Changes in the Carbohydrate Profile in Common Buckwheat (Fagopyrum esculentum Moench) Seedlings Induced by Cold Stress and Dehydration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analyses of Soluble Carbohydrates
2.2. Statistics
3. Results and Discussion
3.1. Carbohydrate Profile in the Organs of Buckwheat Seedling
3.2. Cold Stress and Carbohydrate Profile in Organs of Common Buckwheat Seedlings
3.3. Dehydration and Carbohydrate Profile in Organs of Common Buckwheat Seedling
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wijngaard, H.H.; Arendt, E.K. Buckwheat. Cereal Chem. 2006, 83, 391–401. [Google Scholar] [CrossRef]
- Ikeda, K. Buckwheat composition, chemistry, and processing. Adv. Food Nutr. Res. 2002, 44, 395–434. [Google Scholar] [CrossRef] [PubMed]
- Huda, M.N.; Lu, S.; Jahan, T.; Ding, M.; Jha, R.; Zhang, K.; Zhang, W.; Georgiev, M.I.; Park, S.U.; Zhou, M. Treasure from garden: Bioactive compounds of buckwheat. Food Chem. 2020, 335, 127653. [Google Scholar] [CrossRef]
- Bastida, J.A.G.; Zielinski, H. Buckwheat as a Functional Food and Its Effects on Health. J. Agric. Food Chem. 2015, 63, 7896–7913. [Google Scholar] [CrossRef]
- Martínez-Villaluenga, C.; Peñas, E.; Hernández-Ledesma, B. Pseudocereal grains: Nutritional value, health benefits and current applications for the development of gluten-free foods. Food Chem. Toxicol. 2020, 137, 111178. [Google Scholar] [CrossRef]
- Horbowicz, M.; Brenac, P.; Obendorf, R.L. Fagopyritol B1, O-α-d-galactopyranosyl-(1→2)-d-chiro-inositol, a galactosyl cyclitol in maturing buckwheat seeds associated with desiccation tolerance. Planta 1998, 205, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Horbowicz, M.; Obendorf, R.L. Fagopyritol accumulation and germination of buckwheat seeds matured at 15, 22, and 30 °C. Crop Sci. 2005, 45, 1264–1270. [Google Scholar] [CrossRef]
- Ma, J.M.; Horbowicz, M.; Obendorf, R.L. Cyclitol galactosides in embryos of buckwheat stem–leaf–seed explants fed d-chiro-inositol, myo-inositol or d-pinitol. Seed Sci. Res. 2005, 15, 329–338. [Google Scholar] [CrossRef]
- Obendorf, R.L.; Horbowicz, M.; Lahuta, L.B. Characterization of sugars, cyclitols and galactosyl cyclitols in seeds by GC. In Dietary Sugars: Chemistry, Analysis, Function and Effects; Preedy, V., Ed.; King’s College London Royal Society of Chemistry Publishing: London, UK, 2012; pp. 167–185. [Google Scholar] [CrossRef]
- Owczarczyk-Saczonek, A.; Lahuta, L.B.; Ligor, M.; Placek, W.; Górecki, R.J.; Buszewski, B. The Healing-Promoting Properties of Selected Cyclitols-A Review. Nutrients 2018, 10, 1891. [Google Scholar] [CrossRef] [PubMed]
- Larner, J. D-chiro-inositol—Its functional role in insulin action and its deficit in insulin resistance. Int. J. Exp. Diabetes. Res. 2002, 3, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Lazarenko, R.; Geisler, J.; Bayliss, D.; Larner, J.; Li, C. D-chiro-inositol glycan stimulates insulin secretion in pancreatic β cells. Mol. Cell Endocrinol. 2014, 387, 1–7. [Google Scholar] [CrossRef]
- Larner, J.; Brautigan, D.L.; Thorner, M.O. D-chiro-inositol glycans in insulin signaling and insulin resistance. Mol. Med. 2010, 16, 543–552. [Google Scholar] [CrossRef] [PubMed]
