Peripheral Brain-Derived Neurotrophic Factor (BDNF) and Its Regulatory miRNAs as Biological Correlates of Impulsivity in Young Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Impulsivity Assessment
2.3. Biological Analyses
2.4. Statistical Analyses
3. Results
3.1. Correlations of Biomarkers
3.2. Correlation Analysis of BIS-11 Scores and Neuropsychological Tests Results
3.3. Correlations of Biological Factors and Impulsivity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Corominas-Roso, M.; Ramos-Quiroga, J.A.; Ribases, M.; Sanchez-Mora, C.; Palomar, G.; Valero, S.; Bosch, R.; Casas, M. Decreased Serum Levels of Brain-Derived Neurotrophic Factor in Adults with Attention-Deficit Hyperactivity Disorder. Int. J. Neuropsychopharmacol. 2013, 16, 1267–1275. [Google Scholar] [CrossRef]
- Zakowicz, P.; Skibińska, M.; Wasicka-Przewoźna, K.; Skulimowski, B.; Waśniewski, F.; Chorzepa, A.; Różański, M.; Twarowska-Hauser, J.; Pawlak, J. Impulsivity as a Risk Factor for Suicide in Bipolar Disorder. Front. Psychiatry 2021, 12, 706933. [Google Scholar] [CrossRef] [PubMed]
- Brodsky, B.S.; Malone, K.M.; Ellis, S.P.; Dulit, R.A.; Mann, J.J. Characteristics of Borderline Personality Disorder Associated with Suicidal Behavior. AJP 1997, 154, 1715–1719. [Google Scholar] [CrossRef] [PubMed]
- Verdejo-García, A.; Lawrence, A.J.; Clark, L. Impulsivity as a Vulnerability Marker for Substance-Use Disorders: Review of Findings from High-Risk Research, Problem Gamblers and Genetic Association Studies. Neurosci. Biobehav. Rev. 2008, 32, 777–810. [Google Scholar] [CrossRef] [PubMed]
- Patton, J.H.; Stanford, M.S.; Barratt, E.S. Factor Structure of the Barratt Impulsiveness Scale. J. Clin. Psychol. 1995, 51, 768–774. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, A.; Holz, N.E.; Banaschewski, T.; Baumeister, S.; Bokde, A.L.W.; Desrivières, S.; Flor, H.; Fröhner, J.H.; Grigis, A.; Garavan, H.; et al. A Developmental Perspective on Facets of Impulsivity and Brain Activity Correlates from Adolescence to Adulthood. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2022, 7, 1103–1115. [Google Scholar] [CrossRef] [PubMed]
- Mikhael, J.G.; Gershman, S.J. Impulsivity and Risk-Seeking as Bayesian Inference under Dopaminergic Control. Neuropsychopharmacology 2022, 47, 465–476. [Google Scholar] [CrossRef]
- Fischer, K.D.; Knackstedt, L.A.; Rosenberg, P.A. Glutamate Homeostasis and Dopamine Signaling: Implications for Psychostimulant Addiction Behavior. Neurochem. Int. 2021, 144, 104896. [Google Scholar] [CrossRef] [PubMed]
- Konradi, C.; Heckers, S. Molecular Aspects of Glutamate Dysregulation: Implications for Schizophrenia and Its Treatment. Pharmacol. Ther. 2003, 97, 153–179. [Google Scholar] [CrossRef]
- Appelbaum, L.G.; Shenasa, M.A.; Stolz, L.; Daskalakis, Z. Synaptic Plasticity and Mental Health: Methods, Challenges and Opportunities. Neuropsychopharmacology 2023, 48, 113–120. [Google Scholar] [CrossRef]
- Stampanoni Bassi, M.; Iezzi, E.; Gilio, L.; Centonze, D.; Buttari, F. Synaptic Plasticity Shapes Brain Connectivity: Implications for Network Topology. Int. J. Mol. Sci. 2019, 20, 6193. [Google Scholar] [CrossRef]
- Camuso, S.; La Rosa, P.; Fiorenza, M.T.; Canterini, S. Pleiotropic Effects of BDNF on the Cerebellum and Hippocampus: Implications for Neurodevelopmental Disorders. Neurobiol. Dis. 2022, 163, 105606. [Google Scholar] [CrossRef] [PubMed]
