Maternal Dietary Protein Patterns and Neonatal Anthropometrics: A Prospective Study with Insights from NMR Metabolomics in Amniotic Fluid
Abstract
:1. Introduction
2. Materials and Methods
- A.
- Materials and Methods Regarding the Primary Objective
2.1. Study Population and Design
2.2. Data Collection
2.2.1. Maternal Sociodemographic and Anthropometric Data
2.2.2. Dietary Data
2.2.3. Birth Outcome Data
2.3. Dietary Data Processing
2.3.1. Conversion of Participants’ Responses into Daily Intakes
2.3.2. Extraction of Dietary Protein Patterns
- To calculate protein intake (g/day) for each of the 298 participants, the amount (g) of each food consumed daily was multiplied by the protein content (g) of this specific food.
- To convert these intakes into the percentage (%) of energy derived from protein, the formula given below was applied:100 × [4 × individual protein intake from a specific food (g)/individual total energy intake (kcal)]
- To facilitate the interpretation of HCA, foods were classified, according to their protein content as well as practices/preferences reflecting dietary habits, into 19 predefined and mutually exclusive food groups (Supplementary Material SI—Table SI.1) [40,41,42,43].
- The percentages of energy derived from protein for the 19 food groups were log10 (X + 1) transformed to remove the potential extraneous effect of variables with the largest variances as well as to achieve homogeneity of variance [44].
2.3.3. Statistical Analysis Regarding the Primary Objective
- B.
- Materials and Methods Regarding the Secondary Objective
2.4. Population
2.5. Collection of Amniotic Fluid
2.6. Amniotic Fluid Metabolomic Analysis
2.6.1. Nuclear Magnetic Resonance Spectroscopy
2.6.2. Data Preprocessing of 1H-NMR
2.6.3. Annotation of Metabolites
2.6.4. Metabolomic Profiling
2.7. Appraisal of Dietary-Induced Differences in Amniotic Fluid Metabolic Signature
3. Results
- A.
- Results Regarding the Primary Objective
3.1. Population under Study
3.2. Identification of Dietary Protein Patterns
3.3. Comparative Analysis of Food Group Preference and Nutrient Profile across Dietary Protein Patterns
3.4. Potential Associations between Maternal Dietary Protein Patterns and Neonatal Anthropometrics
- B.
- Results Regarding the Secondary Objective
3.5. Potential Metabolic Signatures Related to Maternal Dietary Protein Patterns
3.5.1. Exploratory Metabolomics Approach
3.5.2. Supervised Evaluation of Metabolic Patterns
3.5.3. Receiver-Operating Characteristic Curve Analysis for Metabolite Markers
3.5.4. Metabolite Pathway Analysis
4. Discussion
4.1. Commentary on Dietary Protein Patterns and Potential Associations with Neonatal Anthropometrics (Primary Objective)
4.2. Exploring Relative Differences in Metabolic Signatures of Maternal Dietary Protein Patterns (Secondary Objective)
4.3. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Herring, C.M.; Bazer, F.W.; Johnson, G.A.; Wu, G. Impacts of Maternal Dietary Protein Intake on Fetal Survival, Growth, and Development. Exp. Biol. Med. 2018, 243, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Paknahad, Z.; Fallah, A.; Moravejolahkami, A.R. Maternal Dietary Patterns and Their Association with Pregnancy Outcomes. Clin. Nutr. Res. 2019, 8, 64–73. [Google Scholar] [CrossRef]
- Hsu, C.-N.; Tain, Y.-L. Amino Acids and Developmental Origins of Hypertension. Nutrients 2020, 12, 1763. [Google Scholar] [CrossRef]
- Lu, M.-S.; Chen, Q.-Z.; He, J.-R.; Wei, X.-L.; Lu, J.; Li, S.; Wen, X.; Chan, F.; Chen, N.-N.; Qiu, L.; et al. Maternal Dietary Patterns and Fetal Growth: A Large Prospective Cohort Study in China. Nutrients 2016, 8, 257. [Google Scholar] [CrossRef]
- Chia, A.-R.; Chen, L.-W.; Lai, J.S.; Wong, C.H.; Neelakantan, N.; van Dam, R.M.; Chong, M.F.-F. Maternal Dietary Patterns and Birth Outcomes: A Systematic Review and Meta-Analysis. Adv. Nutr. 2019, 10, 685–695. [Google Scholar] [CrossRef] [PubMed]
