Near-Infrared Spectroscopy: A Free-Living Neuroscience Tool to Better Understand Diabetes and Obesity
Abstract
:1. Introduction
2. NIRS Concept—How It Works and Clinical Applications
3. The Complex Pathophysiology of Diabetes-Induced Alterations in the CNS
4. fNIRS in Diabetes: A Promising Tool to Evaluate Central Nervous System Changes in Diabetes
Studies Using Brain NIRS to Study Inhibitory Control in Patients with Obesity or Binge Eating Disorder
5. Future Applications—Adding Continuous Glucose Monitoring and Glucose Tolerance Tests to NIRS
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Obesity. Prevalence of Obesity. Available online: https://www.worldobesity.org/about/about-obesity/prevalence-of-obesity (accessed on 27 February 2022).
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rebelos, E.; Immonen, H.; Bucci, M.; Hannukainen, J.C.; Nummenmaa, L.; Honka, M.-J.; Soinio, M.; Salminen, P.; Ferrannini, E.; Iozzo, P.; et al. Brain glucose uptake is associated with endogenous glucose production in obese patients before and after bariatric surgery and predicts metabolic outcome at follow-up. Diabetes Obes. Metab. 2019, 21, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Rebelos, E.; Mari, A.; Bucci, M.; Honka, M.-J.; Hannukainen, J.C.; Virtanen, K.A.; Hirvonen, J.; Nummenmaa, L.; Heni, M.; Iozzo, P.; et al. Brain substrate metabolism and ß-cell function in humans: A positron emission tomography study. Endocrinol. Diabetes Metab. 2020, 3, e00136. [Google Scholar] [CrossRef] [PubMed]
- Rebelos, E.; Hirvonen, J.; Bucci, M.; Pekkarinen, L.; Nyman, M.; Hannukainen, J.C.; Iozzo, P.; Salminen, P.; Nummenmaa, L.; Ferrannini, E.; et al. Brain free fatty acid uptake is elevated in morbid obesity, and is irreversible 6 months after bariatric surgery: A positron emission tomography study. Diabetes Obes. Metab. 2020, 22, 1074–1082. [Google Scholar] [CrossRef]
- Heni, M.; Wagner, R.; Kullmann, S.; Gancheva, S.; Roden, M.; Peter, A.; Stefan, A.; Preissl, H.; Häring, H.-U.; Fritsche, A. Hypothalamic and Striatal Insulin Action Suppresses Endogenous Glucose Production and May Stimulate Glucose Uptake During Hyperinsulinemia in Lean but Not in Overweight Men. Diabetes 2017, 66, 1797–1806. [Google Scholar] [CrossRef] [Green Version]
- Heni, M.; Wagner, R.; Willmann, C.; Jaghutriz, B.A.; Vosseler, A.; Kübler, C.; Hund, V.; Scheffler, K.; Peter, A.; Häring, H.-U.; et al. Insulin Action in the Hypothalamus Increases Second-Phase Insulin Secretion in Humans. Neuroendocrinology 2020, 110, 929–937. [Google Scholar] [CrossRef] [PubMed]
- Rebelos, E.; Bucci, M.; Karjalainen, T.; Oikonen, V.; Bertoldo, A.; Hannukainen, J.C.; Virtanen, K.A.; Latva-Rasku, A.; Hirvonen, J.; Heinonen, I.; et al. Insulin resistance is associated with enhanced brain glucose uptake during euglycemic hyperinsulinemia: A large-scale PET cohort. Diabetes Care 2021, 44, 788–794. [Google Scholar] [CrossRef]
- Rebelos, E.; Nummenmaa, L.; Dadson, P.; Latva-Rasku, A.; Nuutila, P. Brain insulin sensitivity is linked to body fat distribution-the positron emission tomography perspective. Eur. J. Nucl. Med. Mol. Imaging 2020, 48, 966–968. [Google Scholar] [CrossRef]
- Dardano, A.; Aghakhanyan, G.; Moretto, C.; Ciccarone, A.; Bellini, R.; Sancho Bornez, V.; Ceccarini, G.; Santini, F.; Volterrani, V.; Del Prato, S.; et al. Brain effect of bariatric surgery in people with obesity. Int. J. Obes. 2022, 46, 1671–1677. [Google Scholar] [CrossRef]
- Kullmann, S.; Valenta, V.; Wagner, R.; Tschritter, O.; Machann, J.; Häring, H.-U.; Preissl, H.; Fritsche, A.; Heni, M. Brain insulin sensitivity is linked to adiposity and body fat distribution. Nat. Commun. 2020, 11, 1841. [Google Scholar] [CrossRef] [Green Version]
- Tschritter, O.; Preissl, H.; Hennige, A.M.; Stumvoll, M.; Porubska, K.; Frost, R.; Marx, H.; Klösel, B.; Lutzenberger, W.; Birbaumer, N.; et al. The cerebrocortical response to hyperinsulinemia is reduced in overweight humans: A magnetoencephalographic study. Proc. Natl. Acad. Sci. USA 2006, 103, 12103–12108. [Google Scholar] [CrossRef] [PubMed]
- Lei, H.; Hu, R.; Luo, G.; Yang, T.; Shen, H.; Deng, H.; Chen, C.; Zhao, H.; Liu, J. Altered Structural and Functional MRI Connectivity in Type 2 Diabetes Mellitus Related Cognitive Impairment: A Review. Front. Hum. Neurosci. 2021, 15, 755017. [Google Scholar] [CrossRef] [PubMed]
- Parsons, N.; Steward, T.; Clohesy, R.; Almgren, H.; Duehlmeyer, L. A systematic review of resting-state functional connectivity in obesity: Refining current neurobiological frameworks and methodological considerations moving forward. Rev. Endocr. Metab. Disord. 2022, 23, 861–879. [Google Scholar] [CrossRef] [PubMed]
- Jöbsis, F.F. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 1977, 198, 1264–1267. [Google Scholar] [CrossRef] [PubMed]
