1H NMR-Based Metabolomics Profile of Green and Red Amaranthus Grown in Open Field versus Greenhouse Cultivation System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Leaf Collection
2.2. Leaf Sample Preparation
2.3. NMR Metabolomics Analysis
3. Results
4. Discussion
5. Conclusions and Recommendation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, F.; Stutzel, H. Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress. Sci. Hortic. 2004, 102, 15–27. [Google Scholar] [CrossRef]
- Fasuyi, A.O.; Dairo, F.A.S.; Adeniji, A.O. Tropical vegetable (Amaranthus cruentus) leaf meal as alternative protein supplement in broiler starter diets: Bionutritional evaluation. J. Cent. Eur. Agric. 2008, 1, 23–34. [Google Scholar]
- Pisarikova, B.; Zraly, Z.; Kracmar, S.; Trckova, M.; Herzig, I. The use of amaranth (genus Amaranthus L.) in the diets for broiler chickens. Vet. Med. 2006, 51, 399–407. [Google Scholar] [CrossRef]
- Sauer, J.D. Amaranthaceae: Amaranth family. In Historical Geography of Crop Plants: A Select Roster; CRC Press: Boca Raton, FL, USA, 1993; pp. 9–14. [Google Scholar]
- Li, Q.; Cai, S.; Mo, C.; Chu, B.; Peng, L.; Yang, F. Toxic effects of heavy metals and their accumulation in vegetables grown in a saline soil. Ecotoxicol. Environ. Saf. 2010, 73, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Sogbohossou, O.E.D.; Achigan-Dako, E.G. Phenetic differentiation and use-type delimitation in Amaranthus spp. from worldwide origins. Sci. Hortic. 2014, 178, 31–42. [Google Scholar] [CrossRef]
- Trucco, F.; Tranel, P.J. Amaranthus. In Wild Crop Relatives: Genomic and Breeding Resources, Vegetable; Kole, C., Ed.; Springer: Berlin, Germany, 2011; pp. 11–22. [Google Scholar]
- Dhillon, G.S.; Kaur, S.; Brar, S.K. Perspective of apple processing wastes as low-cost substrates for bioproduction of high value products: A review. Renew. Sust. Energ. Rev. 2013, 27, 789–805. [Google Scholar] [CrossRef]
- Ramos-Diaz, J.M.; Kirjoranta, S.; Tenitz, S.; Penttila, P.A.; Serimaa, R.; Lampi, A.M.; Jouppila, K.K. Use of amaranth, quinoa and kaniwa in extruded corn-based snacks. J. Cereal. Sci. 2013, 58, 59–67. [Google Scholar] [CrossRef]
- Mallory, M.A.; Hall, R.V.; McNabb, A.R.; Pratt, D.B.; Jellen, E.N.; Maughan, P.J. Development and characterization of microsatellite markers for the grain amaranths. Crop. Sci. 2008, 48, 1098–1106. [Google Scholar] [CrossRef]
- Managa, G.M.; Nemadodzi, L.E. Comparison of agronomic parameters and nutritional composition of red and green amaranth species grown in open field versus greenhouse environment. Agriculture 2023, 13, 685. [Google Scholar] [CrossRef]
- Li, H.; Deng, Z.; Liu, R.; Zhu, H.; Draves, J.; Marcone, M.; Sun, Y.; Tsao, R. Characterization of phenolics, betacyanins and antioxidant activities of the seed, leaf, sprout, flower and stalk extracts of three Amaranthus species. J. Food Compos. Anal. 2015, 37, 75–81. [Google Scholar] [CrossRef]
- Sarkar, R.; Nandan, C.K.; Mandal, S.; Patra, P.; Das, D.; Islam, S.S. Structural characterization of a heteropolysaccharide isolated from hot water extract of the stems of Amaranthus tricolor Linn. (Amaranthus gangeticus L.). Carbohydr. Res. 2009, 344, 2412–2416. [Google Scholar] [CrossRef]
- Ishtiaq, S.; Ahmad, M.; Hanif, U.; Akbar, S.; Kamran, S.H. Phytochemical and in vitro antioxidant evaluation of different fractions of Amaranthus graecizans subsp silvestris (Vill.) Brenan. Asian Pac. J. Trop. Med. 2014, 7, 342–347. [Google Scholar] [CrossRef]
- Venskutonis, P.R.; Kraujalis, P. Nutritional components of amaranth seeds and vegetables: A Review on composition, properties and uses. Comp. Rev. Food Sci. Food Saf. 2013, 12, 381–412. [Google Scholar] [CrossRef] [PubMed]
