Changes in Metabolite Profiling and Expression Levels of Key Genes Involved in the Terpenoid Biosynthesis Pathway in Garden Sage (Salvia officinalis) under the Effect of Hydrazine Hydrate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. RNA Extraction and cDNA Library Preparation
2.3. Metabolite Extraction from S. officinalis Plantlet after Treatment with Different Concentrationsof HZ
2.4. Quantitative Real-Time PCR (qRT-PCR) Analysis
3. Results
3.1. Identification of Terpenoid Compounds from S. officinalis Plantlets under Different Concentrationsof HZ by GC-MS
3.2. Overexpressing Terpenoid and Terpene Biosynthesis Genes under the Effect of Different Concentrations of HZ
4. Discussion
4.1. Validation of the Relationship between the Type and Amount of Terpenoid and Gene Expression under Different Concentrations of HZ
4.2. Assessment of the Effects of Hydrazine Hydrate on the Terpene Genes Expression and Terpenoid Production
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pathirana, R. Plant mutation breeding in agriculture. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2011, 6, 107–126. [Google Scholar] [CrossRef]
- Shu, Q.Y.; Forster, B.P.; Nakagawa, H.; Nakagawa, H. (Eds.) Plant Mutation Breeding and Biotechnology; CABI: Wallingford, UK, 2012. [Google Scholar]
- Oladosu, Y.; Rafii, M.Y.; Abdullah, N.; Hussin, G.; Ramli, A.; Rahim, H.A.; Miah, G.; Usman, M. Principle and application of plant mutagenesis in crop improvement: A review. Biotechnol. Biotechnol. Equip. 2016, 30, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Kostov, K.; Batchvarova, R.; Slavov, S. Application of chemical mutagenesis to increase the resistance of tomato to Orobancheramosa L. Bulg. J. Agric. Sci. 2007, 13, 505–513. [Google Scholar]
- Ragvendra, T.; Suresh, B.G.; Mishra, V.K.; Ashutosh, K.; Ashok, K. Genetic variability and character association in direct seeded upland rice (Oryza sativa). Environ. Ecol. 2011, 29, 2132–2135. [Google Scholar]
- Sumanth, V.; Suresh, B.G.; Ram, B.J.; Srujana, G. Estimation of genetic variability, heritability and genetic advance for grain yield components in rice (Oryza sativa L.). J. Pharmacogn. Phytochem. 2017, 6, 1437–1439. [Google Scholar]
- Kharkwa, M.C. A Brief History of Plant Mutagenesis Plant Mutation Breeding and Biotechnology; Shu, Q.Y., Forster, B.P., Nakagawa, H., Eds.; Food and Agriculture Organization of the United Nations: Vienna, Austria, 2012; pp. 21–30. [Google Scholar]
- El-Degwy, I.S. Mutation induced genetic variability in rice (Oryza sativa L.). Int. J. Agric. Crop Sci. 2013, 5, 2789–2794. [Google Scholar]
- Dewi, A.K.; Dwimahyani, I. Application of induced mutation technique to improve genetic variability of Indonesian traditional rice varieties. IOP Conf. Ser. Earth Environ. Sci. 2020, 482, 012016. [Google Scholar] [CrossRef]
- Manova, V.; Gruszka, D. DNA damage and repair in plants—From models to crops. Front. Plant Sci. 2015, 6, 885. [Google Scholar] [CrossRef] [Green Version]
- McCulloch, S.D.; Kunkel, T.A. The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. Cell Res. 2008, 18, 148–161. [Google Scholar] [CrossRef] [Green Version]