- Pinti, P.; Tachtsidis, I.; Hamilton, A.; Hirsch, J.; Aichelburg, C.; Gilbert, S.; Burgess, P.-W. The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience. Ann. N. Y. Acad. Sci. 2020, 1464, 5–29. [Google Scholar] [CrossRef]
- Almajidy, R.K.; Mankodiya, K.; Abtahi, M.; Hofmann, U.G. A Newcomer’s Guide to Functional Near Infrared Spectroscopy Experiments. IEEE Rev. Biomed. Eng. 2020, 13, 292–308. [Google Scholar] [CrossRef] [Green Version]
- Nippert, A.R.; Biesecker, K.R.; Newman, E.A. Mechanisms Mediating Functional Hyperemia in the Brain. Neurosci. A Rev. J. Bringing Neurobiol. Neurol. Psychiatry 2018, 24, 73–83. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, M.; Quaresima, V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage 2012, 63, 921–935. [Google Scholar] [CrossRef] [PubMed]
- Laguë-Beauvais, M.; Brunet, J.; Gagnon, L.; Lesage, F.; Bherer, L. A fNIRS investigation of switching and inhibition during the modified Stroop task in younger and older adults. Neuroimage 2013, 64, 485–495. [Google Scholar] [CrossRef]
- Grassi, B.; Quaresima, V. Near-infrared spectroscopy and skeletal muscle oxidative function in vivo in health and disease: A review from an exercise physiology perspective. J. Biomed. Opt. 2016, 21, 91313. [Google Scholar] [CrossRef] [Green Version]
- Hogue, C.W.; Levine, A.; Hudson, A.; Lewis, C. Clinical Applications of Near-infrared Spectroscopy Monitoring in Cardiovascular Surgery. Anesthesiology 2021, 134, 784–791. [Google Scholar] [CrossRef] [PubMed]
- Arai, H.; Takano, M.; Miyakawa, K.; Ota, T.; Takahashi, T.; Asaka, H.; Kawaguchi, T. A quantitative near-infrared spectroscopy study: A decrease in cerebral hemoglobin oxygenation in Alzheimer’s disease and mild cognitive impairment. Brain Cogn. 2006, 61, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Zeller, J.B.M.; Herrmann, M.J.; Ehlis, A.-C.; Polak, T.; Fallgatter, A.J. Altered parietal brain oxygenation in Alzheimer’s disease as assessed with near-infrared spectroscopy. Am. J. Geriatr. Psychiatry Off. J. Am. Assoc. Geriatr. Psychiatry 2010, 18, 433–441. [Google Scholar] [CrossRef]
- Koike, S.; Takizawa, R.; Nishimura, Y.; Takano, Y.; Takayanagi, Y.; Kinou, M.; Araki, T.; Harima, H.; Fukuda, M.; Okazaki, Y.; et al. Different hemodynamic response patterns in the prefrontal cortical sub-regions according to the clinical stages of psychosis. Schizophr. Res. 2011, 132, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Bunce, S.C.; Izzetoglu, K.; Izzetoglu, M.; Ayaz, H.; Pourrezaei, K.; Onaral, B. Treatment Status Predicts Differential Prefrontal Cortical Responses to Alcohol and Natural Reinforcer Cues among Alcohol Dependent Individuals. In Advances in Brain Inspired Cognitive Systems; Zhang, H., Hussain, A., Liu, D., Wang, Z., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 183–191. [Google Scholar]
- Sela, I.; Horowitz–Kraus, T.; Izzetoglu, M.; Shewokis, P.A.; Izzetoglu, K.; Onaral, B.; Breznitz, Z. Brain Activity of Young and Adult Hebrew Speakers during Lexical Decision Task: fNIR Application to Language. In Foundations of Augmented Cognition. Directing the Future of Adaptive Systems; Schmorrow, D.D., Fidopiastis, C.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 231–239. [Google Scholar]
- Blume, F.; Hudak, J.; Dresler, T.; Ehlis, A.-C.; Kühnhausen, J.; Renner, T.J.; Gawrilow, C. NIRS-based neurofeedback training in a virtual reality classroom for children with attention-deficit/hyperactivity disorder: Study protocol for a randomized controlled trial. Trials 2017, 18, 41. [Google Scholar] [CrossRef] [Green Version]
- Monden, Y.; Dan, H.; Nagashima, M.; Dan, I.; Kyutoku, Y.; Okamoto, M.; Yamagata, T.; Momoi, M.Y.; Watanabe, E. Clinically-oriented monitoring of acute effects of methylphenidate on cerebral hemodynamics in ADHD children using fNIRS. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2012, 123, 1147–1157. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, S.; Sakatani, K.; Kano, T.; Hoshino, T.; Fujiwara, N.; Murata, Y.; Katayama, Y. Effects of revascularisation on evoked cerebral blood oxygenation responses in stroke patients. Adv. Exp. Med. Biol. 2010, 662, 525–530. [Google Scholar]
- Li, Y.; Yu, D. Variations of the Functional Brain Network Efficiency in a Young Clinical Sample within the Autism Spectrum: A fNIRS Investigation. Front. Physiol. 2018, 9, 67. [Google Scholar] [CrossRef] [Green Version]
- Nishizawa, Y.; Kanazawa, T.; Kawabata, Y.; Matsubara, T.; Maruyama, S.; Kawano, M.; Kinoshita, S.; Koh, J.; Matsuo, K.; Yoneda, H. fNIRS Assessment during an Emotional Stroop Task among Patients with Depression: Replication and Extension. Psychiatry Investig. 2019, 16, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Machado, A.; Lina, J.M.; Tremblay, J.; Lassonde, M.; Nguyen, D.K.; Lesage, F.; Grova, C. Detection of hemodynamic responses to epileptic activity using simultaneous Electro-EncephaloGraphy (EEG)/Near Infra Red Spectroscopy (NIRS) acquisitions. Neuroimage 2011, 56, 114–125. [Google Scholar] [CrossRef]