- de Souza, R.J.; Shanmuganathan, M.; Lamri, A.; Atkinson, S.A.; Becker, A.; Desai, D.; Gupta, M.; Mandhane, P.J.; Moraes, T.J.; Morrison, K.M.; et al. Maternal Diet and the Serum Metabolome in Pregnancy: Robust Dietary Biomarkers Generalizable to a Multiethnic Birth Cohort. Curr. Dev. Nutr. 2020, 4, nzaa144. [Google Scholar] [CrossRef]
- Yang, J.; Chang, Q.; Tian, X.; Zhang, B.; Zeng, L.; Yan, H.; Dang, S.; Li, Y.-H. Dietary Protein Intake during Pregnancy and Birth Weight among Chinese Pregnant Women with Low Intake of Protein. Nutr. Metab. 2022, 19, 43. [Google Scholar] [CrossRef]
- Moore, V.M.; Willson, K.J.; Davies, M.J.; Worsley, A.; Robinson, J.S. Dietary Composition of Pregnant Women Is Related to Size of the Baby at Birth. J. Nutr. 2004, 134, 1820–1826. [Google Scholar] [CrossRef]
- Cucó, G.; Fernández-Ballart, J.; Sala, J.; Viladrich, C.; Iranzo, R.; Vila, J.; Arija, V. Dietary Patterns and Associated Lifestyles in Preconception, Pregnancy and Postpartum. Eur. J. Clin. Nutr. 2005, 60, 364–371. [Google Scholar] [CrossRef]
- Geraghty, A.A.; O’Brien, E.C.; Alberdi, G.; Horan, M.K.; Donnelly, J.; Larkin, E.; Segurado, R.; Mehegan, J.; Molloy, E.J.; McAuliffe, F.M. Maternal Protein Intake during Pregnancy Is Associated with Child Growth up to 5 Years of Age, but Not through Insulin-like Growth Factor-1: Findings from the ROLO Study. Br. J. Nutr. 2018, 120, 1252–1261. [Google Scholar] [CrossRef]
- Najpaverova, S.; Kovarik, M.; Kacerovsky, M.; Zadak, Z.; Hronek, M. The Relationship of Nutritional Energy and Macronutrient Intake with Pregnancy Outcomes in Czech Pregnant Women. Nutrients 2020, 12, 1152. [Google Scholar] [CrossRef] [PubMed]
- van Zundert, S.; van der Padt, S.; Willemsen, S.; Rousian, M.; Mirzaian, M.; van Schaik, R.; Steegers-Theunissen, R.; van Rossem, L. Periconceptional Maternal Protein Intake from Animal and Plant Sources and the Impact on Early and Late Prenatal Growth and Birthweight: The Rotterdam Periconceptional Cohort. Nutrients 2022, 14, 5309. [Google Scholar] [CrossRef] [PubMed]
- Andreasyan, K.; Ponsonby, A.-L.; Dwyer, T.; Morley, R.; Riley, M.; Dear, K.; Cochrane, J. Higher Maternal Dietary Protein Intake in Late Pregnancy Is Associated with a Lower Infant Ponderal Index at Birth. Eur. J. Clin. Nutr. 2006, 61, 498–508. [Google Scholar] [CrossRef] [PubMed]
- Switkowski, K.M.; Jacques, P.F.; Must, A.; Kleinman, K.P.; Gillman, M.W.; Oken, E. Maternal Protein Intake during Pregnancy and Linear Growth in the Offspring. Am. J. Clin. Nutr. 2016, 104, 1128–1136. [Google Scholar] [CrossRef]
- Borazjani, F.; Angali, K.A.; Kulkarni, S.S. Milk and Protein Intake by Pregnant Women Affects Growth of Foetus. J. Health Popul. Nutr. 2013, 31, 435–445. [Google Scholar] [CrossRef]
- Morisaki, N.; Nagata, C.; Yasuo, S.; Morokuma, S.; Kato, K.; Sanefuji, M.; Shibata, E.; Tsuji, M.; Senju, A.; Kawamoto, T.; et al. Optimal Protein Intake during Pregnancy for Reducing the Risk of Fetal Growth Restriction: The Japan Environment and Children’s Study. Br. J. Nutr. 2018, 120, 1432–1440. [Google Scholar] [CrossRef]
- Stephens, T.V.; Payne, M.; Ball, R.O.; Pencharz, P.B.; Elango, R. Protein Requirements of Healthy Pregnant Women during Early and Late Gestation Are Higher than Current Recommendations. J. Nutr. 2015, 145, 73–78. [Google Scholar] [CrossRef]
- Kizirian, N.; Markovic, T.; Muirhead, R.; Brodie, S.; Garnett, S.; Louie, J.; Petocz, P.; Ross, G.; Brand-Miller, J. Macronutrient Balance and Dietary Glycemic Index in Pregnancy Predict Neonatal Body Composition. Nutrients 2016, 8, 270. [Google Scholar] [CrossRef]
- Mangano, K.M.; Sahni, S.; Kiel, D.P.; Tucker, K.L.; Dufour, A.B.; Hannan, M.T. Bone Mineral Density and Protein Derived Food Clusters from the Framingham Offspring Study. J. Acad. Nutr. Diet. 2015, 115, 1605–1613. [Google Scholar] [CrossRef]
- de Gavelle, E.; Huneau, J.-F.; Mariotti, F. Patterns of Protein Food Intake Are Associated with Nutrient Adequacy in the General French Adult Population. Nutrients 2018, 10, 226. [Google Scholar] [CrossRef]