- Chávez-Servín, J.L.; Cabrera-Baeza, H.F.; Jiménez Ugalde, E.A.; Mercado-Luna, A.; de la Torre-Carbot, K.; Escobar-García, K.; Barreyro, A.A.; Serrano-Arellano, J.; García-Gasca, T. Comparison of chemical composition and growth of amaranth (Amaranthus hypochondriacus) between greenhouse and open field Systems. Int. J. Agric. Biol. 2017, 19, 3. [Google Scholar]
- Fuller, R.; Zahnd, A. Solar greenhouse technology for food security: A case study from Humla District, NW Nepal. Mt. Res. Dev. 2012, 32, 411–419. [Google Scholar] [CrossRef]
- Nemadodzi, L.E.; Vervoort, J.; Prinsloo, G. NMR-Based Metabolomic Analysis and Microbial Composition of Soil Supporting Burkea africana Growth. Metabolites 2020, 10, 402. [Google Scholar] [CrossRef]
- Anand, A.; Sharma, A.; Kaur Saini, H.; Sharma, S.; Sharma, R.; Thakur, C.; Atanassova, M.; Caruso, G.; Pasdaran, A. Profiling of Plant Derived Natural Constituents by Using Magnetic Resonance Techniques. Concepts Magn. Reson. Part A Bridg. Educ. Res. 2022, 2022, 5705637. [Google Scholar] [CrossRef]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, D.; Watson, A.; Lightfoot, D. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 2017, 4, 42. [Google Scholar] [CrossRef]
- Yeo, H.J.; Baek, S.A.; Sathasivam, R.; Kim, J.K.; Park, S.U. Metabolomic analysis reveals the interaction of primary and secondary metabolism in white, pale green, and green pak choi (Brassica rapa subsp. chinensis). Appl. Biol. Chem. 2021, 64, 13–16. [Google Scholar] [CrossRef]
- Zandalinas, S.I.; Mittler, R.; Balfagón, D.; Arbona, V.; Gómez-Cadenas, A. Plant adaptations to the combination of drought and high temperatures. Physiol. Plant. 2018, 162, 2–12. [Google Scholar] [CrossRef]
- Nicholson, J.; Lindon, J.; Holmes, E. “Metabolomics”: Understanding the metabolomics response of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 1999, 29, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- Mthimunye, L.M.; Managa, G.M.; Nemadodzi, L.E. The Influence of Lablab Purpureus Growth on Nitrogen Availability and Mineral Composition Concentration in Nutrient Poor Savanna Soils. Agron J. 2023, 13, 622. [Google Scholar] [CrossRef]
- Kim, H.K.; Choi, Y.H.; Verpoorte, R. NMR-based metabolomic analysis of plants. Nature 2010, 5, 536–549. [Google Scholar] [CrossRef] [PubMed]
- Maree, J.; Viljoen, A. Phytochemical distinction between Pelargonium sidoides and Pelargonium reniforme—A quality control perspective. S. Afr. J. Bot. 2012, 82, 83–91. [Google Scholar] [CrossRef]
- Fernie, A.R.; Aharoni, A.; Wilmitzer, L.; Stutt, M.; Tohge, T.; Kopka, J.; Carol, A.J.; Saito, K.; Fraser, P.D.; Deluca, V. Recommendations for reporting metabolite data. Plant Cell 2011, 23, 2477–2482. [Google Scholar] [CrossRef] [PubMed]
- Mediani, A.; Abas, F.; Khatib, A.; Maulidiani, M.; Shaari, K.; Choi, Y.H.; Lajis, N. 1H-NMR-based metabolomics approach to understanding the drying e_ects on the phytochemicals in Cosmos caudatus. Food Res. Int. 2012, 49, 763–770. [Google Scholar] [CrossRef]
- Sreekumar, A.; Poisson, L.M.; Rajendiran, T.M.; Khan, A.P.; Cao, Q.; Yu, J.; Laxman, B.; Mehra, R.; Lonigro, R.J.; Li, Y.; et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 2009, 457, 910–914. [Google Scholar] [CrossRef]
- Wishart, D.S.; Knox, C.; Guo, A.C.; Eisner, R.; Young, N.; Gautam, B.; Hau, D.D.; Psychogios, N.; Dong, E.; Bouatra, S.; et al. HMDB: A knowledgebase for the human metabolome. Nucleic Acids Res. 2009, 37, D603–D610. [Google Scholar] [CrossRef]
- Modi, M.; Modi, A.; Hendriks, S. Potential role for wild vegetables in household food security: A preliminary case study in Kwazulu-Natal, South Africa. Afr. J. Food Agric. Nutr. Dev. 2006, 6, 1–13. [Google Scholar] [CrossRef]
- Van Rensburg, W.J.; Venter, S.L.; Netshiluvhi, T.R.; Van Den Heever, E.; Vorster, H.J.; De Ronde, J.A.; Bornman, C.H. Role of indigenous leafy vegetables in combating hunger and malnutrition. S. Afr. J. Bot. 2004, 70, 52–59. [Google Scholar] [CrossRef]