- Watanabe, Y.; Tanaka, H.; Dan, I.; Sakurai, K.; Kimoto, K.; Takashima, R.; Hirata, K. Monitoring cortical hemodynamic changes after sumatriptan injection during migraine attack by near-infrared spectroscopy. Neurosci. Res. 2011, 69, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Biessels, G.J.; Staekenborg, S.; Brunner, E.; Brayne, C.; Scheltens, P. Risk of dementia in diabetes mellitus: A systematic review. Lancet Neurol. 2006, 5, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Mijnhout, G.S.; Scheltens, P.; Diamant, M.; Biessels, G.J.; Wessels, A.M.; Simsek, S.; Snoek, F.J.; Heine, R.J. Diabetic encephalopathy: A concept in need of a definition. Diabetologia 2006, 49, 1447–1448. [Google Scholar] [CrossRef] [Green Version]
- Moheet, A.; Mangia, S.; Seaquist, E.R. Impact of diabetes on cognitive function and brain structure. Ann. N. Y. Acad. Sci. 2015, 1353, 60–71. [Google Scholar] [CrossRef] [Green Version]
- Antal, B.; McMahon, L.P.; Sultan, S.F.; Lithen, A.; Wexler, D.J.; Dickerson, B.; Ratai, E.-V.; Mujica-Parodi, L.R. Type 2 diabetes mellitus accelerates brain aging and cognitive decline: Complementary findings from UK Biobank and meta-analyses. eLife 2022, 11, e73138. [Google Scholar] [CrossRef]
- Brands, A.M.A.; Van den Berg, E.; Manschot, S.M.; Biessels, G.J.; Kappelle, L.J.; De Haan, E.H.F.; Kessels, R.P. A detailed profile of cognitive dysfunction and its relation to psychological distress in patients with type 2 diabetes mellitus. J. Int. Neuropsychol. Soc. 2007, 13, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Reijmer, Y.D.; van den Berg, E.; Ruis, C.; Kappelle, L.J.; Biessels, G.J. Cognitive dysfunction in patients with type 2 diabetes. Diabetes Metab. Res. Rev. 2010, 26, 507–519. [Google Scholar] [CrossRef]
- Munshi, M.N. Cognitive Dysfunction in Older Adults With Diabetes: What a Clinician Needs to Know. Diabetes Care 2017, 40, 461–467. [Google Scholar] [CrossRef] [Green Version]
- Hayden, M.R. Type 2 Diabetes Mellitus Increases The Risk of Late-Onset Alzheimer’s Disease: Ultrastructural Remodeling of the Neurovascular Unit and Diabetic Gliopathy. Brain Sci. 2019, 9, 262. [Google Scholar] [CrossRef] [Green Version]
- McCrimmon, R.J.; Ryan, C.M.; Frier, B.M. Diabetes and cognitive dysfunction. Lancet 2012, 379, 2291–2299. [Google Scholar] [CrossRef]
- Rebelos, E.; Daniele, G.; Campi, B.; Saba, A.; Koskensalo, K.; Ihalainen, J.; Saukko, E.; Nuutila, P.; Backes, W.H.; Jansen, J.F.A.; et al. Circulating N-Acetylaspartate does not track brain NAA concentrations, cognitive function or features of small vessel disease in humans. Sci. Rep. 2022, 12, 11530. [Google Scholar] [CrossRef] [PubMed]
- Cheah, Y.-S.; Amiel, S.A. Metabolic neuroimaging of the brain in diabetes mellitus and hypoglycaemia. Nat. Rev. Endocrinol. 2012, 8, 588–597. [Google Scholar] [CrossRef] [PubMed]
- De Groot, J.C.; De Leeuw, F.-E.; Oudkerk, M.; Van Gijn, J.; Hofman, A.; Jolles, J.; Breteler, M.M.B. Periventricular cerebral white matter lesions predict rate of cognitive decline. Ann. Neurol. 2002, 52, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Vermeer, S.E.; Longstreth, W.T.J.; Koudstaal, P.J. Silent brain infarcts: A systematic review. Lancet Neurol. 2007, 6, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, S.M.; Vernooij, M.W.; Cordonnier, C.; Viswanathan, A.; Al-Shahi Salman, R.; Warach, S.; Launer, L.L.; Van Buchem, A.A.; Breteler, M.M.B.; Microbleed Study Group. Cerebral microbleeds: A guide to detection and interpretation. Lancet Neurol. 2009, 8, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Fantini, S.; Sassaroli, A.; Tgavalekos, K.T.; Kornbluth, J. Cerebral blood flow and autoregulation: Current measurement techniques and prospects for noninvasive optical methods. Neurophotonics 2016, 3, 31411. [Google Scholar] [CrossRef] [Green Version]
- Hoge, R.D.; Atkinson, J.; Gill, B.; Crelier, G.R.; Marrett, S.; Pike, G.B. Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex. Proc. Natl. Acad. Sci. USA 1999, 96, 9403–9408. [Google Scholar] [CrossRef]
- Tiehuis, A.M.; Vincken, K.L.; van den Berg, E.; Hendrikse, J.; Manschot, S.M.; Mali, W.P.T.M.; Kappelle, L.J.; Biessels, G.J. Cerebral perfusion in relation to cognitive function and type 2 diabetes. Diabetologia 2008, 51, 1321–1326. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Yang, X.; Li, Y.; Xu, H.; Ren, J.; Zhou, P. Cerebral Blood Flow Alterations in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Arterial Spin Labeling Studies. Front. Aging Neurosci. 2022, 14, 847218. [Google Scholar] [CrossRef]
