Low Serum Fibroblast Growth Factor 21 Level and Its Altered Regulation by Thyroid Hormones in Patients with Hashimoto’s Thyroiditis on Levothyroxine Substitution
Abstract
:1. Introduction
2. Subjects and Methods
2.1. Subjects
2.2. Sample Collection and Laboratory Measurements
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lewis, J.E.; Ebling, F.J.P.; Samms, R.J.; Tsintzas, K. Going Back to the Biology of FGF21: New Insights. Trends Endocrinol. Metab. 2019, 30, 491–504. [Google Scholar] [CrossRef] [PubMed]
- Kharitonenkov, A.; Shiyanova, T.L.; Koester, A.; Ford, A.M.; Micanovic, R.; Galbreath, E.J.; Sandusky, G.E.; Hammond, L.J.; Moyers, J.S.; Owens, R.A.; et al. FGF-21 as a novel metabolic regulator. J. Clin. Invest. 2005, 115, 1627–1635. [Google Scholar] [CrossRef] [PubMed]
- Fon Tacer, K.; Bookout, A.L.; Ding, X.; Kurosu, H.; John, G.B.; Wang, L.; Goetz, R.; Mohammadi, M.; Kuro-o, M.; Mangelsdorf, D.J.; et al. Research resource: Comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol. Endocrinol. 2010, 24, 2050–2064. [Google Scholar] [CrossRef]
- Ren, Y.; Zhao, H.; Yin, C.; Lan, X.; Wu, L.; Du, X.; Griffiths, H.R.; Gao, D. Adipokines, Hepatokines and Myokines: Focus on Their Role and Molecular Mechanisms in Adipose Tissue Inflammation. Front. Endocrinol. 2022, 13, 873699. [Google Scholar] [CrossRef]
- Tan, B.K.; Hallschmid, M.; Adya, R.; Kern, W.; Lehnert, H.; Randeva, H.S. Fibroblast growth factor 21 (FGF21) in human cerebrospinal fluid: Relationship with plasma FGF21 and body adiposity. Diabetes 2011, 60, 2758–2762. [Google Scholar] [CrossRef]
- Yu, H.; Xia, F.; Lam, K.S.; Wang, Y.; Bao, Y.; Zhang, J.; Gu, Y.; Zhou, P.; Lu, J.; Jia, W.; et al. Circadian rhythm of circulating fibroblast growth factor 21 is related to diurnal changes in fatty acids in humans. Clin. Chem. 2011, 57, 691–700. [Google Scholar] [CrossRef]
- Nason, S.; Teayoun, K.; Antipenko, J.P.; Paul, J.; Finan, B.; Dimarchi, R.; Habegger, K.M. Glucagon Regulates Energy Balance via FGF-21 Signaling in the Brain. Diabetes 2018, 67, 1806-P. [Google Scholar] [CrossRef]
- Planavila, A.; Redondo, I.; Hondares, E.; Vinciguerra, M.; Munts, C.; Iglesias, R.; Gabrielli, L.A.; Sitges, M.; Giralt, M.; van Bilsen, M.; et al. Fibroblast growth factor 21 protects against cardiac hypertrophy in mice. Nat. Commun. 2013, 4, 2019. [Google Scholar] [CrossRef]
- Wang, N.; Xu, T.Y.; Zhang, X.; Li, J.Y.; Wang, Y.X.; Guo, X.C.; Li, S.M.; Wang, W.F.; Li, D.S. Improving hyperglycemic effect of FGF-21 is associated with alleviating inflammatory state in diabetes. Int. Immunopharmacol. 2018, 56, 301–309. [Google Scholar] [CrossRef]
- Jung, C.H.; Jung, S.H.; Kim, B.Y.; Kim, C.H.; Kang, S.K.; Mok, J.O. The U-shaped relationship between fibroblast growth factor 21 and microvascular complication in type 2 diabetes mellitus. J. Diabetes Complicat. 2017, 31, 134–140. [Google Scholar] [CrossRef]