- Baillargeon, J.-P.; Diamanti-Kandarakis, E.; Ostlund, R.E.; Apridonidze, T.; Iuorno, M.J.; Nestler, J.E. Altered D-Chiro-Inositol Urinary Clearance in Women with Polycystic Ovary Syndrome. Diabetes Care 2006, 29, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Obendorf, R.L.; Horbowicz, M.; Ueda, T.; Steadman, K.J. Fagopyritols: Occurence, biosynthesis, analyses and possible role. Eur. J. Plant Sci. Biotech. 2012, 6, 27–36. [Google Scholar]
- Pitt, J.; Thorner, M.; Brautigan, D.; Larner, J.; Klein, W.L. Protection against the synaptic targeting and toxicity of Alzheimer’s-associated Aβ oligomers by insulin mimetic chiro-inositols. FASEB J. 2013, 27, 199–207. [Google Scholar] [CrossRef]
- Hung, P.V.; Trinh, L.N.D.; Thuy, N.T.X.; Morita, N. Changes in nutritional composition, enzyme activities and bioactive compounds of germinated buckwheat (Fagopyrum esculentum M.) under unchanged air and humidity conditions. Int. J. Food Sci. Technol. 2021, 56, 3209–3217. [Google Scholar] [CrossRef]
- Gambioli, R.; Montanino Oliva, M.; Nordio, M.; Chiefari, A.; Puliani, G.; Unfer, V. New Insights into the Activities of D-Chiro-Inositol: A Narrative Review. Biomedicines 2021, 9, 1378. [Google Scholar] [CrossRef]
- Gambioli, R.; Forte, G.; Aragona, C.; Bevilacqua, A.; Bizzarri, M.; Unfer, V. The use of D-chiro-Inositol in clinical practice. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 438–446. [Google Scholar] [PubMed]
- Jones, D.R.; Varela-Nieto, I. Diabetes and the role of inositol-containing lipids in insulin signaling. Mol. Med. 1999, 5, 505–514. [Google Scholar] [CrossRef]
- Umezawa, T.; Fujita, M.; Fujita, Y.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Engineering drought tolerance in plants: Discovering and tailoring genes to unlock the future. Curr. Opin. Biotechnol. 2006, 17, 113–122. [Google Scholar] [CrossRef]
- Nakashima, K.; Yamaguchi-Shinozaki, K.; Shinozaki, K. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front. Plant Sci. 2014, 5, 170. [Google Scholar] [CrossRef]
- Dejardin, A.; Sokolov, L.N.; Kleczkowski, L.A. Sugar/osmoticum levels modulate differential abscisic acid-independent expression of two stress-responsive sucrose synthase genes in Arabidopsis. Biochem. J. 1999, 344, 503–509. [Google Scholar] [CrossRef]
- Geigenberger, P.; Reimholz, R.; Deiting, U.; Sonnewald, U.; Stitt, M. Decreased expression of sucrose phosphate synthase strongly inhibits the water stress-induced synthesis of sucrose in growing potato tubers. Plant J. 1999, 19, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Williamson, J.D.; Jennings, D.B.; Guo, W.-W.; Pharr, D.M.; Ehrenshaft, M. Sugar alcohols, salt stress, and fungal resistance: Polyols-multifunctional plant protection? J. Amer. Soc. Hort. Sci. 2002, 127, 467–473. [Google Scholar] [CrossRef]
- Pilon, C.; Loka, D.; Snider, J.L.; Oosterhuis, D.M. Drought-induced osmotic adjustment and changes in carbohydrate distribution in leaves and flowers of cotton (Gossypium hirsutum L.). J. Agric. Crop Sci. 2019, 205, 168–178. [Google Scholar] [CrossRef]
- Du, B.; Kruse, J.; Winkler, J.B.; Alfarraj, S.; Albasher, G.; Schnitzler, J.P.; Hedrich, R.; Rennenberg, H. Metabolic responses of date palm (Phoenix dactylifera L.) leaves to drought differ in summer and winter climate. Tree Physiol. 2021, 41, 1685–1700. [Google Scholar] [CrossRef]
- Myers, J.A.; Kitajima, K. Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forest. J. Ecol. 2007, 95, 383–395. [Google Scholar] [CrossRef]