- Pasyk, S.; Sanger, N.; Kapczinski, F.; Samaan, Z. Evaluation of BDNF as a Biomarker for Impulsivity in a Psychiatric Population. Diagnostics 2020, 10, 419. [Google Scholar] [CrossRef] [PubMed]
- Prats, C.; Arias, B.; Ortet, G.; Ibáñez, M.I.; Moya, J.; Pomarol-Clotet, E.; Fañanás, L.; Fatjó-Vilas, M. Neurotrophins Role in Depressive Symptoms and Executive Function Performance: Association Analysis of NRN1 Gene and Its Interaction with BDNF Gene in a Non-Clinical Sample. J. Affect Disord. 2017, 211, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Leal, G.; Comprido, D.; Duarte, C.B. BDNF-Induced Local Protein Synthesis and Synaptic Plasticity. Neuropharmacology 2014, 76 Pt C, 639–656. [Google Scholar] [CrossRef]
- Ricci, V.; de Berardis, D.; Martinotti, G.; Maina, G. Neurotrophic Factors in Cannabis-Induced Psychosis: An Update. Curr. Top. Med. Chem. 2023, 24, 1757–1772. [Google Scholar] [CrossRef] [PubMed]
- Simchon-Tenenbaum, Y.; Weizman, A.; Rehavi, M. Alterations in Brain Neurotrophic and Glial Factors Following Early Age Chronic Methylphenidate and Cocaine Administration. Behav. Brain Res. 2015, 282, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Tao, J.; Zhang, J.; Xie, Y.; Sun, Y.; Li, L.; Xu, K.; Han, B.; Lu, Y.; Sun, H.; et al. An Association between BDNF Val66Met Polymorphism and Impulsivity in Methamphetamine Abusers. Neurosci. Lett. 2014, 582, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Boscutti, A.; Pigoni, A.; Delvecchio, G.; Lazzaretti, M.; Mandolini, G.M.; Girardi, P.; Ferro, A.; Sala, M.; Abbiati, V.; Cappucciati, M.; et al. The Influence of 5-HTTLPR, BDNF Rs6265 and COMT Rs4680 Polymorphisms on Impulsivity in Bipolar Disorder: The Role of Gender. Genes 2022, 13, 482. [Google Scholar] [CrossRef]
- Abdolahi, S.; Zare-Chahoki, A.; Noorbakhsh, F.; Gorji, A. A Review of Molecular Interplay between Neurotrophins and miRNAs in Neuropsychological Disorders. Mol. Neurobiol. 2022, 59, 6260–6280. [Google Scholar] [CrossRef]
- Fu, X.; Liu, Y.; Baranova, A.; Zhang, F. Deregulatory miRNA-BDNF Network Inferred from Dynamic Expression Changes in Schizophrenia. Brain Sci. 2022, 12, 167. [Google Scholar] [CrossRef] [PubMed]
- Hawthorne, M.J.; Pierce, B.H. Disadvantageous Deck Selection in the Iowa Gambling Task: The Effect of Cognitive Load. EJOP 2015, 11, 335–348. [Google Scholar] [CrossRef] [PubMed]
- Edman, G.; Schalling, D.; Levander, S.E. Impulsivity and Speed and Errors in a Reaction Time Task: A Contribution to the Construct Validity of the Concept of Impulsivity. Acta Psychol. 1983, 53, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Cohen, R.A. Continuous Performance Tests. In Encyclopedia of Clinical Neuropsychology; Kreutzer, J.S., DeLuca, J., Caplan, B., Eds.; Springer: New York, NY, USA, 2011; pp. 699–701. ISBN 978-0-387-79948-3. [Google Scholar]
- Eysenck, S.B.G.; Pearson, P.R.; Easting, G.; Allsopp, J.F. Age Norms for Impulsiveness, Venturesomeness and Empathy in Adults. Personal. Individ. Differ. 1985, 6, 613–619. [Google Scholar] [CrossRef]
- Caputo, V.; Sinibaldi, L.; Fiorentino, A.; Parisi, C.; Catalanotto, C.; Pasini, A.; Cogoni, C.; Pizzuti, A. Brain Derived Neurotrophic Factor (BDNF) Expression Is Regulated by MicroRNAs miR-26a and miR-26b Allele-Specific Binding. PLoS ONE 2011, 6, e28656. [Google Scholar] [CrossRef]