- Rebelos, E.; Rinne, J.O.; Nuutila, P.; Ekblad, L.L. Brain Glucose Metabolism in Health, Obesity, and Cognitive Decline-Does Insulin Have Anything to Do with It? A Narrative Review. J. Clin. Med. 2021, 10, 1532. [Google Scholar] [CrossRef]
- Tuulari, J.J.; Karlsson, H.K.; Hirvonen, J.; Hannukainen, J.C.; Bucci, M.; Helmiö, M.; Ovaska, J.; Soinio, M.; Salminen, P.; Savisto, N.; et al. Weight loss after bariatric surgery reverses insulin-induced increases in brain glucose metabolism of the morbidly obese. Diabetes 2013, 62, 2747–2751. [Google Scholar] [CrossRef] [Green Version]
- Pekkarinen, L.; Kantonen, T.; Rebelos, E.; Latva-Rasku, A.; Dadson, P.; Karjalainen, T.; Kalliokoski, K.; Laitinen, K.; Houttu, N.; Kirjavainen, A.K.; et al. Obesity risk is associated with brain glucose uptake and insulin resistance. Eur. J. Endocrinol. 2022, 187, 917–928. [Google Scholar] [CrossRef]
- Hirvonen, J.; Virtanen, K.A.; Nummenmaa, L.; Hannukainen, J.C.; Honka, M.-J.; Bucci, M.; Nesterov, S.V.; Parkkola, R.; Rinne, J.; Iozzo, P.; et al. Effects of insulin on brain glucose metabolism in impaired glucose tolerance. Diabetes 2011, 60, 443–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iozzo, P.; Guzzardi, M.A. Imaging of brain glucose uptake by PET in obesity and cognitive dysfunction: Life-course perspective. Endocr. Connect. 2019, 8, R169–R183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rouch, L.; Cestac, P.; Sallerin, B.; Andrieu, S.; Bailly, H.; Beunardeau, M.; Cohen, A.; Dubail, D.; Hernandorena, I.; Seux, M.-L.; et al. Pulse Wave Velocity Is Associated With Greater Risk of Dementia in Mild Cognitive Impairment Patients. Hypertension 2018, 72, 1109–1116. [Google Scholar] [CrossRef] [PubMed]
- Arora, Y.; Walia, P.; Hayashibe, M.; Muthalib, M.; Chowdhury, S.R.; Perrey, S.; Dutta, A. Grey-box modeling and hypothesis testing of functional near-infrared spectroscopy-based cerebrovascular reactivity to anodal high-definition tDCS in healthy humans. PLoS Comput. Biol. 2021, 17, e1009386. [Google Scholar] [CrossRef]
- Geddes, J.B.; Carr, R.T.; Wu, F.; Lao, Y.; Maher, M. Blood flow in microvascular networks: A study in nonlinear biology. Chaos 2010, 20, 45123. [Google Scholar] [CrossRef] [Green Version]
- Kaur, J.; Fahmy, L.M.; Davoodi-Bojd, E.; Zhang, L.; Ding, G.; Hu, J.; Zhang, Z.; Chopp, M.; Jiang, Q. Waste Clearance in the Brain. Front. Neuroanat. 2021, 15, 665803. [Google Scholar] [CrossRef]
- Aitchison, R.T.; Ward, L.; Kennedy, G.J.; Shu, X.; Mansfield, D.C.; Shahani, U. Measuring visual cortical oxygenation in diabetes using functional near-infrared spectroscopy. Acta Diabetol. 2018, 55, 1181–1189. [Google Scholar] [CrossRef] [Green Version]
- Mazaika, P.K.; Marzelli, M.; Tong, G.; Foland-Ross, L.C.; Buckingham, B.A.; Aye, T.; Reiss, A.L. Functional near-infrared spectroscopy detects increased activation of the brain frontal-parietal network in youth with type 1 diabetes. Pediatr. Diabetes 2020, 21, 515–523. [Google Scholar] [CrossRef]
- Roman de Mettelinge, T.; Delbaere, K.; Calders, P.; Gysel, T.; Van Den Noortgate, N.; Cambier, D. The impact of peripheral neuropathy and cognitive decrements on gait in older adults with type 2 diabetes mellitus. Arch. Phys. Med. Rehabil. 2013, 94, 1074–1079. [Google Scholar] [CrossRef] [PubMed]
- Ferris, J.K.; Inglis, J.T.; Madden, K.M.; Boyd, L.A. Brain and Body: A Review of Central Nervous System Contributions to Movement Impairments in Diabetes. Diabetes 2020, 69, 3–11. [Google Scholar] [CrossRef]
- van Harten, B.; Oosterman, J.; Muslimovic, D.; van Loon, B.-J.P.; Scheltens, P.; Weinstein, H.C. Cognitive impairment and MRI correlates in the elderly patients with type 2 diabetes mellitus. Age Ageing 2007, 36, 164–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holtzer, R.; George, C.J.; Izzetoglu, M.; Wang, C. The effect of diabetes on prefrontal cortex activation patterns during active walking in older adults. Brain Cogn. 2018, 125, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Gorniak, S.L.; Wagner, V.E.; Vaughn, K.; Perry, J.; Cox, L.G.; Hernandez, A.E.; Pollonini, L. Functional neuroimaging of sensorimotor cortices in postmenopausal women with type II diabetes. Neurophotonics 2020, 7, 35007. [Google Scholar] [CrossRef]
- Lunghi, C.; Daniele, G.; Binda, P.; Dardano, A.; Ceccarini, G.; Santini, F.; Del Prato, S.; Morrone, M.C. Altered Visual Plasticity in Morbidly Obese Subjects. iScience 2019, 22, 206–213. [Google Scholar] [CrossRef] [Green Version]
- Daniele, G.; Lunghi, C.; Dardano, A.; Binda, P.; Ceccarini, G.; Santini, F.; Giusti, L.; Ciccarone, A.; Bellini, R.; Moretto, C.; et al. Bariatric surgery restores visual cortical plasticity in nondiabetic subjects with obesity. Int. J. Obes. 2021, 45, 1821–1829. [Google Scholar] [CrossRef]