- Taji, T.; Ohsumi, C.; Iuchi, S.; Seki, M.; Kasuga, M.; Kobayashi, M.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J. 2002, 29, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Ishitani, M.; Majumder, A.L.; Bornhouser, A.; Michalowski, C.B.; Jensen, R.G.; Bohnert, H.J. Coordinate transcriptional induction of myo-inositol metabolism during environmental stress. Plant J. 1996, 9, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Sheveleva, E.; Chmara, W.; Bohnert, H.J.; Jensen, R.G. Increased Salt and Drought Tolerance by D-Ononitol Production in Transgenic Nicotiana tabacum L. Plant Physiol. 1997, 115, 1211–1219. [Google Scholar] [CrossRef]
- Sengupta, S.; Mukherjee, S.; Basak, P.; Majumder, A.L. Significance of galactinol and raffinose family oligosaccharide synthesis in plants. Front. Plant Sci. 2015, 6, 656. [Google Scholar] [CrossRef]
- Liu, X.; Grieve, C. Accumulation of chiro-inositol and other non-structural carbohydrates in Limonium species in response to saline irrigation waters. J. Am. Soc. Hort. Sci. 2009, 134, 329–336. [Google Scholar] [CrossRef]
- Siracusa, L.; Napoli, E.; Ruberto, G. Novel Chemical and Biological Insights of Inositol Derivatives in Mediterranean Plants. Molecules 2022, 27, 1525. [Google Scholar] [CrossRef]
- Selwal, N.; Bedi, M.; Hamid, S.; Pujari, M. Buckwheat (Fagopyrum esculentum) Response and Tolerance to Abiotic Stress. In Omics Approach to Manage Abiotic Stress in Cereals; Roychoudhury, A., Aftab, T., Acharya, K., Eds.; Springer: Singapore, 2022; pp. 575–597. [Google Scholar] [CrossRef]
- Lahuta, L.B.; Szablińska-Piernik, J.; Górecki, R.J.; Mitrus, J.; Horbowicz, M. Changes in the content of d-chiro-inositol and its galactosides during vegetation and desiccation of common buckwheat (Fagopyrum esculentum Moench). Agron. Sci. 2023, 78. in press. [Google Scholar]
- Beck, E.H.; Fettig, S.; Knake, C.; Hartig, K.; Bhattarai, T. Specific and unspecific responses of plants to cold and drought stress. J. Biosci. 2007, 32, 501–510. [Google Scholar] [CrossRef]
- Burg, M.B.; Ferraris, J.D. Intracellular organic osmolytes: Function and regulation. J. Biol. Chem. 2008, 283, 7309–7313. [Google Scholar] [CrossRef]
- Slama, I.; Abdelly, C.; Bouchereau, A.; Flowers, T.; Savouré, A. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann. Bot. 2015, 115, 433–447. [Google Scholar] [CrossRef]
- Cook, D.; Fowler, S.; Fiehn, O.; Thomashow, M.F. A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc. Nat. Acad. Sci. USA 2004, 101, 15243–15248. [Google Scholar] [CrossRef]
- Janská, A.; Maršík, P.; Zelenková, S.; Ovesná, J. Cold stress and acclimation–what is important for metabolic adjustment? Plant Biol. 2010, 12, 395–405. [Google Scholar] [CrossRef]
- Bohnert, H.J.; Nelson, D.E.; Jensen, R.G. Adaptations to Environmental Stresses. Plant Cell 1995, 7, 1099–1111. [Google Scholar] [CrossRef]
- Saito, M.; Yoshida, M. Expression analysis of the gene family associated with raffinose accumulation in rice seedlings under cold stress. J. Plant Physiol. 2011, 168, 2268–2271. [Google Scholar] [CrossRef]
- Jeon, J.; Kim, J.K.; Wu, Q.; Park, S.U. Effects of cold stress on transcripts and metabolites in tartary buckwheat (Fagopyrum tataricum). Environ. Exp. Bot. 2018, 155, 488–496. [Google Scholar] [CrossRef]
