The Importance of Monitoring Cortisol in the Agri-Food Sector—A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Information Sources and Search Strategy
2.2. Eligibility Criteria
3. Revealing Cortisol in the Agri-Food Sector
3.1. Impact of Monitoring Cortisol on the Agri-Food Sector
3.1.1. Livestock Animals
3.1.2. Aquatic Species
3.2. Analytical Methods
3.2.1. Techniques to Extract Cortisol on Agri-Food Samples
3.2.2. Liquid Chromatography
4. Added Value
5. Future Trends, Perspectives, and Technologies
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Esposito, B.; Sessa, M.R.; Sica, D.; Malandrino, O. Towards Circular Economy in the Agri-Food Sector. A Systematic Literature Review. Sustainability 2020, 12, 7401. [Google Scholar] [CrossRef]
- Ralph, C.R.; Tilbrook, A.J. INVITED REVIEW: The usefulness of measuring glucocorticoids for assessing animal welfare. J. Anim. Sci. 2016, 94, 457–470. [Google Scholar] [CrossRef] [PubMed]
- Sadoul, B.; Geffroy, B. Measuring cortisol, the major stress hormone in fishes. J. Fish Biol. 2019, 94, 540–555. [Google Scholar] [CrossRef]
- Leatherland, J.F.; Li, M.; Barkataki, S. Stressors, glucocorticoids and ovarian function in teleosts. J. Fish Biol. 2010, 76, 86–111. [Google Scholar] [CrossRef]
- Barja, I.; Escribano-Ávila, G.; Lara-Romero, C.; Virgós, E.; Benito, J.; Rafart, E. Non-invasive monitoring of adrenocortical activity in European badgers (Meles meles) and effects of sample collection and storage on faecal cortisol metabolite concentrations. Anim. Biol. 2012, 62, 419–432. [Google Scholar] [CrossRef]
- Palme, R. Monitoring stress hormone metabolites as a useful, non-invasive tool for welfare assessment in farm animals. Anim. Welf. 2012, 21, 331–337. [Google Scholar] [CrossRef]
- Ellis, T.; Yildiz, H.Y.; López-Olmeda, J.; Spedicato, M.T.; Tort, L.; Øverli, Ø.; Martins, C.I.M. Cortisol and finfish welfare. Fish Physiol. Biochem. 2012, 38, 163–188. [Google Scholar] [CrossRef]
- Clegg, S.R.; Millson, S.H. From saliva to faeces and everything in between: A guide to biochemical analysis using animal samples for biomarker detection. Comp. Cogn. Behav. Rev. 2021, 16, 13–31. [Google Scholar] [CrossRef]
- Bussy, U.; Wassink, L.; Scribner, K.T.; Li, W. Determination of cortisol in lake sturgeon (Acipenser fulvescens) eggs by liquid chromatography tandem mass spectrometry. J. Chromatogr. B 2017, 1040, 162–168. [Google Scholar] [CrossRef]
- Blackwell, B.R.; Ankley, G.T. Simultaneous determination of a suite of endogenous steroids by LC-APPI-MS: Application to the identification of endocrine disruptors in aquatic toxicology. J. Chromatogr. B 2021, 1163, 122513. [Google Scholar] [CrossRef]
- Goyon, A.; Cai, J.Z.; Kraehenbuehl, K.; Hartmann, C.; Shao, B.; Mottier, P. Determination of steroid hormones in bovine milk by LC-MS/MS and their levels in Swiss Holstein cow milk. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2016, 33, 804–816. [Google Scholar] [CrossRef] [PubMed]