- Mutsnaini, L.; Kim, C.S.; Kim, J.; Joe, Y.; Chung, H.T.; Choi, H.S.; Roh, E.; Kim, M.S.; Yu, R. Fibroblast growth factor 21 deficiency aggravates obesity-induced hypothalamic inflammation and impairs thermogenic response. Inflamm. Res. 2019, 68, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.F.; Ma, L.; Liu, M.Y.; Zhao, T.T.; Zhang, T.; Yang, Y.B.; Cao, H.X.; Han, X.H.; Li, D.S. A novel function for fibroblast growth factor 21: Stimulation of NADPH oxidase-dependent ROS generation. Endocrine 2015, 49, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Li, J.Y.; Zhao, T.T.; Li, S.M.; Shen, C.B.; Li, D.S.; Wang, W.F. FGF-21 Plays a Crucial Role in the Glucose Uptake of Activated Monocytes. Inflammation 2018, 41, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yeung, D.C.; Karpisek, M.; Stejskal, D.; Zhou, Z.G.; Liu, F.; Wong, R.L.; Chow, W.S.; Tso, A.W.; Lam, K.S.; et al. Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes 2008, 57, 1246–1253. [Google Scholar] [CrossRef]
- Stein, S.; Stepan, H.; Kratzsch, J.; Verlohren, M.; Verlohren, H.J.; Drynda, K.; Lössner, U.; Blüher, M.; Stumvoll, M.; Fasshauer, M. Serum fibroblast growth factor 21 levels in gestational diabetes mellitus in relation to insulin resistance and dyslipidemia. Metabolism 2010, 59, 33–37. [Google Scholar] [CrossRef]
- Mraz, M.; Bartlova, M.; Lacinova, Z.; Michalsky, D.; Kasalicky, M.; Haluzikova, D.; Matoulek, M.; Dostalova, I.; Humenanska, V.; Haluzik, M. Serum concentrations and tissue expression of a novel endocrine regulator fibroblast growth factor-21 in patients with type 2 diabetes and obesity. Clin. Endocrinol. 2009, 71, 369–375. [Google Scholar] [CrossRef]
- Shen, Y.; Ma, X.; Zhou, J.; Pan, X.; Hao, Y.; Zhou, M.; Lu, Z.; Gao, M.; Bao, Y.; Jia, W. Additive relationship between serum fibroblast growth factor 21 level and coronary artery disease. Cardiovasc. Diabetol. 2013, 12, 124. [Google Scholar] [CrossRef]
- Chow, W.S.; Xu, A.; Woo, Y.C.; Tso, A.W.; Cheung, S.C.; Fong, C.H.; Tse, H.F.; Chau, M.T.; Cheung, B.M.; Lam, K.S. Serum fibroblast growth factor-21 levels are associated with carotid atherosclerosis independent of established cardiovascular risk factors. Arter. Thromb. Vasc. Biol. 2013, 33, 2454–2459. [Google Scholar] [CrossRef]
- Zhang, W.; Chu, S.; Ding, W.; Wang, F. Serum Level of Fibroblast Growth Factor 21 Is Independently Associated with Acute Myocardial Infarction. PLoS ONE 2015, 10, e0129791. [Google Scholar] [CrossRef]
- Yong, G.; Li, L.; Hu, S. Fibroblast growth factor 21 may be a strong biomarker for renal outcomes: A meta-analysis. Ren. Fail. 2023, 45, 2179336. [Google Scholar] [CrossRef]
- Semba, R.D.; Crasto, C.; Strait, J.; Sun, K.; Schaumberg, D.A.; Ferrucci, L. Elevated serum fibroblast growth factor 21 is associated with hypertension in community-dwelling adults. J. Hum. Hypertens. 2013, 27, 397–399. [Google Scholar] [CrossRef] [PubMed]
