Enhancement of Ambient Mass Spectrometry Imaging Data by Image Restoration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laser Desorption Rapid Evaporation Ionisation Mass Spectrometry (LD-REIMS) Imaging
2.2. Data
2.3. Auto-Deconvolution by PSF Estimation
2.4. Training and Inference with GANUNET
2.4.1. Model Architecture
2.4.2. Model Training and Optimisation
2.4.3. Measuring Resolution with Fourier Ring Correlation
3. Results
3.1. Auto-Deconvolution of Ambient Mass Spectrometry Images
3.2. Image Restoration by GANUNET
4. Discussion
4.1. What Is Deconvolvable?
4.2. Success & Limitation of GANUNET
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMSI | Ambient Mass Spectrometry Imaging |
CNN | Convolutional Neural Network |
DESI | Desorption ElectroSpray Ionisation |
DL | Deep Learning |
(E)SRGAN | (Enhanced) Super Resolution Generative Adversarial Network |
FRC | Fourier Ring Correlation |
GAN | Generative Adversarial Network |
IR-MALDESI | InfraRed Matrix-Assisted Desorption ElectroSpray Ionisation |
LAESI | Laser Ablation ElectroSpray Ionisation |
LD-REIMS | Laser Desorption Rapid Evaporation Ionisation Mass Spectrometry |
MALDI | Matrix-Assisted Laser Desorption Ionisation |
MSI | Mass Spectrometry Imaging |
OPA | Optical Parametric Amplifier |
OPO | Optical Parametric Oscillator |
PCA | Principal Component Analysis |
PSF | Point Spread Function |
RL | Richardson–Lucy |
RRDB | Residual-in-Residual Dense Block |
SIMS | Secondary Ionisation Mass Spectrometry |
SNR | Signal-to-Noise Ratio |
References
- Galle, P.R. Sur une nouvelle methode d’analyse cellulaire utilisant le phenomene d’emission ionique secondaire. Ann. Phys. Biol. Med. 1970, 42, 84–94. [Google Scholar]
- Xiao, Y.; Deng, J.; Yao, Y.; Fang, L.; Yang, Y.; Luan, T. Recent advances of ambient mass spectrometry imaging for biological tissues: A review. Anal. Chim. Acta 2020, 1117, 74–88. [Google Scholar] [CrossRef] [PubMed]
- Liebl, H. SIMS instrumentation and imaging techniques. Scanning 1980, 3, 79–89. [Google Scholar] [CrossRef]
- Wiseman, J.M.; Ifa, D.R.; Song, Q.; Cooks, R.G. Tissue Imaging at Atmospheric Pressure Using Desorption Electrospray Ionization (DESI) Mass Spectrometry. Angew. Chem. Int. Ed. 2006, 45, 7188–7192. [Google Scholar] [CrossRef]
- Takats, Z.; Wiseman, J.M.; Gologan, B.; Cooks, R.G. Mass Spectrometry Sampling Under Ambient Conditions with Desorption Electrospray Ionization. Science 2004, 306, 471–473. [Google Scholar] [CrossRef]
- Hsu, C.C.; Chou, P.T.; Zare, R.N. Imaging of Proteins in Tissue Samples Using Nanospray Desorption Electrospray Ionization Mass Spectrometry. Anal. Chem. 2015, 87, 11171–11175. [Google Scholar] [CrossRef]
- Jarmusch, A.K.; Pirro, V.; Baird, Z.; Hattab, E.M.; Cohen-Gadol, A.A.; Cooks, R.G. Lipid and metabolite profiles of human brain tumors by desorption electrospray ionization-MS. Proc. Natl. Acad. Sci. USA 2016, 113, 1486–1491. [Google Scholar] [CrossRef]
- Watrous, J.D.; Dorrestein, P.C. Imaging mass spectrometry in microbiology. Nat. Rev. Microbiol. 2011, 9, 683–694. [Google Scholar] [CrossRef]