- Xu, H.; Huang, C.; Jiang, X.; Zhu, J.; Gao, X.; Yu, C. Impact of Cold Stress on Leaf Structure, Photosynthesis, and Metabolites in Camellia weiningensis and C. oleifera Seedlings. Horticulturae 2022, 8, 494. [Google Scholar] [CrossRef]
- Hajihashemi, S.; Noedoost, F.; Geuns, J.M.C.; Djalovic, I.; Siddique, K.H.M. Effect of Cold Stress on Photosynthetic Traits, Carbohydrates, Morphology, and Anatomy in Nine Cultivars of Stevia rebaudiana. Front. Plant Sci. 2018, 9, 1430. [Google Scholar] [CrossRef]
- Lahuta, L.; Święcicki, W.; Dzik, T.; Górecki, R.; Horbowicz, M. Feeding stem–leaf–pod explants of pea (Pisum sativum L.) with d-chiro-inositol or d-pinitol modifies composition of α-d-galactosides in developing seeds. Seed Sci. Res. 2010, 20, 213–221. [Google Scholar] [CrossRef]
- Szczeciński, P.; Gryff-Keller, A.; Hortbowicz, M.; Lahuta, L.B. Galactosylpinitols Isolated from Vetch (Vicia villosa Roth.) Seeds. J. Agric. Food Chem. 2000, 48, 2717–2720. [Google Scholar] [CrossRef]
- Szczeciński, P.; Gryff-Keller, A.; Horbowicz, M.; Obendorf, R.L. NMR investigation of the structure of fagopyritol B1 from buckwheat seeds. Bull. Polish Acad. Sci. Chem. 1998, 48, 9–13. [Google Scholar]
- Obendorf, R.L.; Steadman, K.; Fuller, D.; Horbowicz, M.; Lewis, B.A. Molecular structure of fagopyritol A1 (O-α-d-galactopyranosyl-(1→3)-d-chiro-inositol) by NMR. Carbohyd. Res. 2000, 238, 623–627. [Google Scholar] [CrossRef] [PubMed]
- Steadman, K.J.; Fuller, D.J.; Obendorf, R.L. Purification and molecular structure of two digalactosyl d-chiro-inositols and two trigalactosyl d-chiro-inositols from buckwheat seeds. Carbohyd. Res. 2001, 331, 19–25. [Google Scholar] [CrossRef]
- Gui, W.; Lemley, B.A.; Keresztes, I.; Condo, A.M.; Steadman, K.J.; Obendorf, R.L. Purification and molecular structure of digalactosyl myo-inositol (DGMI), trigalactosyl myo-inositol (TGMI), and fagopyritol B3 from common buckwheat seeds by NMR. Carbohyd. Res. 2013, 380, 130–136. [Google Scholar] [CrossRef]
- Brenac, P.; Horbowicz, M.; Smith, M.E.; Obendorf, R.L. Raffinose and stachyose accumulate in hypocotyls during drying of common buckwheat seedlings. Crop Sci. 2013, 53, 1615–1625. [Google Scholar] [CrossRef]
- Dominguez, P.G.; Niittyla, T. Mobile forms of carbon in trees: Metabolism and transport. Tree Physiol. 2022, 42, 458–487. [Google Scholar] [CrossRef]
- Noiraud, N.; Maurousset, L.; Lemoine, R. Transport of polyols in higher plants. Plant Physiol. Bioch. 2001, 39, 717–728. [Google Scholar] [CrossRef]
- Ayre, B.G.; Keller, F.; Turgeon, R. Symplastic continuity between companion cells and the translocation stream: Long-distance transport is controlled by retention and retrieval mechanisms in the phloem. Plant Physiol. 2003, 131, 1518–1528. [Google Scholar] [CrossRef]
- Timotiwu, P.B.; Sakurai, N. Identification of mono-, oligo-, and polysaccharides secreted from soybean roots. J. Plant Res. 2002, 115, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Hidalgo, M.; León-González, A.J.; Gálvez-Peralta, M.; González-Mauraza, N.H.; Martin-Cordero, C. D-Pinitol: A cyclitol with versatile biological and pharmacological activities. Phytochem. Rev. 2021, 20, 211–224. [Google Scholar] [CrossRef]
- Narayanan, C.R.; Joshi, D.D.; Mudjumdar, A.M.; Dhekne, V.V. Pinitol, a new anti-diabetic compound from the leaves of Bougainvillea spectabilis. Curr. Sci. 1987, 56, 139–141. [Google Scholar]