- Nebbia, C.; Capra, P.; Leporati, M.; Girolami, F.; Barbarino, G.; Gatto, S.; Vincenti, M. Profile of the urinary excretion of prednisolone and its metabolites in finishing bulls and cows treated with a therapeutic schedule. BMC Vet. Res. 2014, 10, 237. [Google Scholar] [CrossRef] [PubMed]
- De Clercq, N.; Julie, V.B.; Croubels, S.; Delahaut, P.; Vanhaecke, L. A validated analytical method to study the long-term stability of natural and synthetic glucocorticoids in livestock urine using ultra-high performance liquid chromatography coupled to Orbitrap-high resolution mass spectrometry. J. Chromatogr. A 2013, 1301, 111–121. [Google Scholar] [CrossRef]
- Nouri, M.-Z.; Kroll, K.J.; Webb, M.; Denslow, N.D. Quantification of steroid hormones in low volume plasma and tissue homogenates of fish using LC-MS/MS. Gen. Comp. Endocrinol. 2020, 296, 113543. [Google Scholar] [CrossRef]
- De Clercq, N.; Bussche, J.V.; Croubels, S.; Delahaut, P.; Vanhaecke, L. Development and validation of a high-resolution mass-spectrometry–based method to study the long-term stability of natural and synthetic glucocorticoids in faeces. J. Chromatogr. A 2014, 1336, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef]
- Rey-Salgueiro, L.; Martínez-Carballo, E.; Simal-Gándara, J. Liquid chromatography–mass spectrometry method development for monitoring stress-related corticosteroids levels in pig saliva. J. Chromatogr. B 2015, 990, 158–163. [Google Scholar] [CrossRef]
- Binz, T.M.; Braun, U.; Baumgartner, M.R.; Kraemer, T. Development of an LC–MS/MS method for the determination of endogenous cortisol in hair using 13C3-labeled cortisol as surrogate analyte. J. Chromatogr. B 2016, 1033–1034, 65–72. [Google Scholar] [CrossRef]
- Pavlovic, R.; Chiesa, L.; Soncin, S.; Panseri, S.; Cannizzo, F.T.; Biolatti, B.; Biondi, P.A. Determination of cortisol, cortisone, prednisolone and prednisone in bovine urine by liquid chromatography–electrospray ionisation single quadrupole mass spectrometry. J. Liq. Chromatogr. Relat. Technol. 2012, 35, 444–457. [Google Scholar] [CrossRef]
- Chiesa, L.M.; Nobile, M.; Biolatti, B.; Pavlovic, R.; Panseri, S.; Cannizzo, F.T.; Arioli, F. Detection of selected corticosteroids and anabolic steroids in calf milk replacers by liquid chromatography–electrospray ionisation—Tandem mass spectrometry. Food Control. 2016, 61, 196–203. [Google Scholar] [CrossRef]
- Kunze, M.; Wirthgen, E.; Walz, C.; Spitschak, M.; Brenmoehl, J.; Vanselow, J.; Schwerin, M.; Wimmers, K.; Hoeflich, A. Bioanalytical validation for simultaneous quantification of non-aromatic steroids in follicular fluid from cattle via ESI-LC–MS/MS. J. Chromatogr. B 2015, 1007, 132–139. [Google Scholar] [CrossRef]