- Polyn, S.; Willems, A.; De Veylder, L. Cell cycle entry, maintenance, and exit during plant development. Curr. Opin. Plant Biol. 2015, 23, 1–7. [Google Scholar] [CrossRef]
- Auerbach, C.; Robson, J.M. Chemical Production of Mutations. Nature 1984, 157, 302. [Google Scholar] [CrossRef] [PubMed]
- Till, B.J.; Cooper, J.; Tai, T.H.; Colowit, P.; Greene, E.A.; Henikoff, S.; Comai, L. Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol. 2007, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- Ke, C.; Guan, W.; Bu, S.; Li, X.; Deng, Y.; Wei, Z.; Wu, W.; Zheng, Y. Determination of absorption dose in chemical mutagenesis in plants. PLoS ONE 2019, 14, e0210596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roychowdhury, R.; Tah, J. Chemical mutagenic action on seed germination and related agro-metrical traits in M1 Dianthus generation. Curr. Bot. 2011, 2, 19–23. [Google Scholar]
- Wani, A.A. Mutagenic effectiveness and efficiency of Gamma rays, Ethyl Methane Sulphonate and their combination treatments in Chickpea (Cicer arietinum L.). Asian J. Plant Sci. 2009, 8, 318–321. [Google Scholar] [CrossRef] [Green Version]
- Caldwell, D.G.; McCallum, N.; Shaw, P.; Muehlbauer, G.; Marshall, D.F.; Waugh, R. A structured mutant population for forward and reverse genetics in Barley (Hordeum vulgare L.). Plant J. 2004, 40, 143–150. [Google Scholar] [CrossRef]
- Jander, G.; Baerson, S.R.; Hudak, J.A.; Gonzalez, K.A.; Gruys, K.J.; Last, R.L. Ethylmethanesulfonate saturation mutagenesis in Arabidopsis to determine frequency of herbicide resistance. Plant Physiol. 2003, 131, 139–146. [Google Scholar] [CrossRef]
- Talebi, A.B.; Shahrokhifar, B. Ethyl methane sulphonate (EMS) induced mutagenesis in malaysian rice (cv. MR219) for lethal dose determination. Am. J. Plant Sci. 2012, 3, 1661–1665. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.K.; Kim, Y.S.; Kim, J.K. Determination of the optimal condition for ethylmethanesulfonate-mediated mutagenesis in a Korean commercial rice, Japonica cv. Dongjin. Appl. Biol. Chem. 2017, 60, 241–247. [Google Scholar] [CrossRef]
- Rajapandian, P.; Dhanam, S. Utilization of physical and chemical mutagenesis on germination studies of sweet corn Zea mays (L.). Int. J. Res. Bot. 2017, 7, 1–5. [Google Scholar]
- Ali, M.; Li, P.; She, G.; Chen, D.; Wan, X.; Zhao, J. Transcriptome and metabolite analyses reveal the complex metabolic genes involved in volatile terpenoid biosynthesis in garden sage (Salvia officinalis). Sci. Rep. 2017, 7, 16074. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.; Hussain, R.M.; Rehman, N.U.; She, G.; Li, P.; Wan, X.; Guo, L.; Zhao, J. De novo transcriptome sequencing and metabolite profiling analyses reveal the complex metabolic genes involved in the terpenoid biosynthesis in Blue Anise Sage (Salvia guaranitica L.). DNA Res. 2018, 25, 597–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, Y.P.; Wang, Z.Z.; Tian, W.; Dong, Z.M.; Spencer, D.F. Generation and analysis of expressed sequence tags from the medicinal plant Salvia miltiorrhiza. Life Sci. 2010, 53, 273–285. [Google Scholar] [CrossRef] [PubMed]
- Atsuko, T.; Hiroshi, O. Phylogenetic relationships among subgenera, species, and varieties of Japanese Salvia L. (Lamiaceae). J. Plant Res. 2011, 124, 245–252. [Google Scholar]