- Mangano, K.M.; Sahni, S.; Kiel, D.P.; Tucker, K.L.; Dufour, A.B.; Hannan, M.T. Dietary Protein Is Associated with Musculoskeletal Health Independently of Dietary Pattern: The Framingham Third Generation Study. Am. J. Clin. Nutr. 2017, 105, 714–722. [Google Scholar] [CrossRef] [PubMed]
- Ke, Q.; Chen, C.; He, F.; Ye, Y.; Bai, X.; Cai, L.; Xia, M. Association between Dietary Protein Intake and Type 2 Diabetes Varies by Dietary Pattern. Diabetol. Metab. Syndr. 2018, 10, 48. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Wu, W.; Tang, N.; Chen, Y.; Jing, J.; Cai, L. Maternal Dietary Protein Patterns during Pregnancy and the Risk of Infant Eczema: A Cohort Study. Front. Nutr. 2021, 8, 608972. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Tang, N.; Zeng, J.; Jing, J.; Cai, L. Dietary Protein Patterns during Pregnancy Are Associated with Risk of Gestational Diabetes Mellitus in Chinese Pregnant Women. Nutrients 2022, 14, 1623. [Google Scholar] [CrossRef]
- Crume, T.L.; Brinton, J.T.; Shapiro, A.; Kaar, J.; Glueck, D.H.; Siega-Riz, A.M.; Dabelea, D. Maternal Dietary Intake during Pregnancy and Offspring Body Composition: The Healthy Start Study. Am. J. Obstet. Gynecol. 2016, 215, 609.e1–609.e8. [Google Scholar] [CrossRef]
- Fotiou, M.; Fotakis, C.; Tsakoumaki, F.; Athanasiadou, E.; Kyrkou, C.; Dimitropoulou, A.; Tsiaka, T.; Chatziioannou, A.C.; Sarafidis, K.; Menexes, G.; et al. 1H NMR-Based Metabolomics Reveals the Effect of Maternal Habitual Dietary Patterns on Human Amniotic Fluid Profile. Sci. Rep. 2018, 8, 4076. [Google Scholar] [CrossRef]
- Kadakia, R.; Nodzenski, M.; Talbot, O.; Kuang, A.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.; Ilkayeva, O.; O’Neal, S.E.; Lowe, L.P.; et al. Maternal Metabolites during Pregnancy Are Associated with Newborn Outcomes and Hyperinsulinaemia across Ancestries. Diabetologia 2018, 62, 473–484. [Google Scholar] [CrossRef]
- Chia, A.-R.; de Seymour, J.V.; Wong, G.; Sulek, K.; Han, T.-L.; McKenzie, E.J.; Aris, I.M.; Godfrey, K.M.; Yap, F.; Tan, K.H.; et al. Maternal Plasma Metabolic Markers of Neonatal Adiposity and Associated Maternal Characteristics: The GUSTO Study. Sci. Rep. 2020, 10, 9422. [Google Scholar] [CrossRef]
- Pintus, R.; Dessì, A.; Mussap, M.; Fanos, V. Metabolomics Can Provide New Insights into Perinatal Nutrition. Acta Paediatr. 2021, 112, 233–241. [Google Scholar] [CrossRef]
- Gleason, B.; Kuang, A.; Bain, J.R.; Muehlbauer, M.J.; Ilkayeva, O.R.; Scholtens, D.M.; Lowe, W.L. Association of Maternal Metabolites and Metabolite Networks with Newborn Outcomes in a Multi-Ancestry Cohort. Metabolites 2023, 13, 505. [Google Scholar] [CrossRef]
- Orczyk-Pawilowicz, M.; Jawien, E.; Deja, S.; Hirnle, L.; Zabek, A.; Mlynarz, P. Metabolomics of Human Amniotic Fluid and Maternal Plasma during Normal Pregnancy. PLoS ONE 2016, 11, e0152740. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Sun, Y.; Zhang, X.; Wang, X.; Yang, P.; Guan, X.; Wang, Y.; Zhou, X.; Hu, P.; Jiang, T.; et al. Relationship between Amniotic Fluid Metabolic Profile with Fetal Gender, Maternal Age, and Gestational Week. BMC Pregnancy Childbirth 2021, 21, 638. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Report of a WHO Consultation on Obesity. Obesity, Preventing and Managing the Global Epidemic; World Health Organization: Geneva, Switzerland, 1998. [Google Scholar]
- Athanasiadou, E.; Kyrkou, C.; Fotiou, M.; Tsakoumaki, F.; Dimitropoulou, A.; Polychroniadou, E.; Menexes, G.; Athanasiadis, A.; Biliaderis, C.; Michaelidou, A.-M. Development and Validation of a Mediterranean Oriented Culture-Specific Semi-Quantitative Food Frequency Questionnaire. Nutrients 2016, 8, 522. [Google Scholar] [CrossRef] [PubMed]