- Sunita, K.; Mishra, I.; Mishra, J.; Prakash, J.; Arora, N.K. Secondary Metabolites from Halotolerant Plant Growth Promoting Rhizobacteria for Ameliorating Salinity Stress in Plants. Front. Microbiol. 2020, 11, 567768. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, S.M.; Zahir, Z.A.; Naveed, M.; Nawaz, S. Mitigation of salinity-induced negative impact on the growth and yield of wheat by plant growth-promoting rhizobacteria in naturally saline conditions. Ann. Microbiol. 2013, 63, 225–232. [Google Scholar] [CrossRef]
- Eastmond, P.J.; van Dijken, A.J.H.; Spielman, M.; Kerr, A.; Tissier, A.F.; Dickinson, H.G.; Jones, J.D.; Smeekens, S.C.; Graham, I.A. Trehalose-6-phosphate synthase 1, which catalyses the first step in trehalose synthesis, is essential for Arabidopsis embryo maturation. Plant J. 2002, 29, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Dijken, A.J.V.; Schluepmann, H.; Smeekens, S.C. Arabidopsis trehalose-6-phosphate synthase 1 is essential for normal vegetative growth and transition to flowering. Plant Physiol. 2004, 135, 969–977. [Google Scholar] [CrossRef] [PubMed]
- Thierry, L.; Delatte2, P.S.; Youichi, K.; Minami, M.; Gerhardus, J.; de Jong, G.W.; Somsen, A.; Wiese-Klinkenberg, L.F.P.; Matthew, J.P.; Henriette, S. Growth Arrest by Trehalose-6-Phosphate: An Astonishing Case of Primary Metabolite Control overgrowth by Way of the SnRK1 Signaling Pathway. Plant Physiol. 2011, 157, 160–174. [Google Scholar]
- Schluepmann, H.; Paul, M. Trehalose Metabolites in Arabidopsis—Elusive, active and central. Arab. Book 2009, 7. [Google Scholar] [CrossRef]
- Tisarum, R.; Theerawitaya, C.; Samphumphuang, T.; Singh, H.P.; Cha-um, S. Foliar application of glycinebetaine regulates soluble sugars and modulates physiological adaptations in sweet potato (Ipomoea batatas) under water deficit. Protoplasma 2020, 257, 197–211. [Google Scholar] [CrossRef]
- Naidu, B.P.; Cameron, D.F.; Konduri, S.V. Improving drought tolerance of cotton by glycine betaine application and selection. In Proceedings of the Australian Agronomy Conference, Wagga Wagga, Australia, 20 July 1998. [Google Scholar]
- Rahman, M.S.; Miyake, H.; Takeoka, Y. Effects of exogenous glycine betaine on growth and ultrastructure of salt-stressed rice seedlings (Oryza sativa L.). Plant Prod. Sci. 2002, 5, 33–44. [Google Scholar] [CrossRef]
- Hwang, I.S.; An, S.H.; Hwang, B.K. Pepper asparagine synthetase 1 (CaAS1) is required for plant nitrogen assimilation and defense responses to microbial pathogens. Plant J. 2011, 67, 749–762. [Google Scholar] [CrossRef]
- Luo, L.; Qin, R.; Liu, T.; Yu, M.; Yang, T.; Xu, G. OsASN1 plays a critical role in asparagine-dependent rice development. Int. J. Mol. Sci. 2018, 20, 130. [Google Scholar] [CrossRef]
- Gaufichon, L.; Reisdorf-Cren, M.; Rothstein, S.J.; Chardon, F.; Suzuki, A. Biological functions of asparagine synthetase in plants. Plant Sci. 2010, 179, 141–153. [Google Scholar] [CrossRef]
- Ahmad, I. New Insights into Plant Amino Acid Transport and Its Contribution to Nitrogen Nutrition; Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences: Uppsala, Sweden, 2015. [Google Scholar]
- Lea, P.J.; Sodek, L.; Parry, M.A.J.; Shewry, R.; Halford, N.G. Asparagine in plants. Ann. Appl. Biol. 2007, 150, 1–26. [Google Scholar] [CrossRef]
- Hayashi, H.; Chino, M. Chemical-Composition of Phloem Sap from the Uppermost Internode of the Rice Plant. Plant Cell Physiol. 1990, 31, 247–251. [Google Scholar]
- Maluleke, M.K. Metabolite profile of African horned cucumber (Cucumis metuliferus E. May. Ex Naudin) fruit grown under differing environmental conditions. Nature 2022, 12, 3722. [Google Scholar] [CrossRef] [PubMed]