- Liu, J.; Huang, F.; Wang, X.; Zhang, M.; Zheng, R.; Wang, J.; Yu, D. Genome-wide analysis of terpene synthases in soybean: Functional characterization of GmTPS3. Gene 2014, 544, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Srividya, N.; Davis, E.M.; Croteau, R.B.; Lange, B.M. Functional analysis of (4S)-limonene synthase mutants reveals determinants of catalytic outcome in a model monoterpene synthase. Proc. Natl. Acad. Sci. USA 2015, 112, 3332–3337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Z.; Wang, H.; Hu, X.; Sun, Z.; Han, C. The Pharmacological Properties of Salvia Essential Oils. J. Appl. Pharm. Sci. 2013, 3, 122–127. [Google Scholar] [CrossRef]
- Halfmann, C.; Gu, L.; Gibbons, W.; Zhou, R. Genetically engineering cyanobacteria to convert CO₂, water, and light into the long-chain hydrocarbon farnesene. Appl. Microbiol. Biotechnol. 2014, 98, 9869–9877. [Google Scholar] [CrossRef]
- Ali, M.; Miao, L.; Hou, Q.; Darwish, D.B.; Alrdahe, S.S.; Ali, A.; Benedito, V.A.; Tadege, M.; Wang, X.; Zhao, J. Overexpression of Terpenoid Biosynthesis Genes From Garden Sage (Salvia officinalis) Modulates Rhizobia Interaction and Nodulation in Soybean. Front Plant Sci. 2021, 12, 783269. [Google Scholar] [CrossRef]
- Ali, M.; Alshehri, D.; Alkhaibari, A.M.; Elhalem, N.A.; Darwish, D.B.E. Cloning and Characterization of 1,8-Cineole Synthase (SgCINS) Gene From the Leaves of Salvia guaranitica Plant. Front Plant Sci. 2022, 13, 869432. [Google Scholar] [CrossRef]
- Laura, P.; Barbara, R.; Barberini, S. Molecular cloning of SoHPPR encoding a hydroxyphenylpyruvate reductase, and its expression in cell suspension cultures of Salvia officinalis. Plant Cell Tissue Organ Cult. 2013, 114, 131–138. [Google Scholar]
- Khan, I.A. Mutation studies in mung bean (Phaseolus aureus Roxb.). VI estemates of Genetic variability. Bot. Bull. Acad. Sin. 1983, 24, 121–128. [Google Scholar]
- Khan, I.A. Mutations induced by gamma-irradiation, ethyl methane sulfonate and hydrazine hydrate in mung bean (Phaseolus aureus Roxb.). Bot. Bull. Acad. Sin. 1984, 25, 103–110. [Google Scholar]
- Khan, I.A. Quantitative variation induced by gamma rays, ethyl methane sulphonate, and hydrazine hydrate in mung bean (Phaseolus aureus Roxb.). Can. J. Genet. Cytol. 1984, 26, 492–496. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Plant Physiol. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Ali, M.; Nishawy, E.; Ramadan, W.A.; Ewas, M.; Rizk, M.S.; Sief-Eldein, A.G.M.; El-Zayat, M.A.S.; Hassan, A.H.M.; Guo, M.; Hu, G.W.; et al. Molecular characterization of a Novel NAD+-dependent farnesol dehydrogenase SoFLDH gene involved in sesquiterpenoid synthases from Salvia officinalis. PLoS ONE 2022, 17, e0269045. [Google Scholar] [CrossRef]
- Ali, M.; Miao, L.; Soudy, F.A.; Darwish, D.B.E.; Alrdahe, S.S.; Alshehri, D.; Benedito, V.A.; Tadege, M.; Wang, X.; Zhao, J. Overexpression of Terpenoid Biosynthesis Genes Modifies Root Growth and Nodulation in Soybean (Glycine max). Cells 2022, 11, 2622. [Google Scholar] [CrossRef]
- Dudareva, N.; Cseke, L.; Blanc, V.M.; Pichersky, E. Evolution of floral scent in Clarkia: Novel patterns of S-linalool synthase gene expression in the Clarkia breweri flower. Plant Cell 1996, 8, 1137–1148. [Google Scholar]
