Causal Metabolomic and Lipidomic Analysis of Circulating Plasma Metabolites in Autism: A Comprehensive Mendelian Randomization Study with Independent Cohort Validation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Data Sources
2.2. Instrumental Variables Selection
2.3. Mendelian Randomization Analysis
2.4. Sensitivity Analysis
2.5. Machine Learning Analysis
3. Results
3.1. Results Description
3.1.1. Causal Impact of Plasma Metabolites on Autism
- From all three analyzed ASD datasets, we observed several metabolites displaying a causal association with ASD (Figure 3). In the ieu-a-806 dataset, sphingomyelin (d17:1/16:0), dihydroorotate, and deoxycarnitine displayed a consistent positive causal relationship with ASD, while paraxanthine/AFMU exhibited an inverse association. In the ieu-a-1184 dataset, both dihydroorotate and deoxycarnitine also revealed a significant positive causal relationship with ASD, while SM (d18:1/20:1) was negatively associated. In ieu-a-1185, additional metabolites such as PC (18:1/22:6), isovalerylcarnitine, SM (d17:1/16:0), and X−12112 were positively linked to ASD, whereas PE (16:0/22:6) and argininate demonstrated a reverse causal relationship.
3.1.2. Causal Impact of Autism on Plasma Metabolites
3.2. Power Analysis
3.3. Enrichment Analysis and Metabolic Pathway Analysis
4. Discussion
4.1. Sphingomyelin and Autism
4.2. Creatine/Carnitine Ratio and Autism
4.3. Dihydroorotate and Autism
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Myers, S.M.; Voigt, R.G.; Colligan, R.C.; Weaver, A.L.; Storlie, C.B.; Stoeckel, R.E.; Port, J.D.; Katusic, S.K. Autism Spectrum Disorder: Incidence and Time Trends Over Two Decades in a Population-Based Birth Cohort. J. Autism Dev. Disord. 2019, 49, 1455–1474. [Google Scholar] [CrossRef] [PubMed]
- Galal, A.; Talal, M.; Moustafa, A. Applications of machine learning in metabolomics: Disease modeling and classification. Front. Genet. 2022, 13, 1017340. [Google Scholar] [CrossRef] [PubMed]
- Hyman, S.L.; Levy, S.E.; Myers, S.M.; Council on Children with Disabilities, Section on Developmental and Behavioral Pediatrics; Kuo, D.Z.; Apkon, S.; Davidson, L.F.; Ellerbeck, K.A.; Foster, J.E.; Noritz, G.H.; et al. Identification, Evaluation, and Management of Children with Autism Spectrum Disorder. Pediatrics 2020, 145, e20193447. [Google Scholar] [CrossRef] [PubMed]
- Lyall, K.; Croen, L.; Daniels, J.; Fallin, M.D.; Ladd-Acosta, C.; Lee, B.K.; Park, B.Y.; Snyder, N.W.; Schendel, D.; Volk, H.; et al. The Changing Epidemiology of Autism Spectrum Disorders. Annu. Rev. Public Health 2017, 38, 81–102. [Google Scholar] [CrossRef] [PubMed]
- Hodges, H.; Fealko, C.; Soares, N. Autism spectrum disorder: Definition, epidemiology, causes, and clinical evaluation. Transl. Pediatr. 2020, 9 (Suppl. S1), S55–S65. [Google Scholar] [CrossRef]
- Burgess, S.; Butterworth, A.; Thompson, S.G. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet. Epidemiol. 2013, 37, 658–665. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, T.; Pettersson-Kymmer, U.; Stewart, I.D.; Butler-Laporte, G.; Nakanishi, T.; Cerani, A.; Liang, K.Y.H.; Yoshiji, S.; Willett, J.D.S.; et al. Genomic atlas of the plasma metabolome prioritizes metabolites implicated in human diseases. Nat. Genet. 2023, 55, 44–53. [Google Scholar] [CrossRef]
- Needham, B.D.; Adame, M.D.; Serena, G.; Rose, D.R.; Preston, G.M.; Conrad, M.C.; Campbell, A.S.; Donabedian, D.H.; Fasano, A.; Ashwood, P.; et al. Plasma and Fecal Metabolite Profiles in Autism Spectrum Disorder. Biol. Psychiatry 2021, 89, 451–462. [Google Scholar] [CrossRef] [PubMed]
- Lai, M.C.; Lombardo, M.V.; Baron-Cohen, S. Autism. Lancet 2014, 383, 896–910. [Google Scholar] [CrossRef]
