep. 2014, 4, 5915. [Google Scholar] [CrossRef]
- Fu, Y.; Yi, Z.; Wu, X.; Li, J.; Xu, F. Circulating microRNAs in patients with active pulmonary tuberculosis. J. Clin. Microbiol. 2011, 49, 4246–4251. [Google Scholar] [CrossRef] [PubMed]
- Acuna, S.M.; Floeter-Winter, L.M.; Muxel, S.M. MicroRNAs: Biological Regulators in Pathogen-Host Interactions. Cells 2020, 9, 113. [Google Scholar] [CrossRef] [PubMed]
- Frappier, L. EBNA1 and host factors in Epstein-Barr virus latent DNA replication. Curr. Opin. Virol. 2012, 2, 733–739. [Google Scholar] [CrossRef]
- Mansouri, S.; Pan, Q.; Blencowe, B.J.; Claycomb, J.M.; Frappier, L. Epstein-Barr virus EBNA1 protein regulates viral latency through effects on let-7 microRNA and dicer. J. Virol. 2014, 88, 11166–11177. [Google Scholar] [CrossRef]
- Xie, C.; Chen, Y.; Luo, D.; Zhuang, Z.; Jin, H.; Zhou, H.; Li, X.; Lin, H.; Zheng, X.; Zhang, J.; et al. Therapeutic potential of C1632 by inhibition of SARS-CoV-2 replication and viral-induced inflammation through upregulating let-7. Signal Transduct. Target. Ther. 2021, 6, 84. [Google Scholar] [CrossRef]
- Letafati, A.; Najafi, S.; Mottahedi, M.; Karimzadeh, M.; Shahini, A.; Garousi, S.; Abbasi-Kolli, M.; Sadri Nahand, J.; Tamehri Zadeh, S.S.; Hamblin, M.R.; et al. MicroRNA let-7 and viral infections: Focus on mechanisms of action. Cell. Mol. Biol. Lett. 2022, 27, 14. [Google Scholar] [CrossRef]
- Hashemi, N.; Sharifi, M.; Tolouei, S.; Hashemi, M.; Hashemi, C.; Hejazi, S.H.J.I.J.o.M.R.; Sciences, H. Expression of hsa Let-7a MicroRNA of Macrophages Infected by Leishmania Major. Int. J. Med. Res. Health Sci. 2016, 5, 27–32. [Google Scholar]
- Wang, S.; Zhang, X.; Ju, Y.; Zhao, B.; Yan, X.; Hu, J.; Shi, L.; Yang, L.; Ma, Z.; Chen, L.; et al. MicroRNA-146a feedback suppresses T cell immune function by targeting Stat1 in patients with chronic hepatitis B. J. Immunol. 2013, 191, 293–301. [Google Scholar] [CrossRef]
- Hou, Z.H.; Han, Q.J.; Zhang, C.; Tian, Z.G.; Zhang, J. miR146a impairs the IFN-induced anti-HBV immune response by downregulating STAT1 in hepatocytes. Liver Int. 2014, 34, 58–68. [Google Scholar] [CrossRef]
- Cameron, J.E.; Yin, Q.; Fewell, C.; Lacey, M.; McBride, J.; Wang, X.; Lin, Z.; Schaefer, B.C.; Flemington, E.K. Epstein-Barr virus latent membrane protein 1 induces cellular MicroRNA miR-146a, a modulator of lymphocyte signaling pathways. J. Virol. 2008, 82, 1946–1958. [Google Scholar] [CrossRef]