- Nkobole, N.; Prinsloo, G. 1H-NMR and LC-MS Based Metabolomics Analysis of Wild and Cultivated Amaranthus spp. Molecules 2021, 26, 795. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.A.; Iqbal, M.; Rasheed, R.; Hussain, I.; Riaz, M.; Arif, M.S. Environmental stress and secondary metabolites in plants: An overview. Plant Metab. Regul. Environ. Stress 2018, 153–167. [Google Scholar] [CrossRef]
- Federal, G. Plant mechanical defenses against insect herbivory. Biologia 1988, 19, 195–328. [Google Scholar]
- Chua, L.S. Untargeted MS-based small metabolite identification from the plant leaves and stems of Impatiens balsamina. Plant Physiol. Biochem. 2016, 106, 16–22. [Google Scholar] [CrossRef]
- Lopez-Bucio, J.; Nieto-Jacobo, M.F.; Ramırez-Rodrıguez, V.; Herrera-Estrella, L. Organic acid metabolism in plants: From adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Sci. 2000, 160, 1–13. [Google Scholar] [CrossRef]
- Obata, T.; Witt, S.; Lisec, J.; Palacios-Rojas, N.; Florez-Sarasa, I.; Yousfi, S.; Araus, J.L.; Cairns, J.E.; Fernie, A.R. Metabolite profiles of maize leaves in drought, heat, and combined stress field trials reveal the relationship between metabolism and grain yield. Plant Physiol. 2015, 169, 2665–2683. [Google Scholar] [CrossRef]
- Panichikkal, J.; Krishnankutty, R.E. Root exudate components induced production of plant beneficial metabolites in rhizospheric Pseudomonas spp. Rhizosphere 2021, 19, 100366. [Google Scholar] [CrossRef]
- Wishart, D.S.; Guo, A.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, B.L.; et al. HMDB 5.0: The human metabolome database for. Nucleic Acids Res. 2022, 50, D622–D631. [Google Scholar] [CrossRef]
- Carvalho, M.S.S.; Andrade-Vieira, L.F.; dos Santos, F.E.; Correa, F.F.; das Graças Cardoso, M.; Vilela, L.R. Allelopathic potential and phytochemical screening of ethanolic extracts from five species of Amaranthus spp. in the plant model Lactuca sativa. Sci. Hortic. 2019, 245, 90–98. [Google Scholar] [CrossRef]
- Scognamiglio, M.; D’Abrosca, B.; Esposito, A.; Pacifico, S.; Monaco, P.; Fiorentino, A. Plant growth inhibitors: Allelopathic role or phytotoxic effects? Focus on Mediterranean biomes. Phytochem. Rev. 2013, 12, 803–830. [Google Scholar] [CrossRef]
- Sousa, C.A.F.D.; Sodek, L. The metabolic response of plants to oxygen deficiency. Braz. J. Plant Physiol. 2002, 14, 83–94. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, V.; Shahzad, B.; Ramakrishnan, M.; Singh Sidhu, G.P.; Bali, A.S.; Handa, N.; Kapoor, D.; Yadav, P.; Khanna, K.; et al. Photosynthetic response of plants under different abiotic stresses: A review. J. Plant Growth Regul. 2020, 39, 509–531. [Google Scholar] [CrossRef]
- Correia, C.M.; Areal, E.L.V.; Torres-Pereira, M.S.; Torres-Pereira, J.M.G. Intraspecific variation in sensitivity to ultraviolet-B radiation in maize grown under field conditions: II. Physiological and biochemical aspects. Field Crops Res. 1999, 62, 97–105. [Google Scholar] [CrossRef]
- Verdaguer, D.; Jansen, M.A.K.; Llorens, L.; Morales, L.O.; Neugart, S. UV-A radiation effects on higher plants: Exploring the known unknown. Plant Sci. 2017, 255, 72–81. [Google Scholar] [CrossRef]
- Dawood, M.F.; Tahjib-Ul-Arif, M.; Sohag, A.A.M.; Abdel Latef, A.A.H.; Ragaey, M.M. Mechanistic insight of allantoin in protecting tomato plants against ultraviolet c stress. Plants 2020, 10, 11. [Google Scholar] [CrossRef]
- Kanani, H.; Dutta, B.; Klapa, M.I. Individual vs. combinatorial effect of elevated CO2 conditions and salinity stress on Arabidopsis thaliana liquid cultures: Comparing the early molecular response using time-series transcriptomic and metabolomic analyses. BMC Syst. Biol. 2010, 4, 177. [Google Scholar] [CrossRef]
- Takagi, H.; Ishiga, Y.; Watanabe, S.; Konishi, T.; Egusa, M.; Akiyoshi, N.; Shimada, H. Allantoin, a stress-related purine metabolite, canactivate jasmonate signaling in a MYC2-regulated and abscisic acid-dependent manner. J. Exp. Bot. 2016, 67, 2519–2532. [Google Scholar] [CrossRef]
