Effect of Age at First Calving on the Reproduction Parameters, Metabolic Profile, and Fatty Acid Composition of Polish Holstein Friesian (PHF) and Crossbreds PHF × Swedish Red (SRB) Cattle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Sampling
2.2. Chemical Analyses
2.3. Statistical Analysis
- Normality: The Shapiro–Wilk test was applied to assess whether the data followed a normal distribution. All variables yielded p-values greater than 0.05, confirming that normality was not violated.
- Homogeneity of Variance: Levene’s test for homogeneity of variances was conducted, ensuring that variances across groups were equal (p > 0.05). This indicates that the data met the assumption of homoscedasticity, essential for a valid ANOVA analysis.
- Independence of Observations: Data collection procedures ensured that individual measurements were independent, as no repeat measures were taken from the same animals.
3. Results
3.1. Basic Composition of Milk
3.2. Reproductive Parameters
3.3. Metabolic Profile
3.4. Fatty Acid Profile
4. Discussion
4.1. Basic Composition of Milk
4.2. Reproductive Parameters
4.3. Metabolic Profile
4.4. Fatty Acid Profile
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raboisson, D.; Mounié, M.; Maigné, E. Diseases, reproductive performance, and changes in milk production associated with subclinical ketosis in dairy cows: A meta-analysis and review. J. Dairy Sci. 2014, 97, 7547–7563. [Google Scholar] [CrossRef]
- Puppel, K.; Solarczyk, P.; Kuczynska, B.; Madras-Majewska, B. Oleic acid as a biomarker for early diagnosis of elevated blood levels of non-esterified fatty acids and beta-hydroxybutyric acid in the early stages of lactation in high-yielding Polish Holstein cows. Anim. Sci. Pap. Rep. 2017, 35, 387–396. [Google Scholar]
- Caixeta, L.S.; Omontese, B.O. Monitoring and Improving the Metabolic Health of Dairy Cows during the Transition Period. Animals 2021, 11, 352. [Google Scholar] [CrossRef]
- Horst, E.A.; Kvidera, S.K.; Baumgard, L.H. Invited review: The influence of immune activation on transition cow health and performance—A critical evaluation of traditional dogmas. J. Dairy Sci. 2021, 104, 8380–8410. [Google Scholar] [CrossRef]
- Solarczyk, P.; Gołębiewski, M.; Slósarz, J.; Puppel, K. Interaction between the Concentration of β-Hydroxybutyric Acid and the Content of Long-Chain Fatty Acids in the Early Stage of Lactation––Comparing Multiparous and Primiparous Cows. App. Sci. 2023, 13, 7870. [Google Scholar] [CrossRef]
- Puppel, K.; Gołębiewski, M.; Solarczyk, P.; Grodkowski, G.; Slósarz, J.; Kunowska-Slósarz, M.; Balcerak, M.; Przysucha, T.; Kalińska, A.; Kuczyńska, B. The relationship between plasma β-hydroxybutyric acid and conjugated linoleic acid in milk as a biomarker for early diagnosis of ketosis in postpartum Polish Holstein-Friesian cows. BMC Vet. Res. 2019, 15, 367. [Google Scholar] [CrossRef]
- Puppel, K.; Staniszewska, P.; Gołębiewski, M.; Slósarz, J.; Grodkowski, G.; Solarczyk, P.; Kunowska-Slósarz, M.; Kostusiak, P.; Kuczyńska, B.; Przysucha, T. Using the Relationship between Concentrations of Selected Whey Proteins and BHBA to Characterize the Metabolism of Dairy Cows in Early Lactation. Animals 2021, 11, 2298. [Google Scholar] [CrossRef]