- Villar, J.; Altman, D.; Purwar, M.; Noble, J.; Knight, H.; Ruyan, P.; Cheikh Ismail, L.; Barros, F.; Lambert, A.; Papageorghiou, A.; et al. The Objectives, Design and Implementation of the INTERGROWTH-21stProject. BJOG Int. J. Obstet. Gynaecol. 2013, 120, 9–26. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA). Panel on dietetic products, nutrition and allergies (NDA), Scientific opinion on dietary reference values for energy. EFSA J. 2013, 11, 3005. [Google Scholar] [CrossRef]
- Sharma, S. Cluster analysis. In Applied Multivariate Techniques; John Wiley & Sons Inc.: New York, NY, USA, 1996. [Google Scholar]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis: A Global Perspective. In Canonical Correlation: A Supplement to Multivariate Data Analysis, 7th ed.; Pearson Prentice Hall Publishing: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Ward, J.H., Jr. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Brantsæter, A.L.; Haugen, M.; Samuelsen, S.O.; Torjusen, H.; Trogstad, L.; Alexander, J.; Magnus, P.; Meltzer, H.M. A Dietary Pattern Characterized by High Intake of Vegetables, Fruits, and Vegetable Oils Is Associated with Reduced Risk of Preeclampsia in Nulliparous Pregnant Norwegian Women. J. Nutr. 2009, 139, 1162–1168. [Google Scholar] [CrossRef]
- Okubo, H.; Miyake, Y.; Sasaki, S.; Tanaka, K.; Murakami, K.; Hirota, Y. Maternal Dietary Patterns in Pregnancy and Fetal Growth in Japan: The Osaka Maternal and Child Health Study. Br. J. Nutr. 2011, 107, 1526–1533. [Google Scholar] [CrossRef]
- Eshriqui, I.; Vilela, A.A.F.; Rebelo, F.; Farias, D.R.; Castro, M.B.T.; Kac, G. Gestational Dietary Patterns Are Not Associated with Blood Pressure Changes during Pregnancy and Early Postpartum in a Brazilian Prospective Cohort. Eur. J. Nutr. 2014, 55, 21–32. [Google Scholar] [CrossRef]
- Parisi, F.; Rousian, M.; Huijgen, N.A.; Koning, A.H.J.; Willemsen, S.P.; de Vries, J.H.M.; Cetin, I.; Steegers, E.A.P.; Steegers-Theunissen, R.P.M. Periconceptional Maternal “High Fish and Olive Oil, Low Meat” Dietary Pattern Is Associated with Increased Embryonic Growth: The Rotterdam Periconceptional Cohort (Predict) Study. Ultrasound Obstet. Gynecol. 2017, 50, 709–716. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Z.; Gao, Q.; Zhao, H.; Chen, S.; Huang, L.; Wang, W.; Wang, T. A Review of Statistical Methods for Dietary Pattern Analysis. Nutr. J. 2021, 20, 37. [Google Scholar] [CrossRef] [PubMed]
- Funtikova, A.N.; Benítez-Arciniega, A.A.; Fitó, M.; Schröder, H. Modest Validity and Fair Reproducibility of Dietary Patterns Derived by Cluster Analysis. Nutr. Res. 2015, 35, 265–268. [Google Scholar] [CrossRef] [PubMed]
- Freitas-Vilela, A.A.; Smith, A.D.A.C.; Kac, G.; Pearson, R.M.; Heron, J.; Emond, A.; Hibbeln, J.R.; Castro, M.B.T.; Emmett, P.M. Dietary Patterns by Cluster Analysis in Pregnant Women: Relationship with Nutrient Intakes and Dietary Patterns in 7-Year-Old Offspring. Matern. Child Nutr. 2016, 13, e12353. [Google Scholar] [CrossRef] [PubMed]
- Tsakoumaki, F.; Kyrkou, C.; Fotiou, M.; Dimitropoulou, A.; Biliaderis, C.G.; Athanasiadis, A.P.; Menexes, G.; Michaelidou, A.-M. Framework of Methodology to Assess the Link between a Posteriori Dietary Patterns and Nutritional Adequacy: Application to Pregnancy. Metabolites 2022, 12, 395. [Google Scholar] [CrossRef] [PubMed]
- Mehta, C.; Patel, R. SPSS Exact Tests, 7.0 for Windows; SPSS Inc.: Chicago, IL, USA, 1996. [Google Scholar]
- Filntisi, A.; Fotakis, C.; Asvestas, P.; Matsopoulos, G.K.; Zoumpoulakis, P.; Cavouras, D. Automated Metabolite Identification from Biological Fluid 1H NMR Spectra. Metabolomics 2017, 13, 146. [Google Scholar] [CrossRef]
- Trygg, J.; Wold, S. Orthogonal Projections to Latent Structures (O-PLS). J. Chemom. 2002, 16, 119–128. [Google Scholar] [CrossRef]
- Eriksson, L.; Trygg, J.; Wold, S. CV-ANOVA for Significance Testing of PLS and OPLS® Models. J. Chemom. 2008, 22, 594–600. [Google Scholar] [CrossRef]