- Hoffmann-Ostenhof, O.; Pittner, F. The biosynthesis of myo-inositol and its isomers. Canad. J. Chem. 1982, 60, 1863–1871. [Google Scholar] [CrossRef]
- Obendorf, R.L. Oligosaccharides and galactosyl cyclitols in seed desiccation tolerance. Seed Sci. Res. 1997, 7, 63–74. [Google Scholar] [CrossRef]
- Kordan, B.; Lahuta, L.; Dancewicz, K.; Sądej, W.; Gabryś, B. Effect of lupin cyclitols on pea aphid probing behaviour. J. Plant Prot. Res. 2011, 51, 171–178. [Google Scholar] [CrossRef]
- Kudo, F.; Eguchi, T. Biosynthesis of cyclitols. Nat. Prod. Rep. 2022, 39, 1622–1642. [Google Scholar] [CrossRef] [PubMed]
- Ristic, Z.; Ashworth, E.N. Changes in leaf ultrastructure and carbohydrates in Arabidopsis thaliana L.(Heyn) cv. Columbia during rapid cold acclimation. Protoplasma 1993, 172, 111–123. [Google Scholar] [CrossRef]
- Gilmour, S.J.; Sebolt, A.M.; Salazar, M.P.; Everard, J.D.; Thomashow, M.F. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol. 2000, 124, 1854–1865. [Google Scholar] [CrossRef] [PubMed]
- Fowler, S.; Thomashow, M.F. Arabidopsis Transcriptome Profiling Indicates That Multiple Regulatory Pathways Are Activated during Cold Acclimation in Addition to the CBF Cold Response Pathway. Plant Cell 2002, 14, 1675–1690. [Google Scholar] [CrossRef]
- Megías-Pérez, R.; Hahn, C.; Ruiz-Matute, A.I.; Behrends, B.; Albach, D.C.; Kuhnert, N. Changes in low molecular weight carbohydrates in kale during development and acclimation to cold temperatures determined by chromatographic techniques coupled to mass spectrometry. Food Res. Inter. 2020, 127, 108727. [Google Scholar] [CrossRef]
- Yang, X.; Lu, M.; Wang, Y.; Wang, Y.; Liu, Z.; Chen, S. Response mechanism of plants to drought stress. Horticulturae 2021, 7, 50. [Google Scholar] [CrossRef]
- Downie, B.; Gurusinghe, S.; Dahal, P.; Thacker, R.R.; Snyder, J.C.; Nonogaki, H.; Yim, K.; Fukanaga, K.; Alvarado, V.; Bradford, K.J. Expression of a GALACTINOL SYNTHASE gene in tomato seeds is up-regulated before maturation desiccation and again after imbibition whenever radicle protrusion is prevented. Plant Physiol. 2003, 31, 1347–1359. [Google Scholar] [CrossRef]
- dos Santos, T.B.; Budzinski, I.G.F.; Marur, C.J.; Petkowicz, C.L.O.; Pereira, L.F.P.; Vieira, L.G.E. Expression of three galactinol synthase isoforms in Coffea arabica L. And accumulation of raffinose and stachyose in response to abiotic stresses. Plant Physiol. Biochem. 2011, 49, 441–448. [Google Scholar] [CrossRef]
- Lahuta, L.B.; Górecki, R.J. Raffinose in seedlings of winter vetch (Vicia villosa Roth.) under osmotic stress and followed by recovery. Acta Physiol. Plant. 2011, 33, 725–733. [Google Scholar] [CrossRef]
- Peterbauer, T.; Richter, A. Biochemistry and physiology of raffinose family oligosaccharides and galactosyl cyclitols in seeds. Seed Sci. Res. 2001, 11, 185–198. [Google Scholar] [CrossRef]
- Obendorf, R.L.; Górecki, R.J. Soluble carbohydrates in legume seeds. Seed Sci. Res. 2012, 22, 219–242. [Google Scholar] [CrossRef]
- Stachura, S.S.; Malajczuk, C.J.; Mancera, R.L. Does sucrose change its mechanism of stabilization of lipid bilayers during desiccation? Influences of hydration and concentration. Langmuir 2019, 35, 15389–15400. [Google Scholar] [CrossRef]