- Ding, J.; Jiang, C.; Yang, L.; Wang, X. Relationship and Effect of miR-1-3p Expression and BDNF Level in Patients with Primary Hypertension Complicated with Depression. Cell Mol. Biol. 2022, 68, 67–74. [Google Scholar] [CrossRef]
- Maurel, O.M.; Torrisi, S.A.; Barbagallo, C.; Purrello, M.; Salomone, S.; Drago, F.; Ragusa, M.; Leggio, G.M. Dysregulation of miR-15a-5p, miR-497a-5p and miR-511-5p Is Associated with Modulation of BDNF and FKBP5 in Brain Areas of PTSD-Related Susceptible and Resilient Mice. Int. J. Mol. Sci. 2021, 22, 5157. [Google Scholar] [CrossRef] [PubMed]
- Mellios, N.; Huang, H.-S.; Grigorenko, A.; Rogaev, E.; Akbarian, S. A Set of Differentially Expressed miRNAs, Including miR-30a-5p, Act as Post-Transcriptional Inhibitors of BDNF in Prefrontal Cortex. Hum. Mol. Genet. 2008, 17, 3030–3042. [Google Scholar] [CrossRef]
- Nie, J.; O’Neil, A.; Liao, B.; Lu, C.; Aune, D.; Wang, Y. Risk Factors for Completed Suicide in the General Population: A Prospective Cohort Study of 242,952 People. J. Affect. Disord. 2021, 282, 707–711. [Google Scholar] [CrossRef]
- Barratt, E.S. Factor Analysis of Some Psychometric Measures of Impulsiveness and Anxiety. Psychol. Rep. 1965, 16, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Mueller, S.T.; Piper, B.J. The Psychology Experiment Building Language (PEBL) and PEBL Test Battery. J. Neurosci. Methods 2014, 222, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Feng, X.; Yang, Q.; Yang, K.; Man, S. Expression Pattern and Value of Brain-Derived Neurotrophic Factor in Periodontitis. Int. Dent. J. 2023, 73, 542–549. [Google Scholar] [CrossRef]
- Zakowicz, P.; Skibińska, M.; Waśniewski, F.; Skulimowski, B.; Pawlak, J. Plasma Biomarkers in Adolescents with Schizophrenia-Spectrum Disorder. Early Interv. Psychiatry 2023, 17, 1154–1161. [Google Scholar] [CrossRef] [PubMed]
- Schmittgen, T.D.; Livak, K.J. Analyzing Real-Time PCR Data by the Comparative CT Method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
- Cohen, J. A Power Primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Brito, V.; Puigdellívol, M.; Giralt, A.; del Toro, D.; Alberch, J.; Ginés, S. Imbalance of p75NTR/TrkB Protein Expression in Huntington’s Disease: Implication for Neuroprotective Therapies. Cell Death Dis. 2013, 4, e595. [Google Scholar] [CrossRef] [PubMed]
- Sokolowski, I.; Kucharska-Lusina, A.; Miller, E.; Majsterek, I. Exploring the mRNA and Plasma Protein Levels of BDNF, NT4, SIRT1, HSP27, and HSP70 in Multiple Sclerosis Patients and Healthy Controls. Int. J. Mol. Sci. 2023, 24, 16176. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, A.; Bocchio-Chiavetto, L.; Zanardini, R.; Milanesi, E.; Placentino, A.; Gennarelli, M. Reduced Peripheral Brain-Derived Neurotrophic Factor mRNA Levels Are Normalized by Antidepressant Treatment. Int. J. Neuropsychopharmacol. 2010, 13, 103–108. [Google Scholar] [CrossRef]
- Gejl, A.K.; Enevold, C.; Bugge, A.; Andersen, M.S.; Nielsen, C.H.; Andersen, L.B. Associations between Serum and Plasma Brain-Derived Neurotrophic Factor and Influence of Storage Time and Centrifugation Strategy. Sci. Rep. 2019, 9, 9655. [Google Scholar] [CrossRef]
- Gao, L.; Yan, P.; Guo, F.F.; Liu, H.J.; Zhao, Z.F. MiR-1-3p Inhibits Cell Proliferation and Invasion by Regulating BDNF-TrkB Signaling Pathway in Bladder Cancer. Neoplasma 2018, 65, 89–96. [Google Scholar] [CrossRef]