- Cui, X.; Abduljalil, A.; Manor, B.D.; Peng, C.-K.; Novak, V. Multi-scale glycemic variability: A link to gray matter atrophy and cognitive decline in type 2 diabetes. PLoS ONE 2014, 9, e86284. [Google Scholar] [CrossRef]
- Gorniak, S.L.; Wagner, V.E.; Vaughn, K.; Perry, J.; Cox, L.G.; Hibino, H.; Montero-Hernandez, S.A.; Hernandez, A.E.; Pollonini, L. Functional near infrared spectroscopy detects cortical activation changes concurrent with memory loss in postmenopausal women with Type II Diabetes. Exp. Brain Res. 2023, 241, 1555–1567. [Google Scholar] [CrossRef]
- Kaligal, C.; Kanthi, A.; Vidyashree, M.; Krishna, D.; Raghuram, N.; Hongasandra Ramarao, N.; Deepeshwar, S. Prefrontal oxygenation and working memory in patients with type 2 diabetes mellitus following integrated yoga: A randomized controlled trial. Acta Diabetol. 2023, 60, 951–961. [Google Scholar] [CrossRef]
- Zhao, F.; Tomita, M.R.; Dutta, A. Functional near-infrared spectroscopy of prefrontal cortex during memory encoding and recall in elderly with type 2 diabetes mellitus. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2022, 2022, 3323–3326. [Google Scholar] [PubMed]
- Cukierman-Yaffe, T.; Gerstein, H.C.; Colhoun, H.M.; Diaz, R.; García-Pérez, L.-E.; Lakshmanan, M.; Bethel, A.; Xavier, D.; Probstfield, J.; Riddle, M.C.; et al. Effect of dulaglutide on cognitive impairment in type 2 diabetes: An exploratory analysis of the REWIND trial. Lancet Neurol. 2020, 19, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Vadini, F.; Simeone, P.G.; Boccatonda, A.; Guagnano, M.T.; Liani, R.; Tripaldi, R.; Di Castelnuovo, A.; Cipollone, F.; Consoli, A.; Santilli, F. Liraglutide improves memory in obese patients with prediabetes or early type 2 diabetes: A randomized, controlled study. Int. J. Obes. 2020, 44, 1254–1263. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, B.; Wang, X.; Zhang, X.; Yang, Q.X.; Qing, Z.; Zhang, W.; Zhu, D.; Bi, Y. Olfactory Dysfunction Mediates Adiposity in Cognitive Impairment of Type 2 Diabetes: Insights From Clinical and Functional Neuroimaging Studies. Diabetes Care 2019, 42, 1274–1283. [Google Scholar] [CrossRef]
- Li, Q.; Jia, M.; Yan, Z.; Li, Q.; Sun, F.; He, C.; Li, Y.; Zhou, X.; Zhang, X.; Liu, X. Activation of Glucagon-Like Peptide-1 Receptor Ameliorates Cognitive Decline in Type 2 Diabetes Mellitus Through a Metabolism-Independent Pathway. J. Am. Heart Assoc. 2021, 10, e020734. [Google Scholar] [CrossRef] [PubMed]
- During, M.J.; Cao, L.; Zuzga, D.S.; Francis, J.S.; Fitzsimons, H.L.; Jiao, X.; Bland, R.J.; Klugmann, M.; Banks, W.A.; Drucker, D.J. Glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nat. Med. 2003, 9, 1173–1179. [Google Scholar] [CrossRef]
- Tuulari, J.J.; Karlsson, H.K.; Hirvonen, J.; Salminen, P.; Nuutila, P.; Nummenmaa, L. Neural circuits for cognitive appetite control in healthy and obese individuals: An fMRI study. PLoS ONE 2015, 10, e0116640. [Google Scholar] [CrossRef]
- Volkow, N.D.; Wang, G.-J.; Tomasi, D.; Baler, R.D. The addictive dimensionality of obesity. Biol. Psychiatry 2013, 73, 811–818. [Google Scholar] [CrossRef] [Green Version]
- Rösch, S.A.; Schmidt, R.; Lührs, M.; Ehlis, A.-C.; Hesse, S.; Hilbert, A. Evidence of fNIRS-Based Prefrontal Cortex Hypoactivity in Obesity and Binge-Eating Disorder. Brain Sci. 2020, 11, 19. [Google Scholar] [CrossRef]
- Deng, Z.; Huang, Q.; Huang, J.; Zhang, W.; Qi, C.; Xu, X. Association between central obesity and executive function as assessed by stroop task performance: A functional near-infrared spectroscopy study. J. Innov. Opt. Health Sci. 2017, 11, 1750010. [Google Scholar] [CrossRef] [Green Version]
- Veit, R.; Schag, K.; Schopf, E.; Borutta, M.; Kreutzer, J.; Ehlis, A.-C.; Zipfel, S.; Giel, K.E.; Preissl, H.; Kullmann, S. Diminished prefrontal cortex activation in patients with binge eating disorder associates with trait impulsivity and improves after impulsivity-focused treatment based on a randomized controlled IMPULS trial. NeuroImage Clin. 2021, 30, 102679. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Deng, Z.-Y.; Huang, Q.; Zhang, W.-X.; Qi, C.-Z.; Huang, J.-A. Prefrontal cortex-mediated executive function as assessed by Stroop task performance associates with weight loss among overweight and obese adolescents and young adults. Behav. Brain Res. 2017, 321, 240–248. [Google Scholar] [CrossRef]
- Murdaugh, D.L.; Cox, J.E.; Cook, E.W., 3rd; Weller, R.E. fMRI reactivity to high-calorie food pictures predicts short- and long-term outcome in a weight-loss program. Neuroimage 2012, 59, 2709–2721. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Xiong, M.; Xiao, X.; Xu, X.; Hong, X. fNIRS correlates of the development of inhibitory control in young obese subjects. J. Integr. Neurosci. 2019, 18, 253–259. [Google Scholar]