- Puppel, K.; Slósarz, J.; Grodkowski, G.; Solarczyk, P.; Kostusiak, P.; Kunowska-Slósarz, M.; Grodkowska, K.; Zalewska, A.; Kuczyńska, B.; Gołębiewski, M. Comparison of Enzyme Activity in Order to Describe the Metabolic Profile of Dairy Cows during Early Lactation. Int. J. Mol. Sci. 2022, 23, 9771. [Google Scholar] [CrossRef]
- Gordon, J.L.; Leblanc, S.J.; Duffield, T.F. Ketosis treatment in lactating dairy cattle. Vet. Clin. N. Am. Food Anim. Pract. 2013, 29, 433–445. [Google Scholar] [CrossRef] [PubMed]
- Duffield, T. Subclinical Ketosis in Lactating Dairy Cattle. Vet. Clin. N. Am. Food Anim. Pract. 2000, 16, 231–253. [Google Scholar] [CrossRef] [PubMed]
- McArt, J.A.A.; Nydam, D.V.; Oetzel, G.R. Epidemiology of subclinical ketosis in early lactation dairy cattle. J. Dairy Sci. 2012, 95, 5056–5066. [Google Scholar] [CrossRef]
- Trevisi, E.; Jahan, N.; Bertoni, G.; Ferrari, A.; Minuti, A. Pro-inflammatory cytokine profile in dairy cows: Consequences for new lactation. Ital. J. Anim. Sci. 2015, 14, 3862. [Google Scholar] [CrossRef]
- Mezzetti, M.; Cattaneo, L.; Passamonti, M.M.; Lopreiato, V.; Minuti, A.; Trevisi, E. The Transition Period Updated: A Review of the New Insights into the Adaptation of Dairy Cows to the New Lactation. Dairy 2021, 2, 617–636. [Google Scholar] [CrossRef]
- Zhang, G.; Ametaj, B.N. Ketosis an Old Story Under a New Approach. Dairy 2020, 1, 42–60. [Google Scholar] [CrossRef]
- White, H.M. The Role of TCA Cycle Anaplerosis in Ketosis and Fatty Liver in Periparturient Dairy Cows. Animals 2015, 5, 793–802. [Google Scholar] [CrossRef]
- Lei, M.A.C.; Simões, J. Invited Review: Ketosis Diagnosis and Monitoring in High-Producing Dairy Cows. Dairy 2021, 2, 303–325. [Google Scholar] [CrossRef]
- Serrenho, R.C.; Williamson, M.; Berke, O.; LeBlanc, S.J.; DeVries, T.J.; McBride, B.W.; Duffield, T.F. An investigation of blood, milk, and urine test patterns for the diagnosis of ketosis in dairy cows in early lactation. J. Dairy Sci. 2022, 105, 7719–7727. [Google Scholar] [CrossRef]
- Walsh, R.B.; Walton, J.S.; Kelton, D.F.; LeBlanc, S.J.; Leslie, K.E.; Duffield, T.F. The Effect of Subclinical Ketosis in Early Lactation on Reproductive Performance of Postpartum Dairy Cows. J. Dairy Sci. 2007, 90, 2788–2796. [Google Scholar] [CrossRef]
- McArt, J.; Nydam, D.; Overton, M. Hyperketonemia in early lactation dairy cattle: A deterministic estimate of component and total cost per case. J. Dairy Sci. 2015, 98, 2043–2054. [Google Scholar] [CrossRef] [PubMed]
- Sammad, A.; Khan, M.Z.; Abbas, Z.; Hu, L.; Ullah, Q.; Wang, Y.; Zhu, H.; Wang, Y. Major Nutritional Metabolic Alterations Influencing the Reproductive System of Postpartum Dairy Cows. Metabolites 2022, 12, 60. [Google Scholar] [CrossRef]
- Heins, B.J.; Hansen, L.B.; Seykora, A.J. Calving Difficulty and Stillbirths of Pure Holsteins versus Crossbreds of Holstein with Normande, Montbeliarde, and Scandinavian Red. J. Dairy Sci. 2006, 89, 2805–2810. [Google Scholar] [CrossRef]
- Heins, B.J.; Hansen, L.B.; Seykora, A.J. Fertility and Survival of Pure Holsteins Versus Crossbreds of Holstein with Normande, Montbeliarde, and Scandinavian Red. J. Dairy Sci. 2006, 89, 4944–4951. [Google Scholar] [CrossRef]
- Freyer, G.; König, S.; Fischer, B.; Bergfeld, U.; Cassell, B.G. Invited Review: Crossbreeding in Dairy Cattle from a German Perspective of the Past and Today. J. Dairy Sci. 2008, 91, 3725–3743. [Google Scholar] [CrossRef]