- Chiesa, L.; Nobile, M.; Panseri, S.; Rossi, C.A.S.; Pavlovic, R.; Arioli, F. Detection of boldenone, its conjugates and androstadienedione, as well as five corticosteroids in bovine bile through a unique immunoaffinity column clean-up and two validated liquid chromatography–tandem mass spectrometry analyses. Anal. Chim. Acta 2014, 852, 137–145. [Google Scholar] [CrossRef]
- Chiesa, L.; Nobile, M.; Panseri, S.; Vigo, D.; Pavlovic, R.; Arioli, F. Suitability of bovine bile compared to urine for detection of free, sulfate and glucuronate boldenone, androstadienedione, cortisol, cortisone, prednisolone, prednisone and dexamethasone by LC–MS/MS. Food Chem. 2015, 188, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Aerts, J.; Schaeck, M.; De Swaef, E.; Ampe, B.; Decostere, A. Vibrio lentus as a probiotic candidate lowers glucocorticoid levels in gnotobiotic sea bass larvae. Aquaculture 2018, 492, 40–45. [Google Scholar] [CrossRef]
- Thang, N.Q.; Phuong, N.T.K.; Van Tan, L. Endocrine stress response in Oreochromis sp. from exposure to waterborne cadmium: The plasma cortisol analysis. Toxicol. Environ. Chem. 2017, 99, 285–293. [Google Scholar] [CrossRef]
- Dang, V.D. Simultaneous Measurement of Sex Steroid Hormones in Largemouth Bass (Micropterus salmoides) Plasma by Application of Liquid Chromatography–Tandem Mass Spectrometry. J. Chromatogr. Sci. 2021, 59, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yan, Z.; Li, X.; Yin, X.; Li, K. UPLC–TOF–MS Method for Simultaneous Quantification of Steroid Hormones in Tissue Homogenates of Zebrafish with Solid-Phase Extraction. Molecules 2021, 26, 6213. [Google Scholar] [CrossRef]
- Meling, V.A.; Berge, K.; Knudsen, D.L.; Rønning, P.O.; Brede, C. Monitoring Farmed Fish Welfare by Measurement of Cortisol as a Stress Marker in Fish Feces by Liquid Chromatography Coupled with Tandem Mass Spectrometry. Molecules 2022, 27, 2481. [Google Scholar] [CrossRef]
- Wish, J.; Bulloch, P.; Oswald, L.; Halldorson, T.; Raine, J.C.; Jamshed, L.; Marvin, C.; Thomas, P.J.; Holloway, A.C.; Tomy, G.T. Kynurenine to tryptophan ratio as a biomarker of acute stress in fish. Chemosphere 2022, 288, 132522. [Google Scholar] [CrossRef]
- Scott, A.P.; Ellis, T.; Tveiten, H. Identification of cortisol metabolites in the bile of Atlantic cod Gadus morhua L. Steroids 2014, 88, 26–35. [Google Scholar] [CrossRef]
- Silvestre, C.I.C.; Santos, J.L.M.; Lima, J.L.F.C.; Zagatto, E.A.G. Liquid–liquid extraction in flow analysis: A critical review. Anal. Chim. Acta 2009, 652, 54–65. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J.; Szczepańska, N.; de la Guardia, M.; Namieśnik, J. Miniaturized solid-phase extraction techniques. TrAC Trends Anal. Chem. 2015, 73, 19–38. [Google Scholar] [CrossRef]
- Andrade-Eiroa, A.; Canle, M.; Leroy-Cancellieri, V.; Cerdà, V. Solid-phase extraction of organic compounds: A critical review (Part I). TrAC Trends Anal. Chem. 2016, 80, 641–654. [Google Scholar] [CrossRef]
- Digiaqua Digitizing Aquaculture. Available online: https://www.digiaqua.eu/ (accessed on 20 March 2023).