- Silvente, S.; Sobolev, A.P.; Lara, M. Metabolite adjustments in drought tolerant and sensitive soybean genotypes in response to waterstress. PLoS ONE 2012, 7, e38554. [Google Scholar] [CrossRef]
- Alamillo, J.M.; DÍAz-Leal, J.L.; SÁNchez-Moran, M.V.; Pineda, M. Molecular analysis of ureide accumulation under drought stress in Phaseolus vulgaris L. Plant Cell Environ. 2010, 33, 1828–1837. [Google Scholar] [CrossRef]
- Rose, M.T.; Rose, T.J.; Pariasca-Tanaka, J.; Yoshihashi, T.; Neuweger, H.; Goesmann, A.; Frei, M.; Wissuwa, M. Root metabolic response of rice (Oryza sativa L.) genotypes with contrasting tolerance to zinc deficiency and bicarbonate excess. Planta 2012, 236, 959–973. [Google Scholar] [CrossRef]
- Yobi, A.; Wone, B.W.M.; Xu, W.; Alexander, D.C.; Guo, L.; Ryals, J.A.; Oliver, M.J.; Cushman, J.C. Metabolomic profiling in Selaginella lepidophylla at various hydration states provides new insights into the mechanistic basis of desiccation tolerance. Mol. Plant. 2013, 6, 369–385. [Google Scholar] [CrossRef]
- Watanabe, S.; Matsumoto, M.; Hakomori, Y.; Takagi, H.; Shimada, H.; Sakamoto, A. The purine metabolite allantoin enhances abiotic stress tolerance through synergistic activation of abscisic acid metabolism. Plant Cell Environ. 2014, 37, 1022–1036. [Google Scholar] [CrossRef]
- Irani, S.; Todd, C.D. Exogenous allantoin increases Arabidopsis seedlings tolerance to NaCl stress and regulates expression of oxidative stress response genes. J. Plant Physiol. 2018, 221, 43–50. [Google Scholar] [CrossRef]
- Werner, A.K.; Witte, C.-P. The biochemistry of nitrogen mobilization: Purine ring catabolism. Trends Plant Sci. 2011, 16, 381–387. [Google Scholar] [CrossRef]
- Dresler, S.; Rutkowska, E.; Bednarek, W.; Stanisławski, G.; Kubrak, T.; Bogucka-Kocka, A.; Wójcik, M. Selected secondary metabolites in Echium vulgare L. populations from nonmetalliferous and metalliferous areas. Phytochemistry 2017, 133, 4–14. [Google Scholar] [CrossRef]
- Dresler, S.; Kováčik, J.; Wójciak, H.; Sowa, I.; Strzemski, M.; Wójciak, M. Allantoin content in lichens depends on anthropopressure level. Ecol. Indic. 2021, 124. [Google Scholar] [CrossRef]
- Nourimand, M.; Todd, C.D. Allantoin increases cadmium tolerance in Arabidopsis via activation of antioxidant mechanisms. Plant Cell Physiol. 2016, 57, 2485–2496. [Google Scholar] [CrossRef]
- Dresler, S.; Szymczak, G.; Wójcik, M. Comparison of some secondary metabolite content in the seventeen species of the Boraginaceae family. Pharm. Biol. 2017, 55, 691–695. [Google Scholar] [CrossRef]
- Dresler, S.; Hawrylak-Nowak, B.; Kováčik, J.; Woźniak, M.; Gałązka, A.; Staniak, M.; Wójciak, M.; Sowa, I. Organic nitrogen modulates not only cadmium toxicity but also microbial activity in plants. J. Hazard. Mater. 2021, 402. [Google Scholar] [CrossRef]
- Lescano, C.I.; Martini, C.; González, C.A.; Desimone, M. Allantoin accumulation mediated by allantoinase down regulation and transport by Ureide Permease 5 confers salt stress tolerance to Arabidopsis plants. Plant Mol. Biol. 2016, 91, 581–595. [Google Scholar] [CrossRef]
- Dresler, S.; Hawrylak-Nowak, B.; Kováčik, J.; Pochwatka, M.; Hanaka, A.; Strzemski, M.; Sowa, I.; Wójciak-Kosior, I.M. Allantoin attenuates cadmium-induced toxicity in cucumber plants. Ecotoxicol. Environ. Saf. 2019, 170, 120–126. [Google Scholar] [CrossRef]
- Jinal, H.N.; Sakthivel, K.; van Leeuwenhoek, N.A.A. Characterisation of antagonistic Bacillus paralicheniformis (strain EAL) by LC–MS, antimicrobial peptide genes, and ISR determinants. Antonie Van Leeuwenhoek 2020, 113, 1167–1177. [Google Scholar] [CrossRef]
- Oney-Birol, S. exogenous L-carnitine promotes plant Growth and cell Division by Mitigating Genotoxic Damage of Salt Stress. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef]