- Schroeter, M.L.; Zysset, S.; Wahl, M.; von Cramon, D.Y. Prefrontal activation due to Stroop interference increases during development--an event-related fNIRS study. Neuroimage 2004, 23, 1317–1325. [Google Scholar] [CrossRef]
- Ljubisavljevic, M.; Maxood, K.; Bjekic, J.; Oommen, J.; Nagelkerke, N. Long-Term Effects of Repeated Prefrontal Cortex Transcranial Direct Current Stimulation (tDCS) on Food Craving in Normal and Overweight Young Adults. Brain Stimul. 2016, 9, 826–833. [Google Scholar] [CrossRef] [PubMed]
- Luzi, L.; Gandini, S.; Massarini, S.; Bellerba, F.; Terruzzi, I.; Senesi, P.; Macri, C.; Ferrulli, A. Reduction of impulsivity in patients receiving deep transcranial magnetic stimulation treatment for obesity. Endocrine 2021, 74, 559–570. [Google Scholar] [CrossRef]
- Cox, D.; Gonder-Frederick, L.; McCall, A.; Kovatchev, B.; Clarke, W. The effects of glucose fluctuation on cognitive function and QOL: The functional costs of hypoglycaemia and hyperglycaemia among adults with type 1 or type 2 diabetes. Int. J. Clin. Pract. Suppl. 2002, 129, 20–26. [Google Scholar]
- Service, F.J.; Molnar, G.D.; Rosevear, J.W.; Ackerman, E.; Gatewood, L.C.; Taylor, W.F. Mean amplitude of glycemic excursions, a measure of diabetic instability. Diabetes 1970, 19, 644–655. [Google Scholar] [CrossRef]
- Rizzo, M.R.; Marfella, R.; Barbieri, M.; Boccardi, V.; Vestini, F.; Lettieri, B.; Canonico, S.; Paolisso, G. Relationships between daily acute glucose fluctuations and cognitive performance among aged type 2 diabetic patients. Diabetes Care 2010, 33, 2169–2174. [Google Scholar] [CrossRef] [Green Version]
- Giordani, I.; Di Flaviani, A.; Picconi, F.; Malandrucco, I.; Ylli, D.; Palazzo, P.; Altavilla, R.; Vernieri, F.; Passarelli, F.; Donno, S.; et al. Acute hyperglycemia reduces cerebrovascular reactivity: The role of glycemic variability. J. Clin. Endocrinol. Metab. 2014, 99, 2854–2860. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Zhang, X.; Li, J.; Tang, L.; Jiao, X.; Lv, X. Impact of glucose fluctuation on acute cerebral infarction in type 2 diabetes. Can. J. Neurol. Sci. 2014, 41, 486–492. [Google Scholar] [CrossRef] [Green Version]
- Kurtz, P.; Claassen, J.; Helbok, R.; Schmidt, J.; Fernandez, L.; Presciutti, M.; Stuart, R.M.; Connolly, E.S.; Lee, K.; Badjatia, N.; et al. Systemic glucose variability predicts cerebral metabolic distress and mortality after subarachnoid hemorrhage: A retrospective observational study. Crit. Care 2014, 18, R89. [Google Scholar] [CrossRef] [Green Version]
- Santana, D.; Mosteiro, A.; Pedrosa, L.; Llull, L.; Torné, R.; Amaro, S. Clinical relevance of glucose metrics during the early brain injury period after aneurysmal subarachnoid hemorrhage: An opportunity for continuous glucose monitoring. Front. Neurol. 2022, 13, 977307. [Google Scholar] [CrossRef]
- Sugimoto, T.; Tokuda, H.; Miura, H.; Kawashima, S.; Ando, T.; Kuroda, Y.; Matsumoto, N.; Fujita, K.; Uchida, K.; Kishino, Y.; et al. Cross-sectional association of metrics derived from continuous glucose monitoring with cognitive performance in older adults with type 2 diabetes. Diabetes Obes. Metab. 2023, 25, 222–228. [Google Scholar] [CrossRef]
- Matsubara, M.; Makino, H.; Washida, K.; Matsuo, M.; Koezuka, R.; Ohata, Y.; Tamanaha, T.; Honda-Kohmo, K.; Noguchi, M.; Tomita, T.; et al. A Prospective Longitudinal Study on the Relationship Between Glucose Fluctuation and Cognitive Function in Type 2 Diabetes: PROPOSAL Study Protocol. Diabetes Ther. 2020, 11, 2729–2737. [Google Scholar] [CrossRef]
- Li, W.; Maloney, R.E.; Aw, T.Y. High glucose, glucose fluctuation and carbonyl stress enhance brain microvascular endothelial barrier dysfunction: Implications for diabetic cerebral microvasculature. Redox Biol. 2015, 5, 80–90. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, S.; Seiça, R.M.; Moreira, P.I. Uncoupling Protein 2 Inhibition Exacerbates Glucose Fluctuation-Mediated Neuronal Effects. Neurotox. Res. 2018, 33, 388–401. [Google Scholar] [CrossRef]
- Lv, Y.; Zhu, L.-L.; Shu, G.-H. Relationship between Blood Glucose Fluctuation and Brain Damage in the Hypoglycemia Neonates. Am. J. Perinatol. 2018, 35, 946–950. [Google Scholar] [CrossRef]
- Meng, Q.-Z.; Wang, Y.; Li, B.; Xi, Z.; Wang, M.; Xiu, J.-Q.; Yang, X.-P. Relationship between glycemic variability and cognitive function in lacune patients with type 2 diabetes. World J. Clin. Cases 2023, 11, 1019–1030. [Google Scholar] [CrossRef]
- Diéguez, E.; Nieto-Ruiz, A.; Martín-Pérez, C.; Sepúlveda-Valbuena, N.; Herrmann, F.; Jiménez, J.; De-Castellar, R.; Catena, A.; Garcia-Santos, J.A.; Bermudez, M.G. Association study between hypothalamic functional connectivity, early nutrition, and glucose levels in healthy children aged 6 years: The COGNIS study follow-up. Front. Nutr. 2022, 9, 935740. [Google Scholar] [CrossRef] [PubMed]