- Quaranta, M.T.; Olivetta, E.; Sanchez, M.; Spinello, I.; Paolillo, R.; Arenaccio, C.; Federico, M.; Labbaye, C. miR-146a controls CXCR4 expression in a pathway that involves PLZF and can be used to inhibit HIV-1 infection of CD4(+) T lymphocytes. Virology 2015, 478, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Tomita, M.; Tanaka, Y.; Mori, N. MicroRNA miR-146a is induced by HTLV-1 tax and increases the growth of HTLV-1-infected T-cells. Int. J. Cancer 2012, 130, 2300–2309. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Ai, J.; Xie, Z.; Zhou, C.; Liu, C.; Zhang, H.; Shen, K. Dynamic expression of viral and cellular microRNAs in infectious mononucleosis caused by primary Epstein-Barr virus infection in children. Virol. J. 2015, 12, 208. [Google Scholar] [CrossRef]
- Navon, R.; Wang, H.; Steinfeld, I.; Tsalenko, A.; Ben-Dor, A.; Yakhini, Z. Novel rank-based statistical methods reveal microRNAs with differential expression in multiple cancer types. PLoS ONE 2009, 4, e8003. [Google Scholar] [CrossRef]
- Yang, H.; Huang, Y.; He, J.; Chai, G.; Di, Y.; Wang, A.; Gui, D. MiR-486-3p inhibits the proliferation, migration and invasion of retinoblastoma cells by targeting ECM1. Biosci. Rep. 2020, 40, BSR20200392. [Google Scholar] [CrossRef]
- Reza, A.; Choi, Y.J.; Yuan, Y.G.; Das, J.; Yasuda, H.; Kim, J.H. MicroRNA-7641 is a regulator of ribosomal proteins and a promising targeting factor to improve the efficacy of cancer therapy. Sci. Rep. 2017, 7, 8365. [Google Scholar] [CrossRef] [PubMed]
- Samuel, M.; Chisanga, D.; Liem, M.; Keerthikumar, S.; Anand, S.; Ang, C.S.; Adda, C.G.; Versteegen, E.; Jois, M.; Mathivanan, S. Bovine milk-derived exosomes from colostrum are enriched with proteins implicated in immune response and growth. Sci. Rep. 2017, 7, 5933. [Google Scholar] [CrossRef]
- Carlos, T.M.; Harlan, J.M. Leukocyte-Endothelial Adhesion Molecules. Blood 1994, 84, 2068–2101. [Google Scholar] [CrossRef]
- Simpson, M.E.; Petri, W.A., Jr. TLR2 as a Therapeutic Target in Bacterial Infection. Trends Mol. Med. 2020, 26, 715–717. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Karki, R.; Williams, E.P.; Yang, D.; Fitzpatrick, E.; Vogel, P.; Jonsson, C.B.; Kanneganti, T.D. TLR2 senses the SARS-CoV-2 envelope protein to produce inflammatory cytokines. Nat. Immunol. 2021, 22, 829–838. [Google Scholar] [CrossRef] [PubMed]
- Speziale, P.; Arciola, C.R.; Pietrocola, G. Fibronectin and Its Role in Human Infective Diseases. Cells 2019, 8, 1516. [Google Scholar] [CrossRef]
- Xu, J.; Xu, X.; Jiang, L.; Dua, K.; Hansbro, P.M.; Liu, G. SARS-CoV-2 induces transcriptional signatures in human lung epithelial cells that promote lung fibrosis. Respir. Res. 2020, 21, 182. [Google Scholar] [CrossRef]