- Schneider, H.; Heise, J.; Tetens, J.; Thaller, G.; Wellmann, R.; Bennewitz, J. Genomic dominance variance analysis of health and milk production traits in German Holstein cattle. J. Anim. Breed. Genet. 2023, 140, 390–399. [Google Scholar] [CrossRef]
- Neeteson, A.-M.; Avendaño, S.; Koerhuis, A.; Duggan, B.; Souza, E.; Mason, J.; Ralph, J.; Rohlf, P.; Burnside, T.; Kranis, A.; et al. Evolutions in Commercial Meat Poultry Breeding. Animals 2023, 13, 3150. [Google Scholar] [CrossRef]
- See, G.M.; Fix, J.S.; Schwab, C.R.; Spangler, M.L. Imputation of non-genotyped F1 dams to improve genetic gain in swine crossbreeding programs. J. Anim. Sci. 2022, 100, skac148. [Google Scholar] [CrossRef]
- Fabbri, M.C.; Lozada-Soto, E.; Tiezzi, F.; Čandek-Potokar, M.; Bovo, S.; Schiavo, G.; Fontanesi, L.; Muñoz, M.; Ovilo, C.; Bozzi, R. Persistence of autozygosity in crossbreds between autochthonous and cosmopolitan breeds of swine: A simulation study. Animal 2024, 18, 101070. [Google Scholar] [CrossRef]
- Berry, D.P. Invited review: Beef-on-dairy—The generation of crossbred beef × dairy cattle. J. Dairy Sci. 2021, 104, 3789–3819. [Google Scholar] [CrossRef]
- Clasen, J.B.; Fikse, W.F.; Kargo, M.; Rydhmer, L.; Strandberg, E.; Østergaard, S. Economic consequences of dairy crossbreeding in conventional and organic herds in Sweden. J. Dairy Sci. 2020, 103, 514–528. [Google Scholar] [CrossRef] [PubMed]
- Solarczyk, P.; Gołębiewski, M.; Slósarz, J.; Łukasiewicz, M.; Przysucha, T.; Puppel, K. Effect of Breed on the Level of the Nutritional and Health-Promoting Quality of Semimembranosus Muscle in Purebred and Crossbred Bulls. Animals 2020, 10, 1822. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, M.; Norberg, E.; Pedersen, J.; Christensen, L. Invited review: Crossbreeding in dairy cattle: A Danish perspective. J. Dairy Sci. 2008, 91, 4116–4128. [Google Scholar] [CrossRef]
- Hazel, A.R.; Heins, B.J.; Hansen, L.B. Fertility and 305-day production of Viking Red-, Montbéliarde-, and Holstein-sired crossbred cows compared with Holstein cows during their first 3 lactations in Minnesota dairy herds. J. Dairy Sci. 2020, 103, 8683–8697. [Google Scholar] [CrossRef]
- Quénon, J.; Magne, M.-A. Milk, Fertility and Udder Health Performance of Purebred Holstein and Three-Breed Rotational Crossbred Cows within French Farms: Insights on the Benefits of Functional Diversity. Animals 2021, 11, 3414. [Google Scholar] [CrossRef]
- Puppel, K.; Bogusz, E.; Gołębiewski, M.; Nałęcz-Tarwacka, T.; Kuczyńska, B.; Slósarz, J.; Budziński, A.; Solarczyk, P.; Kunowska-Slósarz, M.; Przysucha, T. Effect of dairy cow crossbreeding on selected performance traits and quality of milk in first generation crossbreds. J. Food Sci. 2018, 83, 229–236. [Google Scholar] [CrossRef]
- Boulton, A.C.; Rushton, J.; Wathes, D.C. A study of dairy heifer rearing practices from birth to weaning and their associated costs on UK dairy farms. O. J. Anim. Sci. 2015, 5, 185–197. [Google Scholar] [CrossRef]
- Atashi, H.; Asaadi, A.; Hostens, M. Association between age at first calving and lactation performance, lactation curve, calving interval, calf birth weight, and dystocia in Holstein dairy cows. PLoS ONE 2021, 16, e0244825. [Google Scholar] [CrossRef]
- Prakapenka, D.; Liang, Z.; Da, Y. Genome-Wide Association Study of Age at First Calving in U.S. Holstein Cows. Int. J. Mol. Sci. 2023, 24, 7109. [Google Scholar] [CrossRef]
- INRATION 4.0; INRA: Jouy-en-Josas, France, 2012.