- Araki, S.; Yamamoto, Y.; Saito, R.; Kawakita, A.; Eguchi, M.; Goto, M.; Kubo, K.; Kawagoe, R.; Kawada, Y.; Kusuhara, K. Plasma but not serum brain-derived neurotrophic factor concentration is decreased by oral glucose tolerance test-induced hyperglycemia in children. J. Pediatr. Endocrinol. Metab. 2017, 30, 525–530. [Google Scholar] [CrossRef]
- Lee, I.-T.; Chen, C.-H.; Wang, J.-S.; Fu, C.-P.; Lee, W.-J.; Liang, K.-W.; Lin, S.-Y.; Sheu, W.H.-H. The association between brain-derived neurotrophic factor and central pulse pressure after an oral glucose tolerance test. Clin. Chim. Acta 2018, 476, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.-T.; Li, Y.-H.; Sheu, W.H.-H. Brain-Derived Neurotrophic Factor during Oral Glucose Tolerance Test Predicts Cardiovascular Outcomes. Int. J. Mol. Sci. 2020, 21, 5008. [Google Scholar] [CrossRef] [PubMed]
- Maric, G.; Lalic, K.; Pekmezovic, T.; Tamas, O.; Rajkovic, N.; Rasulic, I.; Mesaros, S.; Drulovic, J. Could the performance of oral glucose tolerance test contribute to the brain health-focused care in multiple sclerosis? Mult. Scler. Relat. Disord. 2020, 46, 102536. [Google Scholar] [CrossRef]
Reference | Subjects | Age | NIRS System | Experimental Procedure | Results | Limitations |
---|---|---|---|---|---|---|
Aitchinson et al. [54] | 15 pts (8 males) with diabetes (5 T1DM, 10 T2DM); 15 (7 males) HC | Diabetes: 47 ± 19 years old HC: 46 ± 23 years old | 2-channel CW fNIRS on occipital cortex (V1) | 7 cycles of 30 s of pattern-reversal checkerboard stimulation and 30 s of gray screen | Greater HDR in diabetic pts compared to controls; greater HDR in T1DM pts compared to T2DM pts | -Little brain surface covered by fNIRS type-T1DM and T2DM merged in the same group when performing between-group comparisons -Small sample size |
Gorniak et al. [64] | 21 post-menopausal women with T2DM; 21 post-menopausal controls | T2DM: 65 ± 6 years old HC: 67 years old | 28-channel CW fNIRS on prefrontal, motor, and sensory cortices | fNIRS measurements during N-back task and N-back task + motor task | Decreased accuracy and increased reaction times increase in OxyHb concentration in the diabetes group compared to HC | Small sample size |
Li et al. [74] | 24 T2DM pts (14 males) in liraglutide group; 23 T2DM pts (9 males) in control group | Intervention group: 55 ± 12 years old CT: 60 ± 7 years old | 20-channel CW fNIRS on the prefrontal cortex | fNIRS measurement during verbal fluency task and neuropsychological assessment before and after 12 weeks of treatment in liraglutide group and after 12 weeks with no treatment in control group | Increase in OxyHb concentration in DLPF and OFC and higher MMSE, total learning, and animal naming test scores in liraglutide group compared to control group | -fNIRS measurement conducted only during verbal fluency test and not while performing all the other tests -Small sample size |
Mazaika et al. [55] | 19 T1DM pts (9 males); 18 HC (10 males) | T1DM: 12 ± 3 years old HC: 11 ± 3 years old | 48-channel CW fNIRS on the lateral prefrontal cortex, superior temporal gyrus, postcentral gyrus, and supramarginal gyrus | fNIRS measurement during Go/No-Go task | No significant differences in accuracy and response time; higher frontoparietal activations in diabetes group compared to HC | -Small sample size -Young age could have prevented significant differences in behavioral data due to high brain plasticity |
Holtzer et al. [59] | 43 T2DM pts (37 with oral hypoglycemic therapy and 6 with insulin therapy; 272 HC; 56.5% females of all subjects | All subjects: 77 ± 7 years old | CW fNIRS with 4 sources on the prefrontal cortex | fNIRS measurement during normal-walk task, cognitive interference task, and walk-while-talking task | Higher OxyHb concentration and lower performance during cognitive interference in diabetes group compared to control group; lower OxyHb concentration during walk-while-talking task in diabetes group compared to HC | Imbalanced sample size of diabetic and control groups and of diabetic subgroups |
Kaligal et al. [65] | 25 T2DM pts in yoga treatment group; 25 T2DM pts in no treatment group; 26 males of all subjects | 62 ± 6 years old | 24-channel CW fNIRS on the prefrontal cortex | fNIRS measurement during 3 blocks of 20 trials of N-back task alternated with 20 s of rest at baseline and after 6 and 12 weeks of yoga in the yoga group and after 6 and 12 weeks with no treatment in the control group | Improved accuracy and reaction times associated with increased OxyHb concentration in the yoga group compared to baseline | Small sample size |
Zhao et al. [70] | 19 elderly individuals with T2DM and 38 HC | 60 years old | CW fNIRS with 4 sources and 2 detectors on the prefrontal cortex | fNIRS measurement during Mini-Cog three-item recall test | Decrease in power in the 0.01–0.02 Hz frequency band more pronounced in the diabetes group compared to control group | Imbalanced sample size of groups |