- McConkey, M.E.; Gershenzon, J.; Croteau, R.B. Developmental regulation of monoterpene biosynthesis in the glandular trichomes of peppermint. Plant Physiol. 2000, 122, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, S.S.; Croteau, R.B. Menthofuran regulates essential oil biosynthesis in peppermint by controlling a downstream monoterpene reductase. Proc. Natl. Acad. Sci. USA 2003, 100, 14481–14486. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, S.S.; Williams, M.; Croteau, R. Cosuppression oflimonene-3-hydroxylase in peppermint promotes accumulation of limonene in the essential oil. Phytochemistry 2004, 65, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Kapteyn, J.; Gang, D.R. A systems biology investigation of the MEP/terpenoid and shikimate/phenylpropanoid pathways points to multiple levels of metabolic control in sweet basil glandular trichomes. Plant J. 2008, 54, 349–361. [Google Scholar] [CrossRef] [PubMed]
- Lane, A.; Boecklemann, A.; Woronuk, G.N.; Sarker, L.; Mahmoud, S.S. A genomics resource for investigating regulation of essential oil production in Lavandula angustifolia. Planta 2010, 231, 835–845. [Google Scholar] [CrossRef]
- Schmiderer, C.; Grausgruber-Gröger, S.; Grassi, P.; Steinborn, R.; Novak, J. Influence of gibberellin and daminozide on the expression of terpene synthases in common sage (Salvia officinalis). J. Plant Physiol. 2010, 167, 779–786. [Google Scholar] [CrossRef]
- Kampranis, S.; Ioannidis, D.; Purvis, A.; Mahrez, W.; Ninga, E.; Katerelos, N.A.; Anssour, S.; Dunwell, J.M.; Degenhardt, J.; Makris, A.M.; et al. Rational conversion of substrate and product specificity in a Salvia monoterpene synthase: Structural insights into the evolution of terpene synthase function. Plant Cell. 2007, 19, 1994–2005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dudareva, N.; Klempien, A.; Muhlemann, J.K.; Kaplan, I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 2013, 198, 16–32. [Google Scholar] [CrossRef]
- Sangita, K.; Piyush, P.; Gopal, M.; Gitanjali, Y. Structural and biochemical perspectives in plant isoprenoid biosynthesis. Phytochem. Rev. 2013, 12, 255–291. [Google Scholar]
- Tsubakizaki, S.; Takada, M.; Gotou, H.; Mawatari, K.; Ishihara, N.; Kai, R. Alternatives to Hydrazine in Water Treatment at Thermal Power Plants. Mitsubishi Heavy Ind. Tech. Rev. 2009, 6, 43–47. [Google Scholar]
- SaeedAwan, F.; Sadia, B.; Altaf, J.; Habib, M.; Hameed, K.; Hussain, S. Genetic Variability through Induced Mutation. In Genetic Variation; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Rastogi, R.P.; Richa Kumar, R.; Tyagi, M.B.; Sinha, R.P. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J. Nucleic Acids 2010, 2010, 592980. [Google Scholar] [CrossRef] [Green Version]
- Acquaah, G. Principles of Plant Genetics and Breeding, 3rd ed.; Wiley-Blackwell: Chichester, UK, 2006; ISBN 978-1-119-62632-9. [Google Scholar]
- Wu, J.L.; Wu, C.; Lei, C.; Baraoidan, M.; Bordeos, A.; Madamba, M.R.; Ramos-Pamplona, M.; Mauleon, R.; Portugal, A.; Ulat, V.J.; et al. Chemical-and irradiation-induced mutants of indica rice IR64 for forward and reverse genetics. Plant Mol. Biol. 2005, 59, 85–97. [Google Scholar] [CrossRef]