- Nelson, P.T.; Wang, W.-X.; Mao, G.; Wilfred, B.R.; Xie, K.; Jennings, M.H.; Gao, Z.; Wang, X. Specific Sequence Determinants of miR-15/107 microRNA Gene Group Targets. Nucleic Acids Res. 2011, 39, 8163–8172. [Google Scholar] [CrossRef] [PubMed]
- Ehinger, Y.; Phamluong, K.; Darevesky, D.; Welman, M.; Moffat, J.J.; Sakhai, S.A.; Whiteley, E.L.; Berger, A.L.; Laguesse, S.; Farokhnia, M.; et al. Differential Correlation of Serum BDNF and microRNA Content in Rats with Rapid or Late Onset of Heavy Alcohol Use. Addict. Biol. 2021, 26, e12890. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Feng, W.; Li, Y.; Huang, J.; Chen, S.; Cui, Y.; Tian, B.; Tan, S.; Wang, Z.; Yao, S.; et al. The microRNA-195—BDNF Pathway and Cognitive Deficits in Schizophrenia Patients with Minimal Antipsychotic Medication Exposure. Transl. Psychiatry 2021, 11, 117. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-D.; Pan, H.-Y.; Huang, J.-B.; Liu, X.-P.; Li, J.-H.; Ho, C.-J.; Tsai, M.-H.; Yang, J.-L.; Chen, S.-F.; Chen, N.-C.; et al. Circulating MicroRNAs from Serum Exosomes May Serve as a Putative Biomarker in the Diagnosis and Treatment of Patients with Focal Cortical Dysplasia. Cells 2020, 9, 1867. [Google Scholar] [CrossRef]
- Benzerouk, F.; Gierski, F.; Gorwood, P.; Ramoz, N.; Stefaniak, N.; Hübsch, B.; Kaladjian, A.; Limosin, F. Brain-Derived Neurotrophic Factor (BDNF) Val66Met Polymorphism and Its Implication in Executive Functions in Adult Offspring of Alcohol-Dependent Probands. Alcohol 2013, 47, 271–274. [Google Scholar] [CrossRef] [PubMed]
- Fischetti, F.; Poli, L.; De Tommaso, M.; Paolicelli, D.; Greco, G.; Cataldi, S. The Role of Exercise Parameters on Small Extracellular Vesicles and microRNAs Cargo in Preventing Neurodegenerative Diseases. Front. Physiol. 2023, 14, 1241010. [Google Scholar] [CrossRef]
- Contractor, T.; Harris, C.R. Loss of Copy of MIR1-2 Increases CDK4 Expression in Ileal Neuroendocrine Tumors. Oncogenesis 2020, 9, 37. [Google Scholar] [CrossRef] [PubMed]
- Hirjak, D.; Thomann, A.K.; Kubera, K.M.; Wolf, R.C.; Jeung, H.; Maier-Hein, K.H.; Thomann, P.A. Cortical Folding Patterns Are Associated with Impulsivity in Healthy Young Adults. Brain Imaging Behav. 2017, 11, 1592–1603. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Roige, S.; Fontanillas, P.; Elson, S.L.; Gray, J.C.; de Wit, H.; MacKillop, J.; Palmer, A.A. Genome-Wide Association Studies of Impulsive Personality Traits (BIS-11 and UPPS-P) and Drug Experimentation in up to 22,861 Adult Research Participants Identify Loci in the CACNA1I and CADM2 Genes. J. Neurosci. 2019, 39, 2562–2572. [Google Scholar] [CrossRef]
- Li, H.; Cao, Z.; Xu, J.; Wang, F.; Xiong, R.; Xu, Z.; Luo, X.; Li, G.; Tan, X.; Liu, Z.; et al. Cerebrospinal Fluid FGF23 Levels Correlate with a Measure of Impulsivity. Psychiatry Res. 2018, 264, 394–397. [Google Scholar] [CrossRef] [PubMed]
- Martinotti, G.; Sepede, G.; Brunetti, M.; Ricci, V.; Gambi, F.; Chillemi, E.; Vellante, F.; Signorelli, M.; Pettorruso, M.; De Risio, L.; et al. BDNF Concentration and Impulsiveness Level in Post-Traumatic Stress Disorder. Psychiatry Res. 2015, 229, 814–818. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.-W.; Shin, Y.-C.; Mok, J.Y.; Kim, D.-J.; Choi, J.-S.; Suk-Hyun Hwang, S. Serum BDNF Levels in Patients with Gambling Disorder Are Associated with the Severity of Gambling Disorder and Iowa Gambling Task Indices. J. Behav. Addict. 2016, 5, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, J.; Hirano, Y.; Hashimoto, K.; Ishima, T.; Kanahara, N.; Niitsu, T.; Shiina, A.; Hashimoto, T.; Sato, Y.; Yokote, K.; et al. Altered Serum Level of Matrix Metalloproteinase-9 and Its Association with Decision-Making in Eating Disorders. Psychiatry Clin. Neurosci. 2017, 71, 124–134. [Google Scholar] [CrossRef]