Reference | Subjects | Age | NIRS System | Experimental Procedure | Results | Limitations |
---|---|---|---|---|---|---|
Rösch et al. [81] | 15 pts (9 females) with OB; 13 pts (11 females) with OB+BED; 12 HC (8 females) | OB group: 50 ± 18 years old; OB+BED: 43 ± 13 years old; HC: 56 ± 19 years old | 28-channel CW NIRS on the prefrontal cortex | fNIRS measurement during passive viewing of 5 blocks of 12 stimuli each of appetitive pictures of food and Go/No-Go task with 6 blocks of 12 selected food pictures | Decreased response of prefrontal cortex in OB and OB+BED groups compared to control group and in BED group compared to OB group in both tasks | -Small sample size -No behavioral data of Go/No-Go task to be compared between groups and to be correlated with fNIRS data |
Deng et al. [82] | 15 pts (9 males) with OB; 17 (8 males) subjects with overweight | OB: 20 ± 2 years old; overweight: 20 ± 2 years old | 20-channel CW NIRS on the prefrontal cortex | fNIRS measurement during 48 trials (24 congruent and 24 incongruent) of Stroop task | Greater interference effect in OB group compared to overweight group; decreased HDR in subjects with elevated waist circumference and BMI | -Small sample size -No control group with normal-weight individuals |
Huang et al. [86] | 38 pts (24 males) with OB | Males: 17 ± 5 years old; females: 15 ± 5 years old | 20-channel CW fNIRS on the prefrontal cortex | fNIRS measurement during 48 trials (24 congruent and 24 incongruent) of Stroop task | No significant association between age and behavioral/hemodynamic interference effect | No control group with normal-weight individuals |
Veit et al. [83] | 24 pts (20 females) with BED: 14 of them allocated to treatment group and 10 to no treatment group; 12 HC (7 females) | BED: 39 ± 12 years old; HC: 43 ± 13 years old | 12-channel CW NIRS on the prefrontal cortex | fNIRS measurement during a 28 min Go/No-Go task with 12 blocks of healthy and unhealthy food before and after 8 weekly sessions of cognitive treatment and after 3 months from treatment | Weaker activation of the prefrontal cortex during response inhibition in BED group compared to healthy subjects; increased activation following treatment in BED group with treatment compared to BED group with no treatment after 3 mo | Imbalanced number of males and females |
Xu et al. [84] | 31 subjects (12 females) with OB or overweight | 18 ± 3 years old | 20-channel CW fNIRS on the prefrontal cortex | fNIRS measurement during 48 trials (24 congruent and 24 incongruent) of Stroop task | Reduced reaction times and increased HDR during interference in subjects that lost more weight | No control group with normal-weight individuals |
Rhee et al. [90] | 14 females with OB; 14 females without OB; 11 males with OB; 14 males without OB | Males without OB: 75 ± 6 years old; males with OB: 73 ± 7 years old; females without OB: 72 ± 4 years old; females with OB: 72 ± 6 years old | 26-channel CW NIRS on the prefrontal, motor, and sensory areas | fNIRS measurement during 3 min of rest and during 3 trials of motor fatigue test | Increased variability in functional connectivity during rest in the group with OB compared to the group without OB; increased variability in functional connectivity during task in group without OB compared to group with OB; increased connectivity between all nodes in males compared to females; greater fatigue-related response of Oxy-Hb in the contralateral sensory area in group without OB compared to group with OB; lower coefficient of variability in motor performance in group with OB compared to group without OB | Small sample size |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rebelos, E.; Malloggi, E.; Parenti, M.; Dardano, A.; Tura, A.; Daniele, G. Near-Infrared Spectroscopy: A Free-Living Neuroscience Tool to Better Understand Diabetes and Obesity. Metabolites 2023, 13, 814. https://doi.org/10.3390/metabo13070814
Rebelos E, Malloggi E, Parenti M, Dardano A, Tura A, Daniele G. Near-Infrared Spectroscopy: A Free-Living Neuroscience Tool to Better Understand Diabetes and Obesity. Metabolites. 2023; 13(7):814. https://doi.org/10.3390/metabo13070814
Chicago/Turabian StyleRebelos, Eleni, Eleonora Malloggi, Martina Parenti, Angela Dardano, Andrea Tura, and Giuseppe Daniele. 2023. "Near-Infrared Spectroscopy: A Free-Living Neuroscience Tool to Better Understand Diabetes and Obesity" Metabolites 13, no. 7: 814. https://doi.org/10.3390/metabo13070814
APA StyleRebelos, E., Malloggi, E., Parenti, M., Dardano, A., Tura, A., & Daniele, G. (2023). Near-Infrared Spectroscopy: A Free-Living Neuroscience Tool to Better Understand Diabetes and Obesity. Metabolites, 13(7), 814. https://doi.org/10.3390/metabo13070814