- Fotakis, C.; Moros, G.; Kontogeorgou, A.; Iacovidou, N.; Boutsikou, T.; Zoumpoulakis, P. Uncontrolled Thyroid during Pregnancy Alters the Circulative and Exerted Metabolome. Int. J. Mol. Sci. 2022, 23, 4248. [Google Scholar] [CrossRef]
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.-É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the Gap between Raw Spectra and Functional Insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef]
- Efron, B. Second Thoughts on the Bootstrap. Stat. Sci. 2003, 18, 135–140. [Google Scholar] [CrossRef]
- Serra-Majem, L.; Román-Viñas, B.; Sanchez-Villegas, A.; Guasch-Ferré, M.; Corella, D.; La Vecchia, C. Benefits of the Mediterranean Diet: Epidemiological and Molecular Aspects. Mol. Asp. Med. 2019, 67, 1–55. [Google Scholar] [CrossRef] [PubMed]
- Papazian, T.; Salameh, P.; Tayeh, G.A.; Kesrouani, A.; Aoun, C.; Diwan, M.A.; Khabbaz, L.R. Dietary Patterns and Birth Outcomes of Healthy Lebanese Pregnant Women. Front. Nutr. 2022, 9, 977288. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, K.; Bouhallab, S.; Croguennec, T.; Renard, D.; Lechevalier, V. Recent Trends in Design of Healthier Plant-Based Alternatives: Nutritional Profile, Gastrointestinal Digestion, and Consumer Perception. Crit. Rev. Food Sci. Nutr. 2022, 1–16. [Google Scholar] [CrossRef]
- Blumfield, M.; Hure, A.; MacDonald-Wicks, L.; Smith, R.; Simpson, S.; Raubenheimer, D.; Collins, C. The Association between the Macronutrient Content of Maternal Diet and the Adequacy of Micronutrients during Pregnancy in the Women and Their Children’s Health (WATCH) Study. Nutrients 2012, 4, 1958–1976. [Google Scholar] [CrossRef]
- Wabo, T.M.C.; Wang, Y.; Nyamao, R.M.; Wang, W.; Zhu, S. Protein-to-carbohydrate ratio is informative of diet quality and associates with all-cause mortality: Findings from the National Health and Nutrition Examination Survey (2007–2014). Front. Public Health 2022, 10, 1043035. [Google Scholar] [CrossRef]
- Blumfield, M.L.; Hure, A.J.; MacDonald-Wicks, L.K.; Smith, R.; Simpson, S.J.; Giles, W.B.; Raubenheimer, D.; Collins, C.E. Dietary Balance during Pregnancy Is Associated with Fetal Adiposity and Fat Distribution. Am. J. Clin. Nutr. 2012, 96, 1032–1041. [Google Scholar] [CrossRef] [PubMed]
- Pietiläinen, K.; Kaprio, J.; Räsänen, M.; Winter, T.; Rissanen, A.; Rose, R. Tracking of Body Size from Birth to Late Adolescence: Contributions of Birth Length, Birth Weight, Duration of Gestation, Parents’ Body Size, and Twinship. Am. J. Epidemiol. 2001, 154, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Lande, B.; Andersen, L.; Henriksen, T.; Baerug, A.; Johansson, L.; Trygg, K.; Bjørneboe, G.-E.; Veierød, M. Sponsorship: The National Council on Nutrition and Physical. Eur. J. Clin. Nutr. 2005, 59, 1241–1249. [Google Scholar] [CrossRef]
- Araújo, C.L.; Hallal, P.C.; Nader, G.A.; Neutzling, M.B.; deFátima Vieira, M.; Menezes, A.M.B.; Victora, C.G. Effect of Birth Size and Proportionality on BMI and Skinfold Thickness in Early Adolescence: Prospective Birth Cohort Study. Eur. J. Clin. Nutr. 2008, 63, 634–639. [Google Scholar] [CrossRef]
- Masalin, S.; Rönö, K.; Kautiainen, H.; Gissler, M.; Eriksson, J.G.; Laine, M.K. Body Surface Area at Birth and Later Risk for Gestational Diabetes Mellitus among Primiparous Women. Acta Diabetol. 2018, 56, 397–404. [Google Scholar] [CrossRef]
- Jelenkovic, A.; Yokoyama, Y.; Sund, R.; Hur, Y.-M.; Harris, J.R.; Brandt, I.; Nilsen, T.S.; Ooki, S.; Ullemar, V.; Almqvist, C.; et al. Associations between Birth Size and Later Height from Infancy through Adulthood: An Individual Based Pooled Analysis of 28 Twin Cohorts Participating in the CODA Twins Project. Early Hum. Dev. 2018, 120, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Lépine, G.; Fouillet, H.; Rémond, D.; Huneau, J.-F.; Mariotti, F.; Polakof, S. A Scoping Review: Metabolomics Signatures Associated with Animal and Plant Protein Intake and Their Potential Relation with Cardiometabolic Risk. Adv. Nutr. 2021, 12, 2112–2131. [Google Scholar] [CrossRef] [PubMed]