- Viana, V.E.; Pegoraro, C.; Busanello, C.; de Oliveira, A.C. Mutagenesis in rice: The basis for breeding a new super plant. Front. Plant Sci. 2019, 10, 1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ralston, A. Environmental mutagens, cell signalling and DNA repair. Nat. Educ. 2008, 1, 114. [Google Scholar]
- Li, M.; Goncearenco, A.; Panchenko, A.R. Annotating Mutational Effects on Proteins and Protein Interactions: Designing Novel and Revisiting Existing Protocols. Proteom. Methods Protoc. 2017, 1550, 235–260. [Google Scholar]
- Forner, J.; Kleinschmidt, D.; Meyer, E.H.; Fischer, A.; Morbitzer, R.; Lahaye, T.; Schöttler, M.A.; Bock, R. Targeted introduction of heritable point mutations into the plant mitochondrial genome. Nat. Plants 2022, 8, 245–256. [Google Scholar] [CrossRef]
- Lin, M.T.; Orr, D.J.; Worrall, D.; Parry, M.A.J.; Carmo-Silva, E.; Hanson, M.R. A procedure to introduce point mutations into the Rubisco large subunit gene in wild-type plants. Plant J. 2021, 106, 876–887. [Google Scholar] [CrossRef] [PubMed]
- Davies, H.; Bignell, G.R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.; Woffendin, H.; Garnett, M.J.; Bottomley, W.; et al. Mutations of the BRAF gene in human cancer. Nature 2002, 417, 949–954. [Google Scholar] [CrossRef] [Green Version]
- Ikenoue, T.; Hikiba, Y.; Kanai, F.; Aragaki, J.; Tanaka, Y.; Imamura, J.; Imamura, T.; Ohta, M.; Ijichi, H.; Tateishi, K.; et al. Different effects of point mutations within the B-Raf glycine-rich loop in colorectal tumors on mitogen-activated protein/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase and nuclear factor κB pathway and cellular transformation. Cancer Res. 2004, 64, 3428–3435. [Google Scholar]
- Yokoyama, R.; de Oliveira, M.V.V.; Takeda-Kimura, Y.; Ishihara, H.; Alseekh, S.; Arrivault, S.; Kukshal, V.; Jez, J.M.; Stitt, M.; Fernie, A.R.; et al. Point mutations that boost aromatic amino acid production and CO2 assimilation in plants. Sci. Adv. 2022, 8, eabo3416. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, R.; de Oliveira, M.V.V.; Kleven, B.; Maeda, H.A. The entry reaction of the plant shikimate pathway is subjected to highly complex metabolite-mediated regulation. Plant Cell 2021, 33, 671–696. [Google Scholar] [CrossRef]
- Westfall, C.S.; Xu, A.; Jez, J.M. Structural evolution of differential amino acid effector regulation in plant chorismite mutases. J. Biol. Chem. 2014, 289, 28619–28628. [Google Scholar] [CrossRef] [Green Version]
- Schenck, C.A.; Chen, S.; Siehl, D.L.; Maeda, H.A. Non-plastidic, tyrosine-insensitive prephenate dehydrogenases from legumes. Nat. Chem. Biol. 2015, 11, 52–57. [Google Scholar] [CrossRef] [PubMed]
NO. | Compound Name | R.T | Formula | M.W/Da | Terpene Type | Average of% Peak Area | Standard Deviation | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | 0.1% | 0.2% | 0.3% | Control | 0.1% | 0.2% | 0.3% | ||||||
1 | α-thujene | 5.577 | C10H16 | 136.234 | Mono | 0.12 | 0.17 | 0.34 | 0.78 | 0.17 | 0.17 | 0.16 | 0.58 |
2 | α-pinene | 5.815 | C10H16 | 136.234 | Mono | 1.27 | 3.87 | 3.81 | 3.55 | 2.18 | 1.36 | 0.59 | 1.32 |
3 | camphene | 6.477 | C10H16 | 136.234 | Mono | 0.21 | 2.70 | 1.69 | 0.82 | 0.20 | 2.22 | 1.88 | 0.74 |