- Takáts, Z.; Wiseman, J.M.; Cooks, R.G. Ambient mass spectrometry using desorption electrospray ionization (DESI): Instrumentation, mechanisms and applications in forensics, chemistry, and biology. J. Mass Spectrom. 2005, 40, 1261–1275. [Google Scholar] [CrossRef]
- Hu, H.; Laskin, J. Emerging Computational Methods in Mass Spectrometry Imaging. Adv. Sci. 2022, 9, 1–20. [Google Scholar] [CrossRef]
- Xue, J.; Bai, Y.; Liu, H. Recent advances in ambient mass spectrometry imaging. TrAC-Trends Anal. Chem. 2019, 120, 115659. [Google Scholar] [CrossRef]
- Buchberger, A.R.; DeLaney, K.; Johnson, J.; Li, L. Mass Spectrometry Imaging: A Review of Emerging Advancements and Future Insights. Anal. Chem. 2018, 90, 240–265. [Google Scholar] [CrossRef]
- Wu, V.; Tillner, J.; Jones, E.; McKenzie, J.S.; Gurung, D.; Mroz, A.; Poynter, L.; Simon, D.; Grau, C.; Altafaj, X.; et al. High Resolution Ambient MS Imaging of Biological Samples by Desorption Electro-Flow Focussing Ionization. Anal. Chem. 2022, 94, 10035–10044. [Google Scholar] [CrossRef]
- Van de Plas, R.; Yang, J.; Spraggins, J.; Caprioli, R.M. Image fusion of mass spectrometry and microscopy: A multimodality paradigm for molecular tissue mapping. Nat. Methods 2015, 12, 366–372. [Google Scholar] [CrossRef]
- Dong, Y.; Shachaf, N.; Feldberg, L.; Rogachev, I.; Heinig, U.; Aharoni, A. PICA: Pixel Intensity Correlation Analysis for Deconvolution and Metabolite Identification in Mass Spectrometry Imaging. Anal. Chem. 2023, 95, 1652–1662. [Google Scholar] [CrossRef]
- Metodiev, M.D.; Steven, R.T.; Loizeau, X.; Takats, Z.; Bunch, J. Modality Agnostic Model for Spatial Resolution in Mass Spectrometry Imaging: Application to MALDI MSI Data. Anal. Chem. 2021, 93, 15295–15305. [Google Scholar] [CrossRef] [PubMed]
- Palmer, A.; Phapale, P.; Chernyavsky, I.; Lavigne, R.; Fay, D.; Tarasov, A.; Kovalev, V.; Fuchser, J.; Nikolenko, S.; Pineau, C.; et al. FDR-controlled metabolite annotation for high-resolution imaging mass spectrometry. Nat. Methods 2017, 14, 57–60. [Google Scholar] [CrossRef]
- Simon, D.; Horkovics-Kovats, G.S.; Xiang, Y.; Abda, J.; Papanastasiou, D.; Ho, H.Y.; Wang, H.; Schäffer, R.; Mroz, A.; Lagache, L.; et al. Sample preparation free tissue imaging using Laser Desorption—Rapid Evaporative Ionisation Mass spectrometry (LD-REIMS). ChemRxiv 2023. [Google Scholar] [CrossRef]
- Jones, E.A.; Simon, D.; Karancsi, T.; Balog, J.; Pringle, S.D.; Takats, Z. Matrix assisted rapid evaporative ionization mass spectrometry. Anal. Chem. 2019, 91, 9784–9791. [Google Scholar] [CrossRef] [PubMed]
- Battle, R.A.; Chandran, A.M.; Runcorn, T.H.; Mussot, A.; Kudlinski, A.; Murray, R.T.; Roy Taylor, J. Mid-infrared difference-frequency generation directly pumped by a fiber four-wave mixing source. Opt. Lett. 2023, 48, 387. [Google Scholar] [CrossRef]
- Wehofsky, M.; Hoffmann, R. Automated deconvolution and deisotoping of electrospray mass spectra. J. Mass Spectrom. 2002, 37, 223–229. [Google Scholar] [CrossRef]
- Seah, M.P. Resolution parameters for model functions used in surface analysis. Surf. Interface Anal. 2002, 33, 950–953. [Google Scholar] [CrossRef]