- Soares, M.S.; Silva, L.C.B.; Vidal, M.; Loyez, M.; Facão, M.; Caucheteur, C.; Segatto, M.E.V.; Costa, F.M.; Leitão, C.; Pereira, S.O.; et al. Label-free plasmonic immunosensor for cortisol detection in a D-shaped optical fiber. Biomed. Opt. Express 2022, 13, 3259–3274. [Google Scholar] [CrossRef]
Species [Ref.] | Matrix | Extraction Technique | Extraction Solvent | Type of Cartridge | Kind of Sorbent | Conditioned Solvent | Washing Solvents | Centrifugation Conditions | Chromatographic Technique | Concentration Range | LOD | LOQ |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bovine [19] | Urine | SPE | Methanol | Oasis HLB | Reversed-phase | Methanol, water | 10% methanol, 2% ammonia, 50% methanol | LC-ESI-MS | 2.8–5.0/2.5–12.9 μg/L | N.A. | 2.5 μg/L | |
Bovine [13] | Urine | LLE | MTBE | 5500× g, 5 min, 7 °C | U-HPLC | 0.25 to 10 μg/L | 0.10–0.25 µg/L | 0.30–0.83 µg/L | ||||
Bovine [22] | Bile | Immunoaffinity columns (IAC) | Ethanol:water (70:30 v/v) | N.A. | Ethanol:water (70:30 v/v) | Wash buffer, water | LC-MS | 0.3–6.8 ng/mL | N.A. | N.A. | ||
Cow [15] | Feces | LLE and SPE | (MTBE | Isolute C18 (EC) (500 mg, 10 mL) | Reversed-phase | Methanol, water | Water, methanol:water (20:80), n-hexane | 7600× g, 10 min, 7 °C | U-HPLC-MS | 1.25–50 μg/kg | 0.55 µg/L | 0.70 µg/L |
Bulls and cows [12] | Urine | LLE | Diethylether | N.A. | LC-MS/MS | 0.1 ng/mL | N.A. | |||||
Cows | <LOQ. | |||||||||||
Bulls | 0.63–3.44 ng/mL | |||||||||||
Cod [30] | Bile | SPE | Methanol | SPEC, 820 mg | Reversed-phase | Methanol, deionized water | Deionized water | HPLC | N.A. | N.A. | N.A. | |
Bulls, cows, and veal calves [23] | Bile | Immunoaffinity columns (IAC) | Ethanol:water (70:30, v/v) | N.A. | Ethanol:water; 70:30, v/v | Wash buffer, water | LC-MS/MS | 2.40 ± 1.86 ng/mL (calves); 3.50 ± 1.64 ng/mL (bulls); 5.94 ± 9.28 ng/mL (cows) | N.A. | N.A. | ||
Male veal calves | ||||||||||||
Young bulls | ||||||||||||
Cows | ||||||||||||
Urine | 17.9 ± 14.7 ng/mL (calves); 14.4 ± 11.8 ng/mL (bulls); 22.0 ± 17.5 ng/mL (cows) | |||||||||||
Male veal calves | ||||||||||||
Young bulls | ||||||||||||
Cows | ||||||||||||
Cows [21] | Follicular fluids | LLE | N.A. | 15 min at 14,000 rpm at 4 °C | LC-MS/MS | analytical 1.0–499.0 ng/mL | N.A. | 2.5 ng/mL | ||||
Pig [17] | Saliva | LLE and SPE | Ethyl acetate:Ethyl ether (1:1) | Octadecyl-carbon (C18) | Reversed-phase | Methanol, water | Water, water:acetone (4:1), hexane | 5 min at 3500× g | LC-MS/MS | 0.4–10 µg/L | 0.02 µg/L | 0.05 µg/L |
Silica | Hexane, ethyl acetate | |||||||||||
Cow [18] | Hair | LLE | Methanol | 16 h in an ultrasonic bath at 55 °C | LC-MS/MS | 1–500 pg/mg | 0.2 pg/mg | 1 pg/mg | ||||
Calf [20] | Powdered milk | LLE and IAC | n-Hexane (LLE) and Ethanol:water (70:30 v/v) (IAC) | N.A. | N.A. | Ethanol:water (70:30 v/v) | Wash buffer, water | 2500× g | LC-MS/MS | 0.76–3.81 ng/mL | N.A. | N.A. |
Bovine [11] | Milk | LLE and SPE | Methanol (LLE) | Supelclean ENVI-Carb (500 mg, 6 mL) | Reversed-phase | Dichloromethane, methanol, water | Methanol | 4500× g at 4 °C for 10 min | LC-MS/MS | 37–1466 ng/kg | N.A. | N.A. |