4 | (+)-camphene | 6.49 | C10H16 | 136.234 | Mono | 0.76 | 0.67 | 1.05 | 6.02 | 0.19 | 0.96 | 0.25 | 1.67 |
5 | 1,8-cineole | 11.298 | C10H18O | 154.2493 | Mono | 15.63 | 35.83 | 47.96 | 32.32 | 10.93 | 11.53 | 5.45 | 8.86 |
6 | geranylisobutyrate | 11.935 | C14H24O | 208.3398 | Sesquit | 0.50 | 0.01 | 0.00 | 0.00 | 0.40 | 0.01 | 0.00 | 0.00 |
7 | cajeputol | 11.913 | C10H18O | 154.2493 | Mono | 0.00 | 0.36 | 0.00 | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 |
8 | P-menth-8-en-1-ol, stereoisomer | 13.778 | C10H18O | 154.2493 | Mono | 0.57 | 0.63 | 0.37 | 0.51 | 0.09 | 0.40 | 0.25 | 0.23 |
9 | Cis-β-terpineo | 15.491 | C10H18O | 154.2493 | Mono | 0.07 | 0.05 | 0.00 | 0.00 | 0.02 | 0.06 | 0.00 | 0.00 |
10 | thujan-3-one | 15.706 | C10H16O | 152.2334 | Mono | 0.69 | 0.81 | 0.64 | 0.00 | 0.62 | 0.93 | 0.54 | 0.00 |
11 | thujone | 15.808 | C10H16O | 152.2334 | Mono | 0.39 | 1.06 | 0.00 | 0.72 | 0.13 | 0.97 | 0.00 | 0.85 |
12 | camphor | 17.698 | C10H16O | 152.2334 | Mono | 4.88 | 8.18 | 6.77 | 9.75 | 4.18 | 6.65 | 1.51 | 2.38 |
13 | l-2-camphanol | 18.901 | C10H18O | 154.2493 | Mono | 2.46 | 1.08 | 0.00 | 0.00 | 4.26 | 0.61 | 0.00 | 0.00 |
14 | (L)-alpha-terpineol | 18.93 | C10H18O | 154.25 | Mono | 1.19 | 0.52 | 0.00 | 0.00 | 1.30 | 0.70 | 0.00 | 0.00 |
15 | alpha terpineol | 20.071 | C10H18O | 154.25 | mono | 1.57 | 0.76 | 0.00 | 0.00 | 1.21 | 0.52 | 0.00 | 0.00 |
16 | 2-hydroxy-1,8-cineole | 20.735 | C10H18O2 | 170.2487 | Mono | 0.63 | 1.46 | 0.00 | 0.00 | 0.56 | 2.18 | 0.00 | 0.00 |
17 | (+)-angelicoidenol | 20.832 | C10H18O2 | 170.25 | Mono | 1.66 | 0.12 | 0.00 | 0.36 | 2.66 | 0.19 | 0.00 | 0.18 |
18 | 2,5-bornanedione | 24.456 | C10H14O2 | 166.217 | Mono | 0.16 | 0.42 | 0.10 | 0.00 | 0.16 | 0.42 | 0.09 | 0.00 |
19 | cis-2-acetoxy-1,8-cineole | 25.609 | C12H20O3 | 212.2854 | Mono | 0.13 | 0.18 | 1.43 | 0.00 | 0.18 | 0.12 | 2.28 | 0.00 |
20 | ledene | 27.914 | C15H24 | 204.3511 | Sesquit | 0.00 | 0.09 | 0.16 | 0.00 | 0.00 | 0.16 | 0.08 | 0.00 |
21 | (E)-β-caryophyllene | 28.208 | C15H24 | 204.3511 | Sesquit | 9.80 | 9.63 | 8.69 | 6.26 | 3.42 | 5.58 | 1.43 | 1.82 |
22 | 1H-cycloprop[e]azulene, decahydro-1,1,7-trimethyl-4-methylene- | 28.838 | C15H24 | 204.3511 | Sesquit | 0.35 | 0.20 | 0.00 | 0.00 | 0.36 | 0.11 | 0.00 | 0.00 |
23 | gamma-caryophyllene | 28.868 | C15H24 | 204.3511 | Sesquit | 0.37 | 0.83 | 0.00 | 0.20 | 0.65 | 1.44 | 0.00 | 0.15 |
24 | humulene | 29.416 | C15H24 | 204.3511 | Sesquit | 5.83 | 2.46 | 0.00 | 4.91 | 2.97 | 2.14 | 0.00 | 3.58 |
25 | 1,4,7,-cycloundecatriene, 1,5,9,9-tetramethyl-, Z,Z,Z- | 29.432 | C15H24 | 204.3511 | Sesquit | 0.04 | 0.10 | 2.50 | 0.00 | 0.08 | 0.17 | 0.86 | 0.00 |
26 | (+)-germacrene D | 30.272 | C15H24 | 204.3511 | Sesquit | 0.35 | 0.14 | 0.34 | 0.82 | 0.30 | 0.01 | 0.15 | 0.00 |
27 | elemene | 30.723 | C15H24 | 204.3511 | Sesquit | 1.19 | 1.20 | 0.00 | 0.00 | 0.79 | 1.15 | 0.00 | 0.00 |
28 | 1-aromadendrene | 31.486 | C15H24 | 204.3511 | sesquit | 0.13 | 0.41 | 0.00 | 0.00 | 0.11 | 0.53 | 0.00 | 0.00 |
29 | Cis-muurola-3,5-diene | 31.491 | C15H24 | 204.3511 | Sesquit | 0.18 | 0.30 | 0.00 | 0.00 | 0.05 | 0.39 | 0.00 | 0.00 |
30 | spathulenol | 33.333 | C15H24 | 204.3511 | Sesquit | 0.58 | 0.37 | 0.00 | 0.00 | 0.67 | 0.03 | 0.00 | 0.00 |