- Dawson, G.; Sapiro, G. Potential for Digital Behavioral Measurement Tools to Transform the Detection and Diagnosis of Autism Spectrum Disorder. JAMA Pediatr. 2019, 173, 305–306. [Google Scholar] [CrossRef]
- Tam, V.; Patel, N.; Turcotte, M.; Bosse, Y.; Pare, G.; Meyre, D. Benefits and limitations of genome-wide association studies. Nat. Rev. Genet. 2019, 20, 467–484. [Google Scholar] [CrossRef] [PubMed]
- Bowden, J.; Davey Smith, G.; Haycock, P.C.; Burgess, S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet. Epidemiol 2016, 40, 304–314. [Google Scholar] [CrossRef] [PubMed]
- Richmond, R.C.; Davey Smith, G. Mendelian Randomization: Concepts and Scope. Cold Spring Harb. Perspect. Med. 2022, 12, a040501. [Google Scholar] [CrossRef]
- Ottensmann, L.; Tabassum, R.; Ruotsalainen, S.E.; Gerl, M.J.; Klose, C.; Widén, E.; Simons, K.; Ripatti, S.; Pirinen, M. Genome-wide association analysis of plasma lipidome identifies 495 genetic associations. Nat. Commun. 2023, 14, 6934. [Google Scholar] [CrossRef] [PubMed]
- Lingampelly, S.S.; Naviaux, J.C.; Heuer, L.S.; Monk, J.M.; Li, K.; Wang, L.; Haapanen, L.; Kelland, C.A.; Van de Water, J.; Naviaux, R.K. Metabolic network analysis of pre-ASD newborns and 5-year-old children with autism spectrum disorder. Commun. Biol. 2024, 7, 536. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience 2015, 4, 7. [Google Scholar] [CrossRef]
- Kamat, M.A.; Blackshaw, J.A.; Young, R.; Surendran, P.; Burgess, S.; Danesh, J.; Butterworth, A.S.; Staley, J.R. PhenoScanner V2: An expanded tool for searching human genotype-phenotype associations. Bioinformatics 2019, 35, 4851–4853. [Google Scholar] [CrossRef] [PubMed]
- Greco, M.F.D.; Minelli, C.; Sheehan, N.A.; Thompson, J.R. Detecting pleiotropy in Mendelian randomisation studies with summary data and a continuous outcome. Stat. Med. 2015, 34, 2926–2940. [Google Scholar] [CrossRef]
- Bowden, J.; Davey Smith, G.; Burgess, S. Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 2015, 44, 512–525. [Google Scholar] [CrossRef]
- Brion, M.J.; Shakhbazov, K.; Visscher, P.M. Calculating statistical power in Mendelian randomization studies. Int. J. Epidemiol. 2013, 42, 1497–1501. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Liu, X.; Zhang, H.; Lin, J.; Feng, C.; Iqbal, J. Biomarkers in autism spectrum disorders: Current progress. Clin. Chim. Acta 2020, 502, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.M.; Donley, E.L.R.; Ney, D.M.; Amaral, D.G.; Burrier, R.E.; Natowicz, M.R. Metabolomic biomarkers in autism: Identification of complex dysregulations of cellular bioenergetics. Front. Psychiatry 2023, 14, 1249578. [Google Scholar] [CrossRef] [PubMed]
- Maceyka, M.; Spiegel, S. Sphingolipid metabolites in inflammatory disease. Nature 2014, 510, 58–67. [Google Scholar] [CrossRef]
- Wang, H.; Liang, S.; Wang, M.; Gao, J.; Sun, C.; Wang, J.; Xia, W.; Wu, S.; Sumner, S.J.; Zhang, F.; et al. Potential serum biomarkers from a metabolomics study of autism. J. Psychiatry Neurosci. 2016, 41, 27–37. [Google Scholar] [CrossRef]
- Esvap, E.; Ulgen, K.O. Neuroinflammation, Energy and Sphingolipid Metabolism Biomarkers Are Revealed by Metabolic Modeling of Autistic Brains. Biomedicines 2023, 11, 583. [Google Scholar] [CrossRef]
- Beaudet, A.L. Brain carnitine deficiency causes nonsyndromic autism with an extreme male bias: A hypothesis. Bioessays 2017, 39, 1700012. [Google Scholar] [CrossRef]
- Mao, C.; Liu, X.; Zhang, Y.; Lei, G.; Yan, Y.; Lee, H.; Koppula, P.; Wu, S.; Zhuang, L.; Fang, B.; et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature 2021, 593, 586–590. [Google Scholar] [CrossRef]