- Andraos, S.; Beck, K.L.; Jones, M.B.; Han, T.-L.; Conlon, C.A.; de Seymour, J.V. Characterizing Patterns of Dietary Exposure Using Metabolomic Profiles of Human Biospecimens: A Systematic Review. Nutr. Rev. 2022, 80, 699–708. [Google Scholar] [CrossRef]
- Perrone, S.; Laschi, E.; De Bernardo, G.; Giordano, M.; Vanacore, F.; Tassini, M.; Calderisi, M.; Toni, A.L.; Buonocore, G.; Longini, M. Newborn Metabolomic Profile Mirrors that of Mother in Pregnancy. Med. Hypotheses 2020, 137, 109543. [Google Scholar] [CrossRef] [PubMed]
- Shearer, J.; Klein, M.S.; Vogel, H.J.; Mohammad, S.; Bainbridge, S.; Adamo, K.B. Maternal and Cord Blood Metabolite Associations with Gestational Weight Gain and Pregnancy Health Outcomes. J. Proteome Res. 2021, 20, 1630–1638. [Google Scholar] [CrossRef]
- Koletzko, B.; Brands, B.; Chourdakis, M.; Cramer, S.; Grote, V.; Hellmuth, C.; Kirchberg, F.; Prell, C.; Rzehak, P.; Uhl, O.; et al. The Power of Programming and the EarlyNutrition Project. Ann. Nutr. Metab. 2014, 64, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Bowman, C.E.; Arany, Z.; Wolfgang, M.J. Regulation of Maternal–Fetal Metabolic Communication. Cell. Mol. Life Sci. 2020, 78, 1455–1486. [Google Scholar] [CrossRef]
- Bell, A.W.; Ehrhardt, R.A. Regulation of Placental Nutrient Transport and Implications for Fetal Growth. Nutr. Res. Rev. 2002, 15, 211–230. [Google Scholar] [CrossRef]
- Gibney, M.J.; Lanham-New, S.A.; Cassidy, A.; Vorster, H.H. (Eds.) Introduction to Human Nutrition, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 49–73. [Google Scholar]
- Jahan-Mihan, A.; Luhovyy, B.L.; El Khoury, D.; Anderson, G.H. Dietary Proteins as Determinants of Metabolic and Physiologic Functions of the Gastrointestinal Tract. Nutrients 2011, 3, 574–603. [Google Scholar] [CrossRef]
- Lin, G.; Wang, X.; Wu, G.; Feng, C.; Zhou, H.; Li, D.; Wang, J. Improving Amino Acid Nutrition to Prevent Intrauterine Growth Restriction in Mammals. Amino Acids 2014, 46, 1605–1623. [Google Scholar] [CrossRef]
- Merz, B.; Frommherz, L.; Rist, M.; Kulling, S.; Bub, A.; Watzl, B. Dietary Pattern and Plasma BCAA-Variations in Healthy Men and Women—Results from the KarMeN Study. Nutrients 2018, 10, 623. [Google Scholar] [CrossRef] [PubMed]
- Michaelidou, A.M.; Athanasiadis, A.; Fotiou, M.; Koutsos, A.; Leventis, C.P.; Bontis, J.N. 730: Amniotic Fluid Amino Acid Concentrations in Relation to Gestational Age and Maternal Nutrient Intake in a Group of Pregnant Women. Am. J. Obstet. Gynecol. 2008, 199, S208. [Google Scholar] [CrossRef]
- Llorach, R.; Garcia-Aloy, M.; Tulipani, S.; Vazquez-Fresno, R.; Andres-Lacueva, C. Nutrimetabolomic Strategies to Develop New Biomarkers of Intake and Health Effects. J. Agric. Food Chem. 2012, 60, 8797–8808. [Google Scholar] [CrossRef] [PubMed]
- Steffen, L.M.; Zheng, Y.; Steffen, B.T. Metabolomic Biomarkers Reflect Usual Dietary Pattern: A Review. Curr. Nutr. Rep. 2014, 3, 62–68. [Google Scholar] [CrossRef]
- O’Connor, S.; Greffard, K.; Leclercq, M.; Julien, P.; Weisnagel, S.J.; Gagnon, C.; Droit, A.; Bilodeau, J.; Rudkowska, I. Increased Dairy Product Intake Alters Serum Metabolite Profiles in Subjects at Risk of Developing Type 2 Diabetes. Mol. Nutr. Food Res. 2019, 63, 1900126. [Google Scholar] [CrossRef]
- Fotiou, M.; Kyrkou, C.; Tsakoumaki, F.; Dimitropoulou, A.; Virgiliou, C.; Fotakis, C.; Athanasiadou, E.; Loukri, A.; Papadopoulos, S.; Stamkopoulos, A.; et al. A pilot study to explore the link between habitual diet and urinary biomarkers during pregnancy. In Proceedings of the 3rd IMEKOFOODS, Metrology Promoting Harmonization & Standardization in Food & Nutrition, KEDEA Building, AUTH, Thessaloniki, Greece, 1–4 October 2017. [Google Scholar]
- Koski, K.G.; Fergusson, M.A. Amniotic Fluid Composition Responds to Changes in Maternal Dietary Carbohydrate and Is Related to Metabolic Status in Term Fetal Rats. J. Nutr. 1992, 122, 385–392. [Google Scholar] [CrossRef]