31 | caryophyllene oxide | 33.419 | C15H24 | 204.3511 | Sesquit | 1.74 | 1.14 | 1.38 | 1.16 | 1.38 | 1.05 | 1.14 | 0.77 |
32 | 1,2-humulene epoxide | 34.278 | C15H24O | 220.35 | Sesquit | 0.04 | 0.54 | 0.00 | 0.27 | 0.00 | 0.17 | 0.00 | 0.17 |
33 | 9-hydroxynerol | 36.742 | C10H18O2 | 170.25 | Mono | 0.00 | 0.35 | 0.00 | 0.00 | 0.00 | 0.13 | 0.00 | 0.00 |
34 | elema-1,3-dien-6.alpha.-ol | 36.893 | C15H26O | 222.37 | Sesquit | 1.01 | 0.00 | 0.00 | 0.16 | 0.99 | 0.00 | 0.00 | 0.06 |
35 | beta.-ylangene | 41.488 | C15H24 | 204.35 | Sesquit | 0.62 | 0.28 | 0.81 | 0.00 | 0.42 | 0.00 | 1.06 | 0.00 |
36 | trans-biformene | 42.357 | C20H32 | 272.4681 | Diter | 0.24 | 0.22 | 0.12 | 0.24 | 0.10 | 0.17 | 0.03 | 0.12 |
37 | labda-8(20),14-dien-13-ol, (13R)- | 45.802 | C20H34O | 290.5 | Diter | 0.00 | 1.62 | 0.00 | 0.00 | 0.00 | 1.15 | 0.00 | 0.00 |
38 | eudesm-11-en-1-ol | 46.516 | C15H26O | 222.3663 | Sesquit | 0.00 | 0.60 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 |
39 | viridiflorol | 46.574 | C15H26O | 222.37 | sesquit | 0.00 | 0.00 | 0.00 | 0.19 | 0.00 | 0.00 | 0.00 | 0.03 |
40 | humulane-1,6-dien-3-ol | 50.98 | C15H26O | 222.3663 | Sesquit | 0.29 | 0.60 | 0.00 | 0.00 | 0.22 | 0.21 | 0.00 | 0.00 |
41 | ferruginol | 52.105 | C20H30O | 286.4516 | Diter | 0.50 | 0.53 | 0.32 | 0.49 | 0.34 | 0.03 | 0.11 | 0.29 |
42 | sugiol | 53.089 | C20H28O2 | 300.4351 | Diter | 0.54 | 7.76 | 0.00 | 1.06 | 0.14 | 3.24 | 0.00 | 0.44 |
43 | podocarpa-8,11,13-trien-7-one, 12-hydroxy-13-isopropyl- | 53.27 | C20H28O2 | 300.4351 | Diter | 0.12 | 0.00 | 3.89 | 6.81 | 0.21 | 0.00 | 3.33 | 4.86 |
44 | squalene | 74.13 | C30H50 | 410.718 | Tri | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, M.; Abdelkawy, A.M.; Darwish, D.B.E.; Alatawi, H.A.; Alshehri, D.; Al-Amrah, H.; Soudy, F.A. Changes in Metabolite Profiling and Expression Levels of Key Genes Involved in the Terpenoid Biosynthesis Pathway in Garden Sage (Salvia officinalis) under the Effect of Hydrazine Hydrate. Metabolites 2023, 13, 807. https://doi.org/10.3390/metabo13070807
Ali M, Abdelkawy AM, Darwish DBE, Alatawi HA, Alshehri D, Al-Amrah H, Soudy FA. Changes in Metabolite Profiling and Expression Levels of Key Genes Involved in the Terpenoid Biosynthesis Pathway in Garden Sage (Salvia officinalis) under the Effect of Hydrazine Hydrate. Metabolites. 2023; 13(7):807. https://doi.org/10.3390/metabo13070807
Chicago/Turabian StyleAli, Mohammed, Aisha M. Abdelkawy, Doaa Bahaa Eldin Darwish, Hanan Ali Alatawi, Dikhnah Alshehri, Hadba Al-Amrah, and Fathia A. Soudy. 2023. "Changes in Metabolite Profiling and Expression Levels of Key Genes Involved in the Terpenoid Biosynthesis Pathway in Garden Sage (Salvia officinalis) under the Effect of Hydrazine Hydrate" Metabolites 13, no. 7: 807. https://doi.org/10.3390/metabo13070807
APA StyleAli, M., Abdelkawy, A. M., Darwish, D. B. E., Alatawi, H. A., Alshehri, D., Al-Amrah, H., & Soudy, F. A. (2023). Changes in Metabolite Profiling and Expression Levels of Key Genes Involved in the Terpenoid Biosynthesis Pathway in Garden Sage (Salvia officinalis) under the Effect of Hydrazine Hydrate. Metabolites, 13(7), 807. https://doi.org/10.3390/metabo13070807