Dichloromethane:methanol (7/3, v/v) | Sep-Pak amino-propyl (500 mg, 6 mL) | Reversed-phase | Dichloromethane:methanol (7/3, v/v) | N.A. | ||||||||
Lake sturgeon [9] | Eggs | LLE | Ethyl acetate | 9000× g, 10 min, 4 °C | LC-MS/MS | 0.25–100 ng/mL | 0.025 ng/mL | 0.1 ng/mL | ||||
Fish (Oreochromis sp.) [25] | Blood plasma | LLE | Dichloromethane | 3600 rpm for 15 min | RP-HPLC/UV | 50–250 ng/mL | 0.87 ng/mL | 2.90 ng/mL | ||||
3600 rpm for 5 min | ||||||||||||
Fish [24] | Sea bass larvae | LLE and SPE | Methanol (LLE) and Water:methanol (20:80; v/v) (SPE) | Grace Pure™ SPE C18-Max (500 mg, 6 mL) | Reversed-phase | Methanol, water | Water/methanol (65:35; v/v) | 3500× g at 7 °C for 10 min | UPLC-MS/MS | 1.388–50.000 µg/kg | N.A. | N.A. |
Fish [14] | Plasma and tissue homogenates of fish | LLE | MTBE | 1100× g for 10 min at 4 °C | UPLC-MS/MS | 0.003–200 ng/mL | 10 µL sample: 0.5 ng/mL | 10 µL sample: 0.025 ng/mL | ||||
Fish [10] | Fathead minnow plasma | SLE | Dichloromethane | Phenomenex Novum, 1 cc | N.A. | Hexane | LC-APPI-MS/MS | 0.01–10 ng/mL | 0.6 ng/mL | 1.0 ng/mL | ||
Japanese medaka exposure to water | SPE | 90:10 ethyl acetate:MeOH (v/v) 2% NH4OH in MeOH | Strata-X, 200 mg | Reversed-phase | Ethyl acetate, methanol, and water | 93:5:2 water:MeOH:acetic acid (v/v/v) and 93:5:2 water:MeOH:ammonium hydroxide (v/v/v) | 0.1–100 ng/mL | N.D. | 0.5 ng/L | |||
Fish (Largemouth Bass (Micropterus salmoides) [26] | Plasma | LLE | MTBE | 5200× g for 10 min | LC-MS/MS | 0.05–200 pg/μL | N.A. | 0.05 pg/µL | ||||
Fish (Zebrafish - Danio rerio) [27] | Tissue homogenates | SPE | 75% methanol/water containing 2% acetic acid | Oasis HLB Vac | Reversed-phase | Methanol, water | 30% methanol/water containing 2% acetic acid | UPLC-TOF-MS | 0.3–200 ng/mL | 0.1 ng/mL | 0.3 ng/mL | |
Fish (Atlantic salmon) [28] | Feces | LLE | MTBE, NaCl | 2000× g for 5 min | LC-MS/MS | 0–100 ng/mL | 0.04 ng/mL | 0.09 ng/mL | ||||
Fish (rainbow trout) [29] | Liver and brain | Liquid-solid extraction | Cold 35:65 Milli-Q water:acetonitrile (4 °C, pH 7) | 14,800 rpm for 15 min | LC-MS/MS | 1.0–1000 pg/μL | 1.11 pg/μL | 3.7 pg/μL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguiar, D.; Marques, C.; Pereira, A.C. The Importance of Monitoring Cortisol in the Agri-Food Sector—A Systematic Review. Metabolites 2023, 13, 692. https://doi.org/10.3390/metabo13060692
Aguiar D, Marques C, Pereira AC. The Importance of Monitoring Cortisol in the Agri-Food Sector—A Systematic Review. Metabolites. 2023; 13(6):692. https://doi.org/10.3390/metabo13060692
Chicago/Turabian StyleAguiar, Dayana, Carlos Marques, and Ana C. Pereira. 2023. "The Importance of Monitoring Cortisol in the Agri-Food Sector—A Systematic Review" Metabolites 13, no. 6: 692. https://doi.org/10.3390/metabo13060692
APA StyleAguiar, D., Marques, C., & Pereira, A. C. (2023). The Importance of Monitoring Cortisol in the Agri-Food Sector—A Systematic Review. Metabolites, 13(6), 692. https://doi.org/10.3390/metabo13060692