- Campisi, P.; Egiazarian, K. (Eds.) Blind Image Deconvolution. Theory and Applications; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2007. [Google Scholar]
- Fish, D.A.; Walker, J.G.; Brinicombe, A.M.; Pike, E.R. Blind deconvolution by means of the Richardson–Lucy algorithm. J. Opt. Soc. Am. A 1995, 12, 58. [Google Scholar] [CrossRef]
- Duda, R.O.; Hart, P.E. Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 1972, 15, 11–15. [Google Scholar] [CrossRef]
- Canny, J. A Computational Approach to Edge Detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, PAMI-8, 679–698. [Google Scholar] [CrossRef]
- Wang, X.; Yu, K.; Wu, S.; Gu, J.; Liu, Y.; Dong, C.; Qiao, Y.; Loy, C.C. ESRGAN: Enhanced super-resolution generative adversarial networks. Lect. Notes Comput. Sci. 2019, 11133 LNCS, 63–79. [Google Scholar] [CrossRef]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Networks. 2014. Available online: http://xxx.lanl.gov/abs/1406.2661 (accessed on 1 May 2023).
- Ledig, C.; Theis, L.; Huszar, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. 2016. Available online: http://xxx.lanl.gov/abs/1609.04802 (accessed on 1 May 2023).
- Odena, A.; Dumoulin, V.; Olah, C. Deconvolution and Checkerboard Artifacts. Distill 2016, 1. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015; Volume 9351, pp. 234–241. [Google Scholar] [CrossRef]
- Weigert, M.; Schmidt, U.; Boothe, T.; Müller, A.; Dibrov, A.; Jain, A.; Wilhelm, B.; Schmidt, D.; Broaddus, C.; Culley, S.; et al. Content-aware image restoration: Pushing the limits of fluorescence microscopy. Nat. Methods 2018, 15, 1090–1097. [Google Scholar] [CrossRef]
- Koho, S.; Tortarolo, G.; Castello, M.; Deguchi, T.; Diaspro, A.; Vicidomini, G. Fourier ring correlation simplifies image restoration in fluorescence microscopy. Nat. Commun. 2019, 10. [Google Scholar] [CrossRef]
- Senoner, M.; Wirth, T.; Unger, W.E.S. Imaging surface analysis: Lateral resolution and its relation to contrast and noise. J. Anal. At. Spectrom. 2010, 25, 1440. [Google Scholar] [CrossRef]
- Fagerer, S.R.; Römpp, A.; Jefimovs, K.; Brönnimann, R.; Hayenga, G.; Steinhoff, R.F.; Krismer, J.; Pabst, M.; Ibáñez, A.J.; Zenobi, R. Resolution pattern for mass spectrometry imaging. Rapid Commun. Mass Spectrom. 2015, 29, 1019–1024. [Google Scholar] [CrossRef] [PubMed]
- Zubair, F.; Prentice, B.M.; Norris, J.L.; Laibinis, P.E.; Caprioli, R.M. Standard Reticle Slide To Objectively Evaluate Spatial Resolution and Instrument Performance in Imaging Mass Spectrometry. Anal. Chem. 2016, 88, 7302–7311. [Google Scholar] [CrossRef] [PubMed]
- Van Heel, M.; Schatz, M. Fourier shell correlation threshold criteria. J. Struct. Biol. 2005, 151, 250–262. [Google Scholar] [CrossRef] [PubMed]
- Veselkov, K.A.; Mirnezami, R.; Strittmatter, N.; Goldin, R.D.; Kinross, J.; Speller, A.V.; Abramov, T.; Jones, E.A.; Darzi, A.; Holmes, E.; et al. Chemo-informatic strategy for imaging mass spectrometry-based hyperspectral profiling of lipid signatures in colorectal cancer. Proc. Natl. Acad. Sci. USA 2014, 111, 1216–1221. [Google Scholar] [CrossRef]