- Hughes, H.K.; Moreno, R.J.; Ashwood, P. Innate immune dysfunction and neuroinflammation in autism spectrum disorder (ASD). Brain Behav. Immun. 2023, 108, 245–254. [Google Scholar] [CrossRef]
- Robinson-Agramonte, M.D.L.A.; Noris Garcia, E.; Fraga Guerra, J.; Vega Hurtado, Y.; Antonucci, N.; Semprun-Hernandez, N.; Schultz, S.; Siniscalco, D. Immune Dysregulation in Autism Spectrum Disorder: What Do We Know about It? Int. J. Mol. Sci. 2022, 23, 3033. [Google Scholar] [CrossRef]
- Siniscalco, D.; Schultz, S.; Brigida, A.L.; Antonucci, N. Inflammation and Neuro-Immune Dysregulations in Autism Spectrum Disorders. Pharmaceuticals 2018, 11, 56. [Google Scholar] [CrossRef] [PubMed]
Metabolites | ASD Dataset | Sample Size Required | Power |
---|---|---|---|
SM (d17:1/16:0) | ieu-a-806 | 10,263 | 0.62 |
SM (d17:1/16:0) | ieu-a-1184 | 10,610 | 0.63 |
SM (d17:1/16:0) | ieu-a-1185 | 46,531 | 0.76 |
Deoxycarnitine | ieu-a-806 | 10,263 | 0.82 |
Deoxycarnitine | ieu-a-1184 | 10,610 | 0.84 |
Dihydroorotate | ieu-a-806 | 10,263 | 0.75 |
Dihydroorotate | ieu-a-1184 | 10,610 | 0.89 |
SM (d18:1/20:1) | ieu-a-1184 | 10,610 | 0.89 |
Paraxanthine/AFMU | ieu-a-806 | 10,263 | 0.61 |
Isovalerylcarnitine | ieu-a-1185 | 46,531 | 0.88 |
Argininate | ieu-a-1185 | 46,531 | 1 |
X-12112 | ieu-a-1185 | 46,531 | 0.61 |
PE (16:0/22:6) | ieu-a-1185 | 46,531 | 0.73 |
PC (18:1/22:6) | ieu-a-1185 | 46,531 | 0.65 |
SM (d38:1) | ieu-a-1185 | 46,531 | 0.64 |
ASD Dataset | Metabolites | Sample Size (Outcome) | Power |
---|---|---|---|
ieu-a-1185 | Creatine/carnitine ratio | 8299 | 1 |
ieu-a-1185 | Creatine | 8299 | 1 |
ieu-a-1185 | Alpha-ketobutyrate/4-methyl-2-oxopentanoate ratio | 8299 | 1 |
ieu-a-1185 | Eicosenedioate (C20:1-DC) | 8299 | 1 |
ieu-a-1185 | Alpha-ketobutyrate/3-methyl-2-oxovalerate ratio | 8299 | 1 |
ieu-a-1185 | X-15523 | 8299 | 1 |
ieu-a-1185 | 5-(galactosylhydroxy)-L-lysine | 8299 | 1 |
ieu-a-1185 | Alpha-ketobutyrate/3-methyl-2-oxobutyrate ratio | 8299 | 1 |
ieu-a-1185 | Linoleoyl ethanolamide | 8299 | 0.99 |
ieu-a-1185 | 2′-o-methylcytidine | 8299 | 1 |
ieu-a-1185 | Glycerol/carnitine ratio | 8299 | 0.99 |
ieu-a-1185 | PC(18:2/20:4) | 8299 | 1 |
ieu-a-1185 | Histidine/pyruvate ratio | 8299 | 1 |
ieu-a-1185 | S-1-pyrroline-5-carboxylate | 8299 | 1 |
ieu-a-1185 | N-methylproline | 8299 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Li, Y.; Tang, X.; Xing, A.; Lin, J.; Li, J.; Ji, J.; Cai, T.; Zheng, K.; Lingampelly, S.S.; et al. Causal Metabolomic and Lipidomic Analysis of Circulating Plasma Metabolites in Autism: A Comprehensive Mendelian Randomization Study with Independent Cohort Validation. Metabolites 2024, 14, 557. https://doi.org/10.3390/metabo14100557
Li Z, Li Y, Tang X, Xing A, Lin J, Li J, Ji J, Cai T, Zheng K, Lingampelly SS, et al. Causal Metabolomic and Lipidomic Analysis of Circulating Plasma Metabolites in Autism: A Comprehensive Mendelian Randomization Study with Independent Cohort Validation. Metabolites. 2024; 14(10):557. https://doi.org/10.3390/metabo14100557
Chicago/Turabian StyleLi, Zhifan, Yanrong Li, Xinrong Tang, Abao Xing, Jianlin Lin, Junrong Li, Junjun Ji, Tiantian Cai, Ke Zheng, Sai Sachin Lingampelly, and et al. 2024. "Causal Metabolomic and Lipidomic Analysis of Circulating Plasma Metabolites in Autism: A Comprehensive Mendelian Randomization Study with Independent Cohort Validation" Metabolites 14, no. 10: 557. https://doi.org/10.3390/metabo14100557
APA StyleLi, Z., Li, Y., Tang, X., Xing, A., Lin, J., Li, J., Ji, J., Cai, T., Zheng, K., Lingampelly, S. S., & Li, K. (2024). Causal Metabolomic and Lipidomic Analysis of Circulating Plasma Metabolites in Autism: A Comprehensive Mendelian Randomization Study with Independent Cohort Validation. Metabolites, 14(10), 557. https://doi.org/10.3390/metabo14100557