- Kets, E.P.W.; Galinski, E.A.; de Bont, J.A.M. Carnitine: A novel compatible solute in Lactobacillus plantarum. Arch Microbiol. 1994, 162, 243–248. [Google Scholar] [CrossRef]
- Dixon, R.A. Natural products and plant resistance. Nature 2001, 411, 943–947. [Google Scholar] [CrossRef] [PubMed]
- Dangl, J.L.; Jones, J.D.G. Plant pathogens and integrated defence response to infection. Nature 2001, 411, 826–833. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Choi, Y.E.; Sano, H. Plant vaccination: Stimulation of defense system by caffeine production in planta. Plant Signal. Behav. 2010, 5, 489–493. [Google Scholar] [CrossRef]
- Li, X.; Ahammed, G.J.; Li, Z.; Tang, M.; Yan, P.; Han, W. Decreased biosynthesis of jasmonic acid via lipoxygenase pathway compromised caffeine-induced resistance to Colletotrichum gloeosporioides under elevated CO2 in tea seedlings. Phytopathology 2016, 106, 1270–1277. [Google Scholar] [CrossRef]
- Aneja, M.; Gianfagna, T. Induction and accumulation of caffeine in young, actively growing young leaves of cocoa (Theobroma cacao L.) by wounding or infection with Crinipellis pernisiosa. Physiol. Mol. Plant. Pathol. 2001, 59, 13–16. [Google Scholar] [CrossRef]
- Ashihara, H.; Sano, H.; Crozier, A. Caffeine and related purine alkaloids: Biosynthesis, catabolism, function and generic engineering. Phytochemistry 2008, 69, 841–856. [Google Scholar] [CrossRef]
- Guo, S.H.; Hu, N.; Li, Q.S.; Yang, P.; Wang, L.L.; Xu, Z.M.; Chen, H.J.; He, B.Y.; Zeng, E.Y. Response of edible amaranth cultivar to salt stress led to Cd mobilization in rhizosphere soil: A metabolomic analysis. Environ. Pollut. 2018, 241, 422–431. [Google Scholar] [CrossRef]
- Li, T.; Liang, C.; Han, X.; Yang, X. Mobilization of cadmium by dissolved organic matter in the rhizosphere of hyperaccumulator Sedum Alfredii. Chemosphere 2013, 91, 970–976. [Google Scholar] [CrossRef]
- Wang, Y. Land exploitation resulting in soil salinization in a desert–oasis ecotone. Catena 2013, 100, 50–56. [Google Scholar] [CrossRef]
- Pinna, M.C.; Bauduin, P.; Touraud, D.; Monduzzi, M.; Ninham, B.W.; Kunz, W. Hofmeister effects in biology: Effect of choline addition on the salt-induced super activity of horseradish peroxidase and its implication for salt resistance of plants. J. Phys. Chem. B 2005, 109, 16511–16514. [Google Scholar] [CrossRef] [PubMed]
- Zeisel, S.H. Choline: Critical role during fetal development and dietary requirements in adults. Annu. Rev. Nutr. 2006, 6, 229–250. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Murzello, C.; Sun, Y.; Kim, M.S.; Xie, X.; Jeter, R.M.; Zak, J.C.; Dowd, S.E.; Paré, P.W. Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03). Mol. Plant-Microbe Interact. 2010, 23, 1097–1104. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Ledesma, B. Quinoa (Chenopodium quinoa Willd.) as source of bioactive compounds: A review. Bioact. Compd. Health Dis. 2019, 2, 27–47. [Google Scholar] [CrossRef]
- Eghtesadi, N.; Olaifa, K.; Perna, F.M.; Capriati, V.; Trotta, M.; Ajunwa, O.; Marsili, E. Electroactivity of weak electricigen Bacillus subtilis biofilms in solution containing deep eutectic solvent components. Bioelectrochemistry 2022, 147, 108207. [Google Scholar] [CrossRef] [PubMed]
- Bora, P. Anti-Nutritional Factors in Foods and their Effects. J. Acad. Ind. Res. 2014, 3, 285–290. [Google Scholar]
- Cai, Y.Z.; Sun, M.; Corke, H. Characterization and application of betalain pigments from plants of the Amaranthaceae: Pigments in food. Trends Food Sci. Tech. 2005, 16, 370–376. [Google Scholar] [CrossRef]
- Suryavanshi, V.L.; Sathe, P.A.; Baing, M.M.; Singh, G.R.; Lakshmi, S.N. Determination of rutin in Amaranthus spinosus Linn whole plant powder by HPTLC. Chromatography 2007, 65, 767–769. [Google Scholar] [CrossRef]