Sample Number | Age of Lactating Donor (Year) | Postpartum Periods (Days) | Baby Sex | Delivery Method |
---|---|---|---|---|
1 | 28 | 60 | F | NSVD |
2 | 29 | 49 | M | NSVD |
3 | 30 | 19 | F | NSVD |
4 | 31 | 108 | M | NSVD |
5 | 32 | 70 | M | C/S |
6 | 36 | 124 | F | C/S |
7 | 39 | 12 | F | C/S |
8 | 39 | 217 | F | C/S |
9 | 40 | 146 | F | C/S |
10 | 40 | 44 | M | NSVD |
#ID | Terms | Gene Number | miRNAs Number | miRNAs List | p-Value |
---|---|---|---|---|---|
Viral Infections | |||||
hsa05416 | Viral myocarditis | 10 | 7 | hsa-let-7a-5p, hsa-let-7b-5p, hsa-let-7c-5p, hsa-let-7d-5p, hsa-miR-146b-5p, hsa-miR-146a-5p, hsa-miR-589-5p | 0.0129 |
hsa05166 | HTLV-I infection | 41 | 5 | hsa-let-7a-5p, hsa-let-7i-5p, hsa-miR-200a-3p, hsa-let-7g-5p, hsa-miR-6134 | 0.0413 |
hsa05416 | Hepatitis B | 39 | 11 | hsa-let-7a-5p, hsa-let-7e-5p, hsa-let-7g-5p, hsa-let-7i-5p, hsa-miR-23a-3p, hsa-miR-23b-3p, hsa-miR-22-3p, hsa-miR-21-5p, hsa-miR-451a, hsa-miR-429, hsa-miR-98-5p | 0.0114 |
hsa05203 | Viral carcinogenesis | 62 | 10 | hsa-miR-200a-3p, hsa-miR-25-3p, hsa-miR-21-5p, hsa-miR-511-5p, hsa-miR-451a, hsa-miR-182-5p, hsa-miR-3184-3p, hsa-miR-141-3p, hsa-miR-429, hsa-miR-92a-3p | 3.49 × 10−4 |
hsa05169 | Epstein-Barr virus infection | 9 | 1 | hsa-miR-423-5p | 0.0348 |
hsa05168 | Herpes simplex infection | 7 | 4 | hsa-miR-378a-3p, hsa-miR-378c, hsa-miR-378e, hsa-miR-378f | 0.0138 |
Bacterial Infections | |||||
hsa05100 | Bacterial invasion of epithelial cells | 30 | 10 | hsa-miR-200a-3p, hsa-miR-181a-5p, hsa-miR-182-5p, hsa-miR-423-5p, hsa-miR-6073, hsa-miR-486-3p, hsa-miR-7641, hsa-miR-141-3p, hsa-miR-429, hsa-miR-92a-3p | 2.45 × 10−4 |
hsa05130 | Pathogenic E. coli infection | 5 | 2 | hsa-miR-486-3p, hsa-miR-7641 | 0.0175 |
hsa05132 | Salmonella infection | 6 | 2 | hsa-miR-486-3p, hsa-miR-7641 | 0.00584 |
hsa05131 | Shigellosis | 9 | 2 | hsa-miR-486-3p, hsa-miR-141-3p | 4.61 × 10−5 |
hsa05133 | Pertussis | 5 | 1 | hsa-miR-6131 | 0.0397 |
Protozoal Infections | |||||
hsa05142 | Chagas disease | 13 | 3 | hsa-miR-21-5p, hsa-miR-23-3p, hsa-miR-23b-3p | 0.0397 |
hsa05146 | Amoebiasis | 14 | 12 | hsa-let-7a-5p, hsa-let-7b-5p, hsa-let-7c-5p, hsa-let-7d-5p, hsa-let-7e-5p, hsa-let-7f-5p, hsa-let-7g-5p, hsa-let-7i-5p, hsa-miR-10a-5p, hsa-miR-7704, hsa-miR-10b-5p, hsa-miR-98-5p | 4.31 × 10−6 |
hsa05140 | Leishmaniasis | 4 | 1 | hsa-miR-10b-5p | 0.0199 |
# ID | Term | Protein Number | Protein List | p-Value |
---|---|---|---|---|
Pathogenic Microbial Infections | ||||