- Hincha, D.K.; Zuther, E.; Heyer, A.G. The preservation of liposomes by raffinose family oligosaccharides during drying is mediated by effects on fusion and lipid phase transitions. Biochim. Biophys. Acta 2003, 1612, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.Q.; Leopold, A.C.; Crowe, L.M.; Crowe, J.H. Stability of dry liposomes in sugar glasses. Biophys. J. 1996, 70, 1769–1776. [Google Scholar] [CrossRef] [PubMed]
- Ford, C.W. Accumulation of low molecular weight solutes in water-stressed tropical legumes. Phytochemistry 1984, 23, 1007–1015. [Google Scholar] [CrossRef]
- Keller, F.; Ludlow, M.M. Carbohydrate metabolism in drought-stressed leaves of pigeonpea (Cajanus cajan). J. Exp. Bot. 1993, 44, 1351–1359. [Google Scholar] [CrossRef]
- Guo, C.; Oosterhuis, D.M. Pinitol occurrence in soybean plants as affected by temperature and plant growth regulators. J. Exp. Bot. 1995, 46, 249–253. [Google Scholar] [CrossRef]
- Orthen, B.; Popp, M.; Barz, W. Cyclitol accumulation in suspended cells and intact plants of Cicer arietinum L. J. Plant Physiol. 2000, 156, 40–45. [Google Scholar] [CrossRef]
- Streeter, J.G.; Lohnes, D.G.; Fioritto, R.J. Patterns of pinitol accumulation in soybean plants and relationships to drought tolerance. Plant Cell Environ. 2001, 24, 429–438. [Google Scholar] [CrossRef]
- Dumschott, K.; Dechorgnat, J.; Merchant, A. Water deficit elicits a transcriptional response of genes governing d-pinitol biosynthesis in soybean (Glycine max). Int. J. Mol. Sci. 2019, 20, 2411. [Google Scholar] [CrossRef]
- Ahn, C.H.; Park, P.B. Increase of the D-chiro-inositol and D-pinitol contents by abiotic stress in the buckwheat seedling. J. Life Sci. 2009, 19, 1456–1462. [Google Scholar] [CrossRef]
- Horbowicz, M.; Obendorf, R.L. Seed desiccation tolerance and storability: Dependence on flatulence-producing oligosaccharides and cyclitols—Review and survey. Seed Sci. Res. 1994, 4, 295–315. [Google Scholar] [CrossRef]
- Gojło, E.; Pupel, P.; Lahuta, L.B.; Podliński, P.; Kucewicz, M.; Górecki, R.J. The acquisition of desiccation tolerance in developing Vicia hirsuta seeds coincides with an increase in galactinol synthase expression and soluble α-d-galactosides accumulation. J. Plant Physiol. 2015, 184, 37–48. [Google Scholar] [CrossRef]
- Ueda, T.; Coseo, M.P.; Harrell, T.J.; Obendorf, R.L. A multifunctional galactinol synthase catalyzes the synthesis of fagopyritol A1 and fagopyritol B1 in buckwheat seed. Plant Sci. 2005, 168, 681–690. [Google Scholar] [CrossRef]
- Wiczkowski, W.; Szawara-Nowak, D.; Dębski, H.; Mitrus, J.; Horbowicz, M. Comparison of flavonoids profile in sprouts of common buckwheat cultivars and wild tartary buckwheat. Int. J. Food Sci. Tech. 2014, 49, 1977–1984. [Google Scholar] [CrossRef]
- Wiczkowski, W.; Szawara-Nowak, D.; Sawicki, T.; Mitrus, J.; Kasprzykowski, Z.; Horbowicz, M. Profile of phenolic acids and antioxidant capacity in organs of common buckwheat sprout. Acta Aliment. Hung. 2016, 45, 250–257. [Google Scholar] [CrossRef]
- Horbowicz, M.; Dębski, H.; Wiczkowski, W.; Szawara-Nowak, J.; Koczkodaj, D.; Mitrus, J.; Sytykiewicz, H. The impact of short-term exposure to Pb and Cd on flavonoids composition and seedlings growth of common buckwheat cultivars. Pol. J. Environ. Stud. 2013, 22, 1723–1730. Available online: http://www.pjoes.com/pdf-89140-22999?filename=The%20Impact%20of%20Short_Term.pdf (accessed on 10 April 2023).