- Hori, H.; Yoshimura, R.; Katsuki, A.; Atake, K.; Nakamura, J. Relationships between Brain-Derived Neurotrophic Factor, Clinical Symptoms, and Decision-Making in Chronic Schizophrenia: Data from the Iowa Gambling Task. Front. Behav. Neurosci. 2014, 8, 417. [Google Scholar] [CrossRef]
Whole Population (n = 40) | Females (n = 17) | Males (n = 23) | |||||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | p * | |
Age | 24.28 | 3.27 | 23.35 | 2.89 | 24.96 | 3.42 | 0.17 |
mRNA_BDNF | 33.60 | 3.26 | 32.95 | 2.86 | 34.08 | 3.51 | 0.22 |
mir 1-3p | 5.60 | 1.83 | 5.25 | 2.14 | 5.86 | 1.57 | 0.29 |
mir 15a-5p | 3.11 | 3.11 | 3.59 | 4.36 | 2.75 | 1.73 | 0.75 |
mir195-5p | 8.00 | 2.21 | 8.04 | 2.06 | 7.96 | 2.37 | 0.77 |
mir26b | 3.48 | 1.70 | 3.25 | 1.73 | 3.65 | 1.69 | 0.48 |
mir26a | 3.74 | 1.55 | 3.50 | 1.46 | 3.92 | 1.62 | 0.52 |
proBDNF (pg/mL) | 4815.68 | 9700.31 | 7695.39 | 14307.44 | 2687.19 | 2605.29 | 0.12 |
BDNF (pg/mL) | 1820.09 | 2108.88 | 1562.89 | 2057.55 | 2010.20 | 2171.67 | 0.42 |
Biological Factors | R | p |
---|---|---|
mRNA_BDNF and mir-15a-5p | 0.416 | 0.008 |
proBDNF and mir-1-3p | −0.336 | 0.034 |
mir-15a-5p and mir-195-5p | 0.319 | 0.047 |
mir-15a-5p and mir-26b | 0.622 | 0.000 |
mir-15a-5p and mir-26a | 0.595 | 0.000 |
mir-195-5p and mir-26b | 0.479 | 0.002 |
mir-195-5p and mir-26a | 0.451 | 0.004 |
mir-26b and mir-26a | 0.697 | <0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakowicz, P.; Narozna, B.; Kozlowski, T.; Bargiel, W.; Grabarczyk, M.; Terczynska, M.; Pilecka, J.; Wasicka-Przewozna, K.; Pawlak, J.; Skibinska, M. Peripheral Brain-Derived Neurotrophic Factor (BDNF) and Its Regulatory miRNAs as Biological Correlates of Impulsivity in Young Adults. Metabolites 2024, 14, 529. https://doi.org/10.3390/metabo14100529
Zakowicz P, Narozna B, Kozlowski T, Bargiel W, Grabarczyk M, Terczynska M, Pilecka J, Wasicka-Przewozna K, Pawlak J, Skibinska M. Peripheral Brain-Derived Neurotrophic Factor (BDNF) and Its Regulatory miRNAs as Biological Correlates of Impulsivity in Young Adults. Metabolites. 2024; 14(10):529. https://doi.org/10.3390/metabo14100529
Chicago/Turabian StyleZakowicz, Przemyslaw, Beata Narozna, Tomasz Kozlowski, Weronika Bargiel, Maksymilian Grabarczyk, Maria Terczynska, Julia Pilecka, Karolina Wasicka-Przewozna, Joanna Pawlak, and Maria Skibinska. 2024. "Peripheral Brain-Derived Neurotrophic Factor (BDNF) and Its Regulatory miRNAs as Biological Correlates of Impulsivity in Young Adults" Metabolites 14, no. 10: 529. https://doi.org/10.3390/metabo14100529
APA StyleZakowicz, P., Narozna, B., Kozlowski, T., Bargiel, W., Grabarczyk, M., Terczynska, M., Pilecka, J., Wasicka-Przewozna, K., Pawlak, J., & Skibinska, M. (2024). Peripheral Brain-Derived Neurotrophic Factor (BDNF) and Its Regulatory miRNAs as Biological Correlates of Impulsivity in Young Adults. Metabolites, 14(10), 529. https://doi.org/10.3390/metabo14100529