- Ferguson, G.M.; Hamill, A.S.; Tardif, F.J. ALS inhibitor resistance in populations of Powell amaranth and redroot pigweed. Weed Sci. 2001, 49, 448–453. [Google Scholar] [CrossRef]
- Srinivasan, K.; Natarajan, D.; Dheen, M.; Perumal, G.; Mohanasundari, C.; Prabakar, K.; Sengottuvel, R. Antibacterial activity of selected medicinal plants. Hamdard Med. 2006, 49, 5–8. [Google Scholar]
- Neugart, S.; Baldermann, S.; Ngwene, B.; Wesonga, J.; Schreiner, M. Indigenous leafy vegetables of Eastern Africa—A source of extraordinary secondary plant metabolites. Food Res. Int. 2017, 100, 411–422. [Google Scholar] [CrossRef]
- Zaynab, M.; Fatima, M.; Abbas, S.; Sharif, Y.; Umair, M.; Zafar, M.H.; Bahadar, K. Role of secondary metabolites in plant defense against pathogens. Microb. Pathog. 2018, 124, 198–202. [Google Scholar] [CrossRef]
- Hellal, K.; Mediani, A.; Ismail, I.S.; Tan, C.P.; Abas, F. 1H NMR-based metabolomics and UHPLC-ESI-MS/MS for the investigation of bioactive compounds from Lupinus albus fractions. Food Res. Int. 2021, 140, 110046. [Google Scholar] [CrossRef]
- Prusinski, J. White lupin (Lupinus albus L.)–nutritional and health values in human nutrition—A review. Czech J. Food Sci. 2017, 35, 95–105. [Google Scholar] [CrossRef]
- Jeter, C.R.; Tang, W.; Henaff, E.; Butterfield, T.; Roux, S.J. Evidence of a novel cell signaling role for extracellular adenosine triphosphates and diphosphates in Arabidopsis. Plant Cell 2004, 16, 2652–2664. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Bano, A.; Rahman, M.A.; Rathinasabapathi, B.; Babar, M.A. UPLC-HRMS-based untargeted metabolic profiling reveals changes in chickpea (Cicer arietinum) metabolome following long-term drought stress. Plant Cell Environ. 2019, 42, 115–132. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Huang, Y.; Hu, J.; Zhou, H.; Adeleye, A.S.; Keller, A.A. 1H NMR and GC-MS based metabolomics reveal defense and detoxification mechanism of cucumber plant under nano-Cu stress. Environ. Sci. Technol. 2016, 50, 2000–2010. [Google Scholar] [CrossRef]
- Castro-Alves, V.; Kalbina, I.; Nilsen, A.; Aronsson, M.; Rosenqvist, E.; Jansen, M.A.; Qian, M.; Öström, Å.; Hyötyläinen, T.; Strid, Å. Integration of non-target metabolomics and sensory analysis unravels vegetable plant metabolite signatures associated with sensory quality: A case study using dill (Anethum graveolens). Food Chem. 2021, 344, 128714. [Google Scholar] [CrossRef]
- Wilkinson, J.; Rocha, R. Agro-industry trends, patterns and development impacts. In Agro Industries for Development; CABI: Wallingford, UK, 2009; pp. 46–91. [Google Scholar]
- Davies, P.A. A solar cooling system for greenhouse food production in hot climates. Sol. Energy 2005, 79, 661–668. [Google Scholar] [CrossRef]
Open Field-Grown | |||
---|---|---|---|
Metabolites | NMR Region | Chenomx 9.0 | Human Metabolome Data Base |
Carnitine (1) | 3.20 | 2.4 | N/A |
3.2 | |||
3.4 | |||
4.6 | |||
Caffeine (2) | 3.49 | 3.3 | 3.22 |
3.5 | 3.34 | ||
3.9 | 4.04 | ||
7.9 | 8.49 | ||
Sreekumar et al. [29] | |||
Betaine (3) | 3.30 | 3.3 | 3.25 |
3.9 | 3.9 | 3.89 | |
Wishart et al. [30] | |||
Trehalose (4) | 3.41 | 3.4 | 3.42 |
3.6 | 3.49 | ||
3.8 | 3.63 | ||
3.9 | 3.75 | ||
5.2 | 3.81 | ||
3.84 | |||
3.85 | |||
4.12 | |||
5.18 | |||
Wishart et al. [30] | |||
Alanine (5) | 1.47 | 1.5 | 1.47 |
1.49 | 3.8 | 3.77 | |
Adenosine (6) | 4.31 | 3.8 | 3.49 |
3.9 | 3.75 | ||
4.3 | 3.91 | ||
4.4 | 4.62 | ||
4.8 | 4.73 | ||
6.1 | 8.49 | ||
8.2 | |||
8.3 | |||
Aspartate (7) | 2.86 | 2.7 | 1.53 |
3.90 | 2.8 | 1.59 | |
3.9 | 1.88 | ||
3.17 | |||
3.77 | |||
Glutamine (8) | 3.86 | 2.1 | 2.11 |
2.4 | 2.42 | ||
2.5 | 2.46 | ||
3.8 | 3.76 | ||
6.9 | |||
7.6 | |||
Caprate (9) | 2.10 | 0.8 | N/A |
1.3 | |||
1.5 | |||
2.1 | |||
Choline (10) | 3.28 | 3.2 | N/A |