Characteristics | Mean ± SD |
---|---|
Age (years) | 36.44 ± 3.57 |
pp-BMI (kg/m2) | 24.03 ± 4.34 |
Gestational age (weeks) during enrollment | 19.52 ± 1.98 |
n (%) | |
Education (years) | |
≤12 | 76 (25.5%) |
>12 | 222 (74.5%) |
pp-BMI category | |
Underweight | 8 (2.7%) |
Normal weight | 194 (65.1%) |
Overweight | 68 (22.8%) |
Obese | 28 (9.4%) |
Smoking | |
Yes | 52 (17.4%) |
No | 246 (82.6%) |
PA | |
Low activity | 219 (73.5%) |
Moderate activity | 59 (19.8%) |
High activity | 20 (6.7%) |
Food Groups | “Dairy— Focused” (n = 74) | “Med– Fusion” (n = 104) | “Traditional— Inspired” (n = 120) | ANOVA p-Value | Eta Squared (η2) |
---|---|---|---|---|---|
Refined cereals ◊ | 0.46 a ± 0.10 | 0.47 a ± 0.12 | 0.19 b ± 0.13 | <0.001 | 0.552 |
(1.92 ± 0.61) | (2.03 ± 0.77) | (0.63 ± 0.51) | |||
Whole grain cereals ◊ | 0.04 b ± 0.07 | 0.06 b ± 0.09 | 0.39 a ± 0.11 | <0.001 | 0.751 |
(0.13 ± 0.24) | (0.16 ± 0.28) | (1.50 ± 0.58) | |||
Pasta ^ | 0.25 b ± 0.07 | 0.28 a ± 0.08 | 0.25 b ± 0.08 | <0.001 | 0.049 |
(0.79 ± 0.29) | (0.95 ± 0.37) | (0.80 ± 0.37) | |||
Traditional starchy foods ◊ | 0.08 b ± 0.06 | 0.11 a ± 0.07 | 0.11 a ± 0.05 | 0.004 | 0.037 |
(0.23 ± 0.18) | (0.30 ± 0.23) | (0.31 ± 0.18) | |||
Vegetables ^ | 0.19 a ± 0.05 | 0.18 a ± 0.06 | 0.19 a ± 0.05 | 0.091 | 0.016 |
(0.55 ± 0.18) | (0.51 ± 0.19) | (0.57 ± 0.19) | |||
Fruits ◊ | 0.10 a ± 0.06 | 0.11 a ± 0.08 | 0.11 a ± 0.06 | 0.496 | 0.005 |
(0.28 ± 0.18) | (0.31 ± 0.28) | (0.31 ± 0.19) | |||
Juices ◊ | 0.07 a ± 0.05 | 0.06 a ± 0.05 | 0.08 a ± 0.06 | 0.216 | 0.010 |
(0.17 ± 0.12) | (0.17 ± 0.13) | (0.20 ± 0.17) | |||
Low-fat dairy products ◊ | 0.57 a ± 0.14 | 0.04c ± 0.07 | 0.38 b ± 0.26 | <0.001 | 0.566 |
(2.92 ± 1.41) | (0.11 ± 0.20) | (1.82 ± 1.51) | |||
Full-fat dairy products ◊ | 0.03c ± 0.08 | 0.40 a ± 0.23 | 0.21 b ± 0.26 | <0.001 | 0.295 |
(0.09 ± 0.27) | (1.85 ± 1.37) | (0.98 ± 1.46) | |||
White cheese ◊ | 0.39 a ± 0.17 | 0.33 a ± 0.18 | 0.34 a ± 0.14 | 0.055 | 0.019 |
(1.63 ± 0.93) | (1.34 ± 0.89) | (1.29 ± 0.66) | |||
Yellow cheese ^ | 0.29 a ± 0.14 | 0.20 b ± 0.14 | 0.24 b ± 0.14 | <0.001 | 0.057 |
(1.05 ± 0.63) | (0.68 ± 0.63) | (0.81 ± 0.57) | |||
Red meat ^ | 0.55 a ± 0.13 | 0.54 a ± 0.1 | 0.45 b ± 0.13 | <0.001 | 0.120 |
(2.71 ± 1.15) | (2.55 ± 0.82) | (1.95 ± 0.79) | |||
White meat ^ | 0.31 a ± 0.13 | 0.30 a ± 0.12 | 0.27 a ± 0.1 | 0.063 | 0.019 |
(1.12 ± 0.66) | (1.05 ± 0.55) | (0.91 ± 0.4) | |||
Eggs ^ | 0.10 a ± 0.09 | 0.10 a ± 0.09 | 0.10 a ± 0.09 | 0.910 | 0.001 |
(0.30 ± 0.30) | (0.29 ± 0.31) | (0.30 ± 0.29) | |||
Legumes ^ | 0.24 b ± 0.12 | 0.22 b ± 0.12 | 0.31 a ± 0.11 | <0.001 | 0.101 |
(0.79 ± 0.47) | (0.72 ± 0.43) | (1.08 ± 0.54) | |||
Fish ^ | 0.34 a ± 0.13 | 0.31 a ± 0.16 | 0.30 a ± 0.15 | 0.225 | 0.010 |
(1.27 ± 0.63) | (1.16 ± 0.73) | (1.12 ± 0.7) | |||
Nuts ◊ | 0.06 b ± 0.06 | 0.08 b ± 0.1 | 0.12 a ± 0.12 | <0.001 | 0.068 |
(0.16 ± 0.15) | (0.22 ± 0.32) | (0.39 ± 0.43) | |||
Sweets ^ | 0.11 a ± 0.09 | 0.14 a ± 0.09 | 0.13 a ± 0.09 | 0.133 | 0.014 |
(0.32 ± 0.29) | (0.40 ± 0.31) | (0.37 ± 0.29) | |||
“Ready-to-eat” foods ^ | 0.12 a ± 0.10 | 0.11 a ± 0.09 | 0.10 a ± 0.07 | 0.214 | 0.010 |
(0.36 ± 0.38) | (0.31 ± 0.33) | (0.27 ± 0.22) |
Macronutrients (per Day) and Selected Dietary Indices | “Dairy— Focused” (n = 74) | “Med– Fusion” (n = 104) | “Traditional— Inspired” (n = 120) | ANOVA p-Value |
---|---|---|---|---|
Energy (kcal) ^ | 1867.19 a ± 228.96 | 1952.08 a ± 251.07 | 1915.89 a ± 231.53 | 0.065 |
Protein (g) ◊ | 82.34 a ± 8.27 | 77.38 b ± 11.19 | 78.34 b ± 9.95 | 0.004 |
Plant protein (g) ◊ | 24.77 b ± 4.17 | 27.83 a ± 5.18 | 29.29 a ± 5.58 | <0.001 |
Animal protein (g) ^ | 57.56 a ± 7.75 | 49.55 b ± 10.51 | 49.05 b ± 10.05 | <0.001 |
Fat (g) ^ | 85.07 b ± 11.26 | 90.17 a ± 13.1 | 87.26 ab ± 14.25 | 0.035 |
SFA (g) ^ | 27.16 ab ± 5.77 | 28.58 a ± 6.27 | 26.38 b ± 5.6 | 0.021 |
MUFA (g) ◊ | 40.23 b ± 4.76 | 42.71 a ± 5.75 | 42.65 a ± 8.12 | 0.023 |