- ISO 12966-2:2017; Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters. Part 2: Preparation of Methyl Esters of Fatty Acids. ISO: Geneva, Switzerland, 2017.
- Puppel, K.; Gołębiewski, M.; Grodkowski, G.; Solarczyk, P.; Kostusiak, P.; Klopčič, M.; Sakowski, T. Use of somatic cell count as an indicator of colostrum quality. PLoS ONE 2020, 15, e0237615. [Google Scholar] [CrossRef]
- Corporation, I. Released IBM SPSS for Windows, 25,0; Armonk: New York, NY, USA, 2023. [Google Scholar]
- Mäki-Tanila, A. An overview on quantitative and genomic tools for utilising dominance genetic variation in improving animal production. Agric. Food Sci. 2007, 16, 188–198. [Google Scholar] [CrossRef]
- Hansen, L. Consequences of selection for milk yield from a geneticist’s viewpoint. J. Dairy Sci. 2000, 83, 1145–1150. [Google Scholar] [CrossRef]
- Kalm, E. Development of cattle breeding strategies in Europe. Arch. Anim. Breed. 2002, 45, 5–12. [Google Scholar] [CrossRef]
- PFHBiPM. Ocena i Hodowla Bydła. Dane za 2022 rok; PFHBiPM: Warsaw, Poland, 2023. [Google Scholar]
- Heins, B.J.; Hansen, L.B.; Seykora, A.J. Production of Pure Holsteins Versus Crossbreds of Holstein with Normande, Montbeliarde, and Scandinavian Red. J. Dairy Sci. 2006, 89, 2799–2804. [Google Scholar] [CrossRef]
- Heins, B.J.; Hansen, L.B. Short communication: Fertility, somatic cell score, and production of Normande×Holstein, Montbéliarde×Holstein, and Scandinavian Red × Holstein crossbreds versus pure Holsteins during their first 5 lactations. J. Dairy Sci. 2012, 95, 918–924. [Google Scholar] [CrossRef]
- Heins, B.J.; Hansen, L.B.; De Vries, A. Survival, lifetime production, and profitability of Normande × Holstein, Montbéliarde × Holstein, and Scandinavian Red × Holstein crossbreds versus pure Holsteins. J. Dairy Sci. 2012, 95, 1011–1021. [Google Scholar] [CrossRef]
- Hazel, A.R.; Heins, B.J.; Hansen, L.B. Production and calving traits of Montbéliarde × Holstein and Viking Red × Holstein cows compared with pure Holstein cows during first lactation in 8 commercial dairy herds. J. Dairy Sci. 2017, 100, 4139–4149. [Google Scholar] [CrossRef]
- Houdek, E.S.; Hazel, A.R.; Lopez-Villalobos, N.; Hansen, L.B.; Heins, B.J. Lactation curves of Montbéliarde-sired and Viking Red-sired crossbred cows and their Holstein herdmates in commercial dairies. J. Dairy Sci. 2024, 107, 3753–3767. [Google Scholar] [CrossRef]
- Hazel, A.R.; Heins, B.J.; Hansen, L.B. Herd life, lifetime production, and profitability of Viking Red-sired and Montbéliarde-sired crossbred cows compared with their Holstein herdmates. J. Dairy Sci. 2021, 104, 3261–3277. [Google Scholar] [CrossRef]
- Benak, S.; Bobić, T.; Bilandžija, K.; Steiner, Z.; Aračić, A.; Gregić, M.; Eman, D.; Gantner, V. The differences in production of Holstein Friesian and Holstein Friesian x Norwegian Red F1 crossbreeds. Mljekarstvo 2020, 70, 284–291. [Google Scholar] [CrossRef]