- Salgado, J.V.; Goes, M.A.; Salgado Filho, N. FGF21 and Chronic Kidney Disease. Metabolism 2021, 118, 154738. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.; Samms, R.; Warner, A.; Bolborea, M.; Barrett, P.; Fowler, M.J.; Brameld, J.M.; Tsintzas, K.; Kharitonenkov, A.; Adams, A.C.; et al. Increased responses to the actions of fibroblast growth factor 21 on energy balance and body weight in a seasonal model of adiposity. J. Neuroendocrinol. 2013, 25, 180–189. [Google Scholar] [CrossRef]
- Lewis, J.E.; Ebling, F.J. Tanycytes as Regulators of Seasonal Cycles in Neuroendocrine Function. Front. Neurol. 2017, 8, 79. [Google Scholar] [CrossRef]
- Adams, A.C.; Astapova, I.; Fisher, F.M.; Badman, M.K.; Kurgansky, K.E.; Flier, J.S.; Hollenberg, A.N.; Maratos-Flier, E. Thyroid hormone regulates hepatic expression of fibroblast growth factor 21 in a PPARalpha-dependent manner. J. Biol. Chem. 2010, 285, 14078–14082. [Google Scholar] [CrossRef]
- Zhang, A.; Sieglaff, D.H.; York, J.P.; Suh, J.H.; Ayers, S.D.; Winnier, G.E.; Kharitonenkov, A.; Pin, C.; Zhang, P.; Webb, P.; et al. Thyroid hormone receptor regulates most genes independently of fibroblast growth factor 21 in liver. J. Endocrinol. 2015, 224, 289–301. [Google Scholar] [CrossRef]
- Domouzoglou, E.M.; Fisher, F.M.; Astapova, I.; Fox, E.C.; Kharitonenkov, A.; Flier, J.S.; Hollenberg, A.N.; Maratos-Flier, E. Fibroblast growth factor 21 and thyroid hormone show mutual regulatory dependency but have independent actions in vivo. Endocrinology 2014, 155, 2031–2040. [Google Scholar] [CrossRef]
- Bonde, Y.; Breuer, O.; Lütjohann, D.; Sjöberg, S.; Angelin, B.; Rudling, M. Thyroid hormone reduces PCSK9 and stimulates bile acid synthesis in humans. J. Lipid Res. 2014, 55, 2408–2415. [Google Scholar] [CrossRef]
- Xiao, F.; Lin, M.; Huang, P.; Zeng, J.; Zeng, X.; Zhang, H.; Li, X.; Yang, S.; Li, Z. Elevated Serum Fibroblast Growth Factor 21 Levels in Patients with Hyperthyroidism. J. Clin. Endocrinol. Metab. 2015, 100, 3800–3805. [Google Scholar] [CrossRef]
- Xiao, F.; Zeng, J.; Huang, P.; Yan, B.; Zeng, X.; Liu, C.; Shi, X.; Wang, L.; Song, H.; Lin, M.; et al. Independent Association of Serum Fibroblast Growth Factor 21 Levels with Impaired Liver Enzymes in Hyperthyroid Patients. Front. Endocrinol. 2018, 9, 800. [Google Scholar] [CrossRef]
- Bande, A.R.; Kalra, P.; Dharmalingam, M.; Selvan, C.; Suryanarayana, K.M. Serum Fibroblast Growth Factor 21 Levels in Patients with Hyperthyroidism and its Association with Body Fat Percentage. Indian J. Endocrinol. Metab. 2019, 23, 557–562. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Park, Y.J.; Ahn, H.Y.; Lim, J.A.; Park, K.U.; Choi, S.H.; Park, D.J.; Oh, B.C.; Jang, H.C.; Yi, K.H. Plasma FGF21 levels are increased in patients with hypothyroidism independently of lipid profile. Endocr. J. 2013, 60, 977–983. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Liu, J.; Yang, N.; Hu, Y.; Zhang, H.; Miao, L.; Yao, Z.; Xu, Y. Levothyroxine treatment restored the decreased circulating fibroblast growth factor 21 levels in patients with hypothyroidism. Eur. J. Intern. Med. 2016, 31, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Fu, T.; Yuan, S.; Gao, Y.; Qu, C.; Chen, L.; Hui, Y.; Lu, G.; Gao, Y.; Guo, X. Relationship between fibroblast growth factor 21 and thyroid stimulating hormone in healthy subjects without components of metabolic syndrome. Fam. Med. Community Health 2014, 2, 1–6. [Google Scholar] [CrossRef]
- Song, R.H.; Wang, B.; Yao, Q.M.; Li, Q.; Jia, X.; Zhang, J.A. The Impact of Obesity on Thyroid Autoimmunity and Dysfunction: A Systematic Review and Meta-Analysis. Front. Immunol. 2019, 10, 2349. [Google Scholar] [CrossRef]
- Hu, X.; Chen, Y.; Shen, Y.; Tian, R.; Sheng, Y.; Que, H. Global prevalence and epidemiological trends of Hashimoto’s thyroiditis in adults: A systematic review and meta-analysis. Front. Public Health 2022, 10, 1020709. [Google Scholar] [CrossRef]
- Drongitis, P.; Kotanidou, E.P.; Serbis, A.; Tsinopoulou, V.R.; Gerou, S.; Galli-Tsinopoulou, A. Serum Fibroblast Growth Factor 21 Levels in Children and Adolescents with Hashimoto’s Thyroiditis before and after l-Thyroxin Medication: A Prospective Study. Medicina 2021, 57, 1374. [Google Scholar] [CrossRef]
- Ying, M.; Hu, X.; Li, Q.; Dong, H.; Zhou, Y.; Chen, Z. Long-term trajectories of BMI and cumulative incident metabolic syndrome: A cohort study. Front. Endocrinol. 2022, 13, 915394. [Google Scholar] [CrossRef]
- Hildrum, B.; Mykletun, A.; Hole, T.; Midthjell, K.; Dahl, A.A. Age-specific prevalence of the metabolic syndrome defined by the International Diabetes Federation and the National Cholesterol Education Program: The Norwegian HUNT 2 study. BMC Public Health 2007, 7, 220. [Google Scholar] [CrossRef]
- Ates, I.; Altay, M.; Yilmaz, F.M.; Topcuoglu, C.; Yilmaz, N.; Berker, D.; Guler, S. The impact of levothyroxine sodium treatment on oxidative stress in Hashimoto’s thyroiditis. Eur. J. Endocrinol. 2016, 174, 727–734. [Google Scholar] [CrossRef]
- Giannakou, M.; Saltiki, K.; Mantzou, E.; Loukari, E.; Philippou, G.; Terzidis, K.; Stavrianos, C.; Kyprianou, M.; Psaltopoulou, T.; Karatzi, K.; et al. The effect of obesity and dietary habits on oxidative stress in Hashimoto’s thyroiditis. Endocr. Connect. 2018, 7, 990–997. [Google Scholar] [CrossRef] [PubMed]
- Al-Naimi, M.S.; Hussien, N.R.; Rasheed, H.A.; Al-Kuraishy, H.M.; Al-Gareeb, A.I. Levothyroxine improves Paraoxonase (PON-1) serum levels in patients with primary hypothyroidism: Case-control study. J. Adv. Pharm. Technol. Res. 2018, 9, 113–118. [Google Scholar] [CrossRef]