- Dębski, H.; Szwed, M.; Wiczkowski, W.; Szawara-Nowak, D.; Bączek, N.; Horbowicz, M. UV-B radiation increases anthocyanin levels in cotyledons and inhibits the growth of common buckwheat seedlings. Acta Biol. Hung. 2016, 67, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Dębski, H.; Wiczkowski, W.; Szawara-Nowak, D.; Bączek, N.; Szwed, M.; Horbowicz, M. Enhanced light intensity increases flavonol and anthocyanin concentrations but reduces flavone levels in the cotyledons of common buckwheat seedlings. Cereal Res. Commun. 2017, 45, 225–233. [Google Scholar] [CrossRef]
- Song, Y.; Feng, J.; Liu, D.; Long, C. Different Phenylalanine Pathway Responses to Cold Stress Based on Metabolomics and Transcriptomics in Tartary Buckwheat Landraces. J. Agric. Food Chem. 2022, 70, 687–698. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Lu, Q.; Su, J.; Jin, X.; Jia, C.; An, L.; Tian, Y.; Song, Y. Genome-Wide Analysis of the HDAC Gene Family and Its Functional Characterization at Low Temperatures in Tartary Buckwheat (Fagopyrum tataricum). Int. J. Mol. Sci. 2022, 23, 7622. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Jia, Z.; Hou, Y.; Ma, X.; Li, L.; Jin, X.; An, L. Roles of DNA Methylation in Cold Priming in Tartary Buckwheat. Front. Plant Sci. 2020, 11, 608540. [Google Scholar] [CrossRef] [PubMed]
Carbohydrate | Initial Tissue | Tissue after Cold Stress | Tissue after Dehydration |
---|---|---|---|
Roots | |||
Maltose | 0.09 ± 0.04 b | 0.07 ± 0.01 b | 0.23 ± 0.02 a |
Galacto-Pinitol A | 0.44 ± 0.11 a | 0.62 ± 0.04 a | 0.80 ± 0.07 a |
Galacto-Pinitol B | Nd * | 0.14 ± 0.02 a | 0.10 ± 0.02 a |
Fagopyritol A1 | Nd * | Nd * | Nd * |
Fagopyritol A2 | Nd * | Nd * | Nd * |
Fagopyritol B1 | 0.09 ± 0.01 b | 0.24 ± 0.01 a | 0.18 ± 0.01 a |
Galactinol | Nd * | Nd * | Nd * |
NN4 | Nd * | 0.23 ± 0.02 a | 0.08 ± 0.02 b |
NN5 | Nd * | Nd * | Nd * |
Total cyclitols | 8.70 ± 0.29 a | 5.70 ± 0.19 b | 9.39 ± 0.80 a |
Total galactosyl cyclitols | 0.53 ± 0.10 b | 1.00 ± 0.04 a | 1.09 ± 0.09 a |
Hypocotyl | |||
Maltose | 0.10 ± 0.04 b | 0.09 ± 0.01 b | 0.57 ± 0.13 a |
Galacto-Pinitol A | 0.22 ± 0.04 b | 0.36 ± 0.02 b | 0.65 ± 0.05 a |
Galacto-Pinitol B | 0.11 ± 0.01 b | 0.49 ± 0.02 a | Nd * |
Fagopyritol A1 | Nd * | Nd * | Nd * |