- Pytlewski, J.A.; IR Czerniawska-Piątkowska, E. Assessment of Breeding and Milking Performance of Polish Holstein-Fresian Black-and-White (HO) and Crosses with the Norwegian Red Breed (HO x NR). Folia Pomer. Univ. Technol. Stetin Agric. Aliment. Pisc. Zootech. 2022, 364, 8–14. [Google Scholar] [CrossRef]
- Ezra, E.; Van Straten, M.; Weller, J.I. Comparison of pure Holsteins to crossbred Holsteins with Norwegian Red cattle in first and second generations. Animal 2016, 10, 1254–1262. [Google Scholar] [CrossRef]
- Andrée O’Hara, E.; Holtenius, K.; Båge, R.; von Brömssen, C.; Emanuelson, U. An observational study of the dry period length and its relation to milk yield, health, and fertility in two dairy cow breeds. Prev. Vet. Med. 2020, 175, 104876. [Google Scholar] [CrossRef]
- Malchiodi, F.; Cecchinato, A.; Penasa, M.; Cipolat-Gotet, C.; Bittante, G. Milk quality, coagulation properties, and curd firmness modeling of purebred Holsteins and first- and second-generation crossbred cows from Swedish Red, Montbéliarde, and Brown Swiss bulls. J. Dairy Sci. 2014, 97, 4530–4541. [Google Scholar] [CrossRef]
- Piccardi, M.; Pipino, D.; Bó, G.A.; Balzarini, M. Productive and reproductive performance of first lactation purebred Holstein versus Swedish red & white×Holstein in central Argentina. Livest. Sci. 2014, 165, 37–41. [Google Scholar] [CrossRef]
- Saha, S.; Amalfitano, N.; Bittante, G.; Gallo, L. Milk coagulation traits and cheese yields of purebred Holsteins and 4 generations of 3-breed rotational crossbred cows from Viking Red, Montbéliarde, and Holstein bulls. J. Dairy Sci. 2020, 103, 3349–3362. [Google Scholar] [CrossRef]
- Solarczyk, P.; Slósarz, J.; Gołębiewski, M.; Puppel, K. A comparison between Polish Holstein-Friesian and F1 hybrid Polish Holstein Friesian× Swedish Red cows in terms of milk yield traits. Mljekarstvo 2021, 71, 141–150. [Google Scholar] [CrossRef]
- Saha, S.; Piazza, M.; Bittante, G.; Gallo, L. Macro- and micromineral composition of milk from purebred Holsteins and four generations of three-breed rotational crossbred cows from Viking Red, Montbéliarde and Holstein sires. Ital. J. Anim. Sci. 2021, 20, 447–452. [Google Scholar] [CrossRef]
- Piazza, M.; Schiavon, S.; Saha, S.; Berton, M.; Bittante, G.; Gallo, L. Body and milk production traits as indicators of energy requirements and efficiency of purebred Holstein and 3-breed rotational crossbred cows from Viking Red, Montbéliarde, and Holstein sires. J. Dairy Sci. 2023, 106, 4698–4710. [Google Scholar] [CrossRef]
- Philipsson, J.; Lindhé, B. Experiences of including reproduction and health traits in Scandinavian dairy cattle breeding programmes. Livest. Prod. Sci. 2003, 83, 99–112. [Google Scholar] [CrossRef]
- Pipino, D.; Piccardi, M.; Lembeye, F.; Lopez-Villalobos, N.; Vazquez, M.I. Comparative Study of LActation Curves and Milk Quality in Holstein versus Swedish Red and White-Holstein Cross Cows. Sust. Agric. Res. 2019, 8, 11–20. [Google