- Tellechea, M.L. Meta-analytic evidence for increased low-grade systemic inflammation and oxidative stress in hypothyroid patients. Can levothyroxine replacement therapy mitigate the burden? Endocrine 2021, 72, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Csiha, S.; Molnár, I.; Halmi, S.; Hutkai, D.; Lőrincz, H.; Somodi, S.; Katkó, M.; Harangi, M.; Paragh, G.; Nagy, E.V.; et al. Advanced glycation end products and their soluble receptor (sRAGE) in patients with Hashimoto’s thyroiditis on levothyroxine substitution. Front. Endocrinol. 2023, 14, 1187725. [Google Scholar] [CrossRef] [PubMed]
- Gereben, B.; Zavacki, A.M.; Ribich, S.; Kim, B.W.; Huang, S.A.; Simonides, W.S.; Zeöld, A.; Bianco, A.C. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr. Rev. 2008, 29, 898–938. [Google Scholar] [CrossRef]
- Biondi, B.; Kahaly, G.J.; Robertson, R.P. Thyroid Dysfunction and Diabetes Mellitus: Two Closely Associated Disorders. Endocr. Rev. 2019, 40, 789–824. [Google Scholar] [CrossRef]
- Kang, Y.E.; Kim, J.T.; Lim, M.A.; Oh, C.; Liu, L.; Jung, S.N.; Won, H.R.; Lee, K.; Chang, J.W.; Yi, H.S.; et al. Association between Circulating Fibroblast Growth Factor 21 and Aggressiveness in Thyroid Cancer. Cancers 2019, 11, 1154. [Google Scholar] [CrossRef]
- Ueland, H.O.; Ueland, G.; Løvås, K.; Breivk, L.E.; Thrane, A.S.; Meling Stokland, A.E.; Rødahl, E.; Husebye, E.S. Novel inflammatory biomarkers in thyroid eye disease. Eur. J. Endocrinol. 2022, 187, 293–300. [Google Scholar] [CrossRef]
- Szczepańska, E.; Gietka-Czernel, M. FGF21: A Novel Regulator of Glucose and Lipid Metabolism and Whole-Body Energy Balance. Horm. Metab. Res. 2022, 54, 203–211. [Google Scholar] [CrossRef]
- Sztanek, F.; Tóth, L.I.; Pető, A.; Hernyák, M.; Diószegi, Á.; Harangi, M. New Developments in Pharmacological Treatment of Obesity and Type 2 Diabetes-Beyond and within GLP-1 Receptor Agonists. Biomedicines 2024, 12, 1320. [Google Scholar] [CrossRef]
- Fiorenza, M.; Checa, A.; Sandsdal, R.M.; Jensen, S.B.K.; Juhl, C.R.; Noer, M.H.; Bogh, N.P.; Lundgren, J.R.; Janus, C.; Stallknecht, B.M.; et al. Weight-loss maintenance is accompanied by interconnected alterations in circulating FGF21-adiponectin-leptin and bioactive sphingolipids. Cell Rep. Med. 2024, 5, 101629. [Google Scholar] [CrossRef]
- Ren, F.; Huang, J.; Dai, T.; Gan, F. Retrospective analysis of factors associated with serum levels of fibroblast growth factor-21 in patients with diabetes. Ann. Palliat. Med. 2021, 10, 3258–3266. [Google Scholar] [CrossRef]
HT Patients (n = 80) | Controls (n = 82) | p | |
---|---|---|---|
Age (years) | 47 ± 13 | 46 ± 14 | 0.610 |
BMI (kg/m2) | 25.5 (23.9–30.5) | 26.1 (22.2–30.0) | 0.997 |
FGF21 (pg/mL) | 74.2 (33.4–148.3) | 131.9 (44.8–236.3) | 0.030 |
hsCRP (mg/L) | 1.7 (1.0–4.5) | 2.6 (0.9–5.5) | 0.268 |
TSH (mIU/L) | 2.80 (1.03–4.79) | 1.77 (1.25–2.38) | 0.004 |
fT4 (pmol/L) | 17.9 ± 3.7 | 15.3 ± 1.7 | <0.0001 |
fT3 (pmol/L) | 4.56 ± 0.62 | 5.04 ± 0.62 | <0.0001 |
Glucose (mmol/L) | 5.2 (4.9–5.6) | 5.1 (4.8–5.6) | 0.039 |
Triglyceride (mmol/L) | 1.4 (0.9–2.0) | 1.2 (0.9–1.7) | 0.058 |