3.5 | |||
4.1 | |||
Sucrose (11) | 4.24 | 3.4 | N/A |
3.6 | |||
3.7 | |||
3.8 | |||
3.9 | |||
4.2 | |||
4.0 | |||
5.4 | |||
Wishart et al. [30] | |||
Asparagine (12) | 6.9 | 2.8 | 2.84 |
2.9 | 3.84 | ||
4.0 | |||
6.9 | |||
7.6 |
Greenhouse-Grown | |||
---|---|---|---|
Metabolites | NMR Region (ppm) | Chenomx | HMDB |
Carnitine | 3.25 | 2.4 | N/A |
3.2 | |||
3.44.6 | |||
Allantoin (2) | 5.40 | 5.4 | 4.120 |
6.0 | |||
7.3 | |||
8.0 | |||
Glutamine (3) | 6.89 | 2.1 | 2.11 |
2.4 | 2.42 | ||
2.5 | 2.46 | ||
3.8 | 3.76 | ||
6.9 | |||
7.6 | |||
Trehalose (4) | 3.41 | 3.4 | 3.42 |
3.6 | 3.49 | ||
3.8 | 3.63 | ||
3.9 | 3.75 | ||
5.2 | 3.81 | ||
3.84 | |||
3.85 | |||
4.12 | |||
5.18 | |||
Wishart et al. [30] | |||
Choline (5) | 3.25 | 3.2 | N/A |
3.5 | |||
4.1 | |||
Caffeine (6) | 3.29 | 3.3 | 3.22 |
3.5 | 3.5 | 3.34 | |
3.91 | 3.9 | 4.04 | |
7.9 | 8.49 | ||
Sreekumar et al. [29] | |||
Sucrose (7) | 4.0 | 3.4 | N/A |
5.38 | 3.6 | ||
3.7 | |||
3.8 | |||
3.9 | |||
4.0 | |||
4.2 | |||
5.4 | |||
Wishart et al. [30] | |||
Betaine (8) | 3.25 | 3.3 | 3.25 |
3.89 | 3.9 | 3.89 | |
Wishart et al. [30] | |||
Alanine (9) | 1.45 | 1.5 | 1.47 |
1.46 | 3.8 | 3.77 | |
Asparagine (10) | 6.87 | 2.8 | 2.84 |
2.9 | 3.4 | ||
4.0 | |||
6.9 | |||
7.6 |
Open Field-Grown | |||
---|---|---|---|
Metabolite | NMR Region | Chenomx | HMDB |
Carnitine (1) | 3.21 | 2.4 | N/A |
3.2 | |||
3.4 | |||
4.6 | |||
Allantoin (2) | 5.35 | 5.4 | 4.120 |
6.0 | |||
7.3 | |||
8.0 | |||
Trehalose (3) | 5.23 | 3.4 | 3.42 |
3.6 | 3.49 | ||
3.8 | 3.63 | ||
3.9 | 3.75 | ||
5.2 | 3.81 | ||
3.84 | |||
3.85 | |||
4.12 | |||
5.18 | |||
Wishart et al. [30] | |||
Alanine (4) | 1.46 | 1.5 | 1.47 |
1.47 | 3.8 | 3.77 | |
Betaine (5) | 3.25 | 3.3 | 3.25 |
3.9 | 3.9 | 3.89 | |
Wishart et al. [30] | |||
Choline (6) | 3.19 | 3.2 | N/A |
3.5 | |||
4.1 | |||
Sucrose (7) | 3.49 | 3.4 | N/A |
3.7 | 3.6 | ||
4.0 | 3.7 | ||
3.8 | |||
3.9 | |||
4.0 | |||
4.2 | |||
5.4 | |||
Wishart et al. [30] |
Greenhouse-Grown | |||
---|---|---|---|
Metabolite | NMR Region (ppm) | Chenomx | HMDB |
carnitine (1) | 3.19 | 2.4 | 4.120 |
3.3 | |||
3.4 | |||
4.6 | |||
6.0 | |||
7.3 | |||
8.0 | |||
Allantoin (2) | 5.35 | 5.4 | N/A |
6.0 | |||
7.3 | |||
8.0 | |||
Caffeine (3) | 3.3 | 3.3 | 3.22 |
3.47 | 3.5 | 3.34 | |
3.91 | 3.9 | 4.04 | |
7.9 | 8.49 | ||
Sreekumar et al. [29] | |||
Betaine (4) | 3.25 | 3.3 | 3.25 |
3.89 | 3.9 | 3.89 | |
Wishart et al. [30] | |||
Alanine (5) | 1.45 | 1.5 | 1.47 |
1.46 | 3.8 | 3.77 | |
Trehalose (6) | 3.46 | 3.4 | 3.42 |
5.16 | 3.6 | 3.49 | |
3.8 | 3.63 | ||
3.9 | 3.75 | ||
5.2 | 3.81 | ||
3.84 | |||
3.85 | |||
4.12 | |||
5.18 | |||
Wishart et al. [30] | |||
Choline (7) | 3.19 | 3.2 | N/A |
3.5 | |||
4.1 | |||
Sucrose (8) | 4.21 | 3.4 | N/A |
5.38 | 3.6 | ||
3.7 | |||
3.8 | |||
3.9 | |||
4.0 | |||
4.2 | |||
5.4 | |||
Wishart et al. [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nemadodzi, L.E.; Managa, G.M. 1H NMR-Based Metabolomics Profile of Green and Red Amaranthus Grown in Open Field versus Greenhouse Cultivation System. Metabolites 2024, 14, 21. https://doi.org/10.3390/metabo14010021
Nemadodzi LE, Managa GM. 1H NMR-Based Metabolomics Profile of Green and Red Amaranthus Grown in Open Field versus Greenhouse Cultivation System. Metabolites. 2024; 14(1):21. https://doi.org/10.3390/metabo14010021
Chicago/Turabian StyleNemadodzi, Lufuno Ethel, and Gudani Millicent Managa. 2024. "1H NMR-Based Metabolomics Profile of Green and Red Amaranthus Grown in Open Field versus Greenhouse Cultivation System" Metabolites 14, no. 1: 21. https://doi.org/10.3390/metabo14010021
APA StyleNemadodzi, L. E., & Managa, G. M. (2024). 1H NMR-Based Metabolomics Profile of Green and Red Amaranthus Grown in Open Field versus Greenhouse Cultivation System. Metabolites, 14(1), 21. https://doi.org/10.3390/metabo14010021