PUFA (g) ◊ | 10.45 b ± 1.93 | 11.29 ab ± 2.98 | 11.95 a ± 2.95 | 0.001 |
Carbohydrates (g) ^ | 196.89 b ± 34.15 | 213.25 a ± 41.26 | 207.32 ab ± 34.21 | 0.015 |
Dietary fibers (g) ◊ | 17.66 b ± 3.56 | 18.68 b ± 4.78 | 23.28 a ± 5.25 | <0.001 |
%E from protein ^ | 17.75 a ± 1.63 | 15.89 b ± 1.54 | 16.43 b ± 1.74 | <0.001 |
%E from plant protein ^ | 5.32 c ± 0.76 | 5.71 b ± 0.82 | 6.12 a ± 0.95 | <0.001 |
%E from animal protein ^ | 12.43 a ± 1.74 | 10.19 b ± 1.92 | 10.31 b ± 2.10 | <0.001 |
%E from fat ^ | 41.07 a ± 2.92 | 41.69 a ± 4.14 | 40.95 a ± 3.85 | 0.307 |
%E from SFA ^ | 13.04 ab ± 1.87 | 13.15 a ± 2.21 | 12.38 b ± 2.05 | 0.012 |
%E from MUFA ◊ | 19.49 a ± 1.82 | 19.83 a ± 2.51 | 20.01 a ± 2.49 | 0.320 |
%E from PUFA ◊ | 5.04 b ± 0.74 | 5.21 b ± 1.17 | 5.6 a ± 1.13 | <0.001 |
%E from carbohydrates ◊ | 42.01 a ± 3.64 | 43.52 a ± 5.12 | 43.25 a ± 4.58 | 0.079 |
Plant-to-animal protein ◊ | 0.44 b ± 0.09 | 0.60 a ± 0.21 | 0.64 a ± 0.25 | <0.001 |
Protein-to-non-protein ^ | 0.30 a ± 0.04 | 0.26 b ± 0.04 | 0.27 b ± 0.04 | <0.001 |
Protein-to-fat ◊ | 0.98 a ± 0.11 | 0.86 c ± 0.09 | 0.91 b ± 0.13 | <0.001 |
Protein-to-carbohydrate ^ | 0.43 a ± 0.07 | 0.37 b ± 0.07 | 0.39 b ± 0.07 | <0.001 |
Carbohydrate-to-fiber ◊ | 11.46 a ± 2.4 | 11.80 a ± 2.51 | 9.18 b ± 1.9 | <0.001 |
MUFA-to-PUFA ^ | 3.93 a ± 0.59 | 3.92 a ± 0.67 | 3.67 b ± 0.64 | 0.004 |
MUFA-to-SFA ◊ | 1.52 b ± 0.25 | 1.55 b ± 0.34 | 1.66 a ± 0.34 | 0.006 |
Characteristics | Study Sample | “Dairy— Focused” (n = 74) | “Med— Fusion” (n = 104) | “Traditional-Inspired” (n = 120) | p-Value |
---|---|---|---|---|---|
Mean ± SD | ANOVA | ||||
Gestational age at birth (weeks) ^ | 38.72 ± 1.67 | 38.53 a ± 1.54 | 38.71 a ± 1.70 | 38.80 a ± 1.46 | 0.167 |
Birth Weight (g) ^ | 3109.6 ± 456.8 | 3073.4 a ± 460.2 | 3100.6 a ± 486.9 | 3139.6 a ± 428.9 | 0.601 |
Birth Height (cm) ^ | 50.01 ± 2.4 | 50.39 a ± 2.71 | 49.85 a ± 2.54 | 49.91 a ± 2.03 | 0.279 |
Birth Weight Centiles ^ | 48.79 ± 26.26 | 50.97 a ± 26.18 | 47.82 a ± 26.90 | 48.28 a ± 25.90 | 0.708 |
Birth Height Centiles ◊ | 70.01 ± 26.73 | 78.49 a ± 22.56 | 66.90 b ± 29.42 | 67.47 b ± 25.73 | 0.007 |
Ponderal Index (g/cm3) ^ | 2.48 ± 0.25 | 2.39 b ± 0.26 | 2.49 a ± 0.25 | 2.52 a ± 0.23 | 0.003 |
Neonate Gender | n (%) | χ2 | |||
Male | 157 (52.7%) | 32 (43.2%) | 59 (56.7%) | 66 (55%) | 0.268 |
Female | 141 (47.3%) | 42 (56.8%) | 45 (43.3%) | 54 (45%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyrkou, C.; Fotakis, C.; Dimitropoulou, A.; Tsakoumaki, F.; Zoumpoulakis, P.; Menexes, G.; Biliaderis, C.G.; Athanasiadis, A.P.; Michaelidou, A.-M. Maternal Dietary Protein Patterns and Neonatal Anthropometrics: A Prospective Study with Insights from NMR Metabolomics in Amniotic Fluid. Metabolites 2023, 13, 977. https://doi.org/10.3390/metabo13090977
Kyrkou C, Fotakis C, Dimitropoulou A, Tsakoumaki F, Zoumpoulakis P, Menexes G, Biliaderis CG, Athanasiadis AP, Michaelidou A-M. Maternal Dietary Protein Patterns and Neonatal Anthropometrics: A Prospective Study with Insights from NMR Metabolomics in Amniotic Fluid. Metabolites. 2023; 13(9):977. https://doi.org/10.3390/metabo13090977
Chicago/Turabian StyleKyrkou, Charikleia, Charalambos Fotakis, Aristea Dimitropoulou, Foteini Tsakoumaki, Panagiotis Zoumpoulakis, Georgios Menexes, Costas G. Biliaderis, Apostolos P. Athanasiadis, and Alexandra-Maria Michaelidou. 2023. "Maternal Dietary Protein Patterns and Neonatal Anthropometrics: A Prospective Study with Insights from NMR Metabolomics in Amniotic Fluid" Metabolites 13, no. 9: 977. https://doi.org/10.3390/metabo13090977
APA StyleKyrkou, C., Fotakis, C., Dimitropoulou, A., Tsakoumaki, F., Zoumpoulakis, P., Menexes, G., Biliaderis, C. G., Athanasiadis, A. P., & Michaelidou, A. -M. (2023). Maternal Dietary Protein Patterns and Neonatal Anthropometrics: A Prospective Study with Insights from NMR Metabolomics in Amniotic Fluid. Metabolites, 13(9), 977. https://doi.org/10.3390/metabo13090977