hsa05205 | Salmonella infection | 14 | MAPK1, PFN1, GAPDH, TNFSF10, TLR2, RAB7A, CD14, HSP90AA1, ACTB, RAB5B, FLNA, HSP90AB1, RHOA, FLNB | 3.56 × 10−8 |
hsa04144 | Tuberculosis | 11 | MAPK1, CTSD, C3, TLR2, RAB7A, CD14, RAB5B, CTSS, HSPD1, RHOA, MRC1 | 1.92 × 10−6 |
hsa05130 | Pathogenic Escherichia coli infection | 10 | MAPK1, CTSD, C3, TLR2, RAB7A, CD14, RAB5B, CTSS, HSPD1, RHOA | 3.63 × 10−5 |
hsa04151 | Staphylococcus aureus infection | 7 | C3, ICAM1, PLG, FGG, CFH, KRT18, C4A | 9.27 × 10−5 |
hsa04612 | Amoebiasis | 7 | HSPB1, TLR2, C9, RAB7A, CD14, FN1, RAB5B | 0.0002 |
hsa05165 | Pertussis | 6 | MAPK1, C3, CD14, C4BPA, C4A, RHOA | 0.00036 |
hsa05020 | Malaria | 5 | TLR2, THBS1, CD81, ICAM1, CD36 | 0.00048 |
hsa04915 | Epstein-Barr virus infection | 7 | TLR2, ICAM1, PDIA3, HLA-C, HLA-A, LYN, VIM | 0.0052 |
hsa05167 | Viral myocarditis | 4 | ICAM1, ACTB, HLA-C, HLA-A | 0.0079 |
hsa04015 | Influenza A | 6 | MAPK1, TNFSF10, RAB11A, ICAM1, PLG, ACTB | 0.0106 |
hsa05134 | Human papillomavirus infection | 8 | MAPK1, VTN, THBS1, TNC, EGF, FN1, HLA-C, HLA-A | 0.0172 |
hsa05144 | Kaposi sarcoma-associated herpesvirus infection | 6 | MAPK1, C3, ICAM1, HLA-C, HLA-A, LYN | 0.0175 |
hsa05146 | Legionellosis | 5 | C3, TLR2, CD14, HSPA1B, HSPD1 | 0.0009 |
hsa04670 | Shigellosis | 6 | MAPK1, PFN1, C3, CD14, ACTB, RHOA | 0.0308 |
Cancer and Tumor-Related Pathways | ||||
hsa04610 | Proteoglycans in cancer | 13 | MAPK1, VTN, TLR2, THBS1, IQGAP1, FN1, ACTB, EZR, FLNA, HSPG2, RPS6, RHOA, FLNB | 1.33 × 10−7 |
hsa05203 | Viral carcinogenesis | 8 | MAPK1, C3, HIST2H2BE, GSN, HLA-C, HLA-A, RHOA, LYN | 0.0008 |
hsa05133 | MicroRNAs in cancer | 6 | MAPK1, THBS1, TNC, EZR, RHOA, VIM | 0.0094 |
hsa04141 | Bladder cancer | 3 | MAPK1, THBS1, EGF | 0.0261 |
hsa05322 | Prostate cancer | 4 | MAPK1, EGF, HSP90AA1, HSP90AB1 | 0.0336 |
Immune System and Inflammatory Diseases | ||||
hsa05152 | Antigen processing and presentation | 8 | PDIA3, HSPA5, HSP90AA1, CTSS, HSP90AB1, HSPA1B, HLA-C, HLA-A | 1.65 × 10−6 |
hsa05131 | Natural killer cell-mediated cytotoxicity | 5 | MAPK1, TNFSF10, ICAM1, HLA-C, HLA-A | 0.0158 |
hsa05418 | Platelet activation | 5 | MAPK1, FGG, ACTB, RHOA, LYN | 0.0159 |
hsa03320 | Type I diabetes mellitus | 3 | HLA-C, HSPD1, HLA-A | 0.024 |
hsa05215 | Systemic lupus erythematosus | 4 | C3, C9, HIST2H2BE, C4A | 0.0308 |
hsa04620 | Toll-like receptor signaling pathway | 4 | MAPK1, TLR2, CD14, TOLLIP | 0.0383 |
hsa04940 | Leukocyte transendothelial migration | 4 | ICAM1, ACTB, EZR, RHOA | 0.0466 |
Neurological Disorders | ||||
hsa05206 | Alzheimer disease | 9 | MAPK1, GAPDH, APOE, ADAM10, ATP5B, KIF5B, LPL, TUBA1B, TUBB | 0.0089 |