Fagopyritol A2 | Nd * | Nd * | Nd * |
Fagopyritol B1 | 0.12 ± 0.01 c | 0.25 ± 0.01 b | 0.57 ± 0.02 a |
Galactinol | 0.09 ± 0.01 b | 0.26 ± 0.01 a | 0.16 ± 0.02 b |
NN4 | 0.09 ± 0.01 b | 0.07 ± 0.01 b | 0.16 ± 0.02 a |
NN5 | Nd * | Nd * | Nd * |
Total cyclitols | 19.29 ± 0.86 a | 18.95 ± 1.04 a | 15.20 ± 0.20 b |
Total galactosyl cyclitols | 0.55 ± 0.03 b | 1.36 ± 0.05 a | 1.42 ± 0.05 a |
Cotyledons | |||
Maltose | 0.31 ± 0.17 a | 0.15 ± 0.01 a | 0.40 ± 0.11 a |
Galacto-Pinitol A | 0.38 ± 0.10 a | 0.23 ± 0.03 a | Nd * |
Galacto-Pinitol B | Nd * | 0.09 ± 0.01 | Nd * |
Fagopyritol A1 | 0.13 ± 0.01 a | 0.13 ± 0.01 a | Nd * |
Fagopyritol A2 | 0.73 ± 0.15 a | 0.66 ± 0.17 a | 0.81 ± 0.08 a |
Fagopyritol B1 | 0.05 ± 0.02 a | 0.05 ± 0.01 a | 0.07 ± 0.01 a |
Galactinol | Nd * | Nd * | Nd * |
NN4 | Nd * | 0.31 ± 0.01 a | 0.27 ± 0.02 a |
NN5 | 1.13 ± 0.13 a | 1.55 ± 0.53 a | 1.47 ± 0.13 a |
Total cyclitols | 2.44 ± 0.03 b | 3.02 ± 0.12 a | 2.83 ± 0.27 ab |
Total galactosyl cyclitols | 1.30 ± 0.29 a | 1.27 ± 0.43 a | 0.89 ± 0.08 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lahuta, L.B.; Górecki, R.J.; Szablińska-Piernik, J.; Horbowicz, M. Changes in the Carbohydrate Profile in Common Buckwheat (Fagopyrum esculentum Moench) Seedlings Induced by Cold Stress and Dehydration. Metabolites 2023, 13, 672. https://doi.org/10.3390/metabo13050672
Lahuta LB, Górecki RJ, Szablińska-Piernik J, Horbowicz M. Changes in the Carbohydrate Profile in Common Buckwheat (Fagopyrum esculentum Moench) Seedlings Induced by Cold Stress and Dehydration. Metabolites. 2023; 13(5):672. https://doi.org/10.3390/metabo13050672
Chicago/Turabian StyleLahuta, Lesław B., Ryszard J. Górecki, Joanna Szablińska-Piernik, and Marcin Horbowicz. 2023. "Changes in the Carbohydrate Profile in Common Buckwheat (Fagopyrum esculentum Moench) Seedlings Induced by Cold Stress and Dehydration" Metabolites 13, no. 5: 672. https://doi.org/10.3390/metabo13050672
APA StyleLahuta, L. B., Górecki, R. J., Szablińska-Piernik, J., & Horbowicz, M. (2023). Changes in the Carbohydrate Profile in Common Buckwheat (Fagopyrum esculentum Moench) Seedlings Induced by Cold Stress and Dehydration. Metabolites, 13(5), 672. https://doi.org/10.3390/metabo13050672