- Rappez, L.; Stadler, M.; Triana, S.; Gathungu, R.M.; Ovchinnikova, K.; Phapale, P.; Heikenwalder, M.; Alexandrov, T. SpaceM reveals metabolic states of single cells. Nat. Methods 2021, 18, 799–805. [Google Scholar] [CrossRef]
- Welford, W.T. Aberrations of Optical Systems; Routledge: London, UK, 2017. [Google Scholar] [CrossRef]
- Joshi, N.; Szeliski, R.; Kriegman, D.J. PSF estimation using sharp edge prediction. In Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, Alaska, 23–28 June 2008; pp. 1–8. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27. [Google Scholar] [CrossRef]
- Zheng, Y.; Fan, R.; Qiu, C.; Liu, Z.; Tian, D. An improved algorithm for peak detection in mass spectra based on continuous wavelet transform. Int. J. Mass Spectrom. 2016, 409, 53–58. [Google Scholar] [CrossRef]
- Wang, Z.; Simoncelli, E.P.; Bovik, A.C. Multi-scale structural similarity for image quality assessment. In Proceedings of the Conference Record of the Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 9–12 November 2003; pp. 1398–1402. [Google Scholar] [CrossRef]
- Cao, B. Deep Learning-assisted Enhancement for Mass Spectrometry Hyperspectral Images. MRes Thesis, Imperial College London, London, UK, 2022. [Google Scholar]
Dataset | Origin | Sample Type | Ionisation Source | Ionisation Polarity | Pixel Size |
---|---|---|---|---|---|
1 | SHU | human lung | DESI | negative | 30 μm |
2 | U Copenhagen | Galleria mellonella | DESI | positive | 150 μm |
3 | UT Austin | human endometriosis tissue | DESI | negative | 100 μm |
4 | ICL | human colon | DESI | negative | 100 μm |
5 | NCSU | rat liver | IR-MALDESI | positive | 200 μm |
6 | NCSU | mouse pancreas | IR-MALDESI | negative | 100 μm |
7 | PNNL | rat brain | nanoDESI | positive | 150 μm |
8 | PNNL | human kidney | nanoDESI | positive | 50 μm |
9 | PNNL | mouse kidney | LAESI | positive | 250 μm |
10 | PNNL | plant leaf | LAESI | positive | 300 μm |
11 | ICL | mouse brain | LD-REIMS | negative | 100 μm |
12 | ICL | mouse brain | LD-REIMS | negative | 10 μm |
Network | Loss | Optimiser | Learning Rate | Patch Size | Epochs |
---|---|---|---|---|---|
ESRGAN | Mean Absolute Error | Adam | 0.0004 | (64,128) | 100/100 |
UNET5 | Mean Absolute Error | Adam | 0.0004 | (64,128) | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, Y.; Metodiev, M.; Wang, M.; Cao, B.; Bunch, J.; Takats, Z. Enhancement of Ambient Mass Spectrometry Imaging Data by Image Restoration. Metabolites 2023, 13, 669. https://doi.org/10.3390/metabo13050669
Xiang Y, Metodiev M, Wang M, Cao B, Bunch J, Takats Z. Enhancement of Ambient Mass Spectrometry Imaging Data by Image Restoration. Metabolites. 2023; 13(5):669. https://doi.org/10.3390/metabo13050669
Chicago/Turabian StyleXiang, Yuchen, Martin Metodiev, Meiqi Wang, Boxuan Cao, Josephine Bunch, and Zoltan Takats. 2023. "Enhancement of Ambient Mass Spectrometry Imaging Data by Image Restoration" Metabolites 13, no. 5: 669. https://doi.org/10.3390/metabo13050669
APA StyleXiang, Y., Metodiev, M., Wang, M., Cao, B., Bunch, J., & Takats, Z. (2023). Enhancement of Ambient Mass Spectrometry Imaging Data by Image Restoration. Metabolites, 13(5), 669. https://doi.org/10.3390/metabo13050669