Total cholesterol (mmol/L) | 5.3 ± 1.1 | 5.4 ± 1.1 | 0.629 |
LDL-C (mmol/L) | 3.2 (2.6–4.1) | 3.3 (2.7–4.1) | 0.672 |
HDL-C (mmol/L) | 1.5 (1.3–1.8) | 1.5 (1.2–1.7) | 0.539 |
HT Patients (n = 80) | Controls (n = 82) | |||
---|---|---|---|---|
Parameters | r | p | r | p |
Age (years) | 0.403 | <0.001 | 0.317 | 0.004 |
BMI (kg/m2) | 0.373 | 0.001 | 0.200 | 0.071 |
TSH | 0.005 | 0.967 | 0.251 | 0.023 |
fT4 (pmol/L) | −0.071 | 0.530 | −0.327 | 0.003 |
fT3 (pmol/L) | −0.163 | 0.148 | −0.022 | 0.843 |
Glucose (mmol/L) | 0.138 | 0.290 | 0.188 | 0.091 |
Triglyceride (mmol/L) | 0.395 | <0.001 | 0.344 | 0.003 |
Total cholesterol (mmol/L) | 0.350 | 0.002 | 0.291 | 0.012 |
LDL-C (mmol/L) | 0.358 | 0.001 | 0.323 | 0.006 |
HDL-C (mmol/L) | −0.242 | 0.033 | −0.186 | 0.117 |
hsCRP (mg/L) | 0.211 | 0.073 | 0.260 | 0.019 |
HT Patients | Controls | |||
---|---|---|---|---|
Predictors | st. β (SE of st. β) | p | st. β (SE of st. β) | p |
Age | 0.223 (0.118) | 0.063 | 0.094 (0.131) | 0.476 |
BMI | 0.232 (0.121) | 0.059 | na | na |
TSH | na | na | 0.165 (0.114) | 0.155 |
fT4 | na | na | −0.270 (0.120) | 0.027 |
Triglyceride | 0.119 (0.131) | 0.365 | 0.147 (0.144) | 0.310 |
LDL-C | 0.225 (0.109) | 0.043 | 0.152 (0.157) | 0.337 |
HDL-C | −0.096 (0.109) | 0.465 | na | na |
hsCRP | na | na | 0.075 (0.118) | 0.337 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berta, E.; Halmi, S.; Molnár, I.; Hutkai, D.; Csiha, S.; Bhattoa, H.P.; Lőrincz, H.; Somodi, S.; Katkó, M.; Harangi, M.; et al. Low Serum Fibroblast Growth Factor 21 Level and Its Altered Regulation by Thyroid Hormones in Patients with Hashimoto’s Thyroiditis on Levothyroxine Substitution. Metabolites 2024, 14, 565. https://doi.org/10.3390/metabo14100565
Berta E, Halmi S, Molnár I, Hutkai D, Csiha S, Bhattoa HP, Lőrincz H, Somodi S, Katkó M, Harangi M, et al. Low Serum Fibroblast Growth Factor 21 Level and Its Altered Regulation by Thyroid Hormones in Patients with Hashimoto’s Thyroiditis on Levothyroxine Substitution. Metabolites. 2024; 14(10):565. https://doi.org/10.3390/metabo14100565
Chicago/Turabian StyleBerta, Eszter, Sándor Halmi, István Molnár, Dávid Hutkai, Sára Csiha, Harjit Pal Bhattoa, Hajnalka Lőrincz, Sándor Somodi, Mónika Katkó, Mariann Harangi, and et al. 2024. "Low Serum Fibroblast Growth Factor 21 Level and Its Altered Regulation by Thyroid Hormones in Patients with Hashimoto’s Thyroiditis on Levothyroxine Substitution" Metabolites 14, no. 10: 565. https://doi.org/10.3390/metabo14100565
APA StyleBerta, E., Halmi, S., Molnár, I., Hutkai, D., Csiha, S., Bhattoa, H. P., Lőrincz, H., Somodi, S., Katkó, M., Harangi, M., Paragh, G., Nagy, E. V., & Bodor, M. (2024). Low Serum Fibroblast Growth Factor 21 Level and Its Altered Regulation by Thyroid Hormones in Patients with Hashimoto’s Thyroiditis on Levothyroxine Substitution. Metabolites, 14(10), 565. https://doi.org/10.3390/metabo14100565