hsa05164 | Prion disease | 8 | MAPK1, ATP5B, C9, KIF5B, HSPA5, TUBA1B, TUBB, HSPA1B | 0.0064 |
Signaling Pathways | ||||
hsa05132 | Complement and coagulation cascades | 11 | VTN, C3, C9, PLG, CLU, A2M, FGG, C4BPA, CFH, C4A, SERPINA1 | 5.15 × 10−9 |
hsa05169 | PI3K-Akt signaling pathway | 10 | MAPK1, VTN, TLR2, THBS1, TNC, EGF, HSP90AA1, FN1, HSP90AB1, RPS6 | 0.0025 |
hsa04010 | PPAR signaling pathway | 5 | APOA1, LPL, APOA2, CD36, ACSL1 | 0.0031 |
hsa05150 | Apoptosis | 6 | MAPK1, CTSD, TNFSF10, TUBA1B, ACTB, CTSS | 0.0047 |
hsa04210 | Estrogen signaling pathway | 6 | MAPK1, CTSD, HSP90AA1, HSP90AB1, HSPA1B, KRT18 | 0.0047 |
hsa04611 | Rap1 signaling pathway | 6 | MAPK1, PFN1, THBS1, EGF, ACTB, RHOA | 0.024 |
hsa04066 | MAPK signaling pathway | 7 | MAPK1, HSPB1, EGF, CD14, FLNA, HSPA1B, FLNB | 0.0295 |
hsa05219 | HIF-1 signaling pathway | 4 | MAPK1, GAPDH, EGF, RPS6 | 0.0432 |
Other Cellular Processes | ||||
hsa04145 | Phagosome | 14 | C3, TLR2, THBS1, RAB7A, CD14, TUBA1B, TUBB, ACTB, RAB5B, CTSS, HLA-C, HLA-A, CD36, MRC1 | 8.71 × 10−10 |
hsa05010 | Endocytosis | 10 | RAB11A, RAB7A, VPS35, KIF5B, RAB5B, HSPA1B, HLA-C, FOLR1, HLA-A, RHOA | 0.0002 |
hsa04650 | Fluid shear stress and atherosclerosis | 5 | ICAM1, HSP90AA1, ACTB, HSP90AB1, RHOA | 0.0192 |
hsa05416 | Protein processing in endoplasmic reticulum | 5 | PDIA3, HSPA5, HSP90AA1, HSP90AB1, HSPA1B | 0.0397 |
hsa00061 | Fatty acid biosynthesis | 2 | FASN, ACSL1 | 0.0466 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.-U.; Han, K.; Kim, J.; Kwon, D.H.; Ji, Y.W.; Yi, D.Y.; Min, H. The Protective Role of Exosome-Derived MicroRNAs and Proteins from Human Breast Milk against Infectious Agents. Metabolites 2023, 13, 635. https://doi.org/10.3390/metabo13050635
Kim K-U, Han K, Kim J, Kwon DH, Ji YW, Yi DY, Min H. The Protective Role of Exosome-Derived MicroRNAs and Proteins from Human Breast Milk against Infectious Agents. Metabolites. 2023; 13(5):635. https://doi.org/10.3390/metabo13050635
Chicago/Turabian StyleKim, Ki-Uk, Kyusun Han, Jisu Kim, Da Hyeon Kwon, Yong Woo Ji, Dae Yong Yi, and Hyeyoung Min. 2023. "The Protective Role of Exosome-Derived MicroRNAs and Proteins from Human Breast Milk against Infectious Agents" Metabolites 13, no. 5: 635. https://doi.org/10.3390/metabo13050635
APA StyleKim, K. -U., Han, K., Kim, J., Kwon, D. H., Ji, Y. W., Yi, D. Y., & Min, H. (2023). The Protective Role of Exosome-Derived MicroRNAs and Proteins from Human Breast Milk against Infectious Agents. Metabolites, 13(5), 635. https://doi.org/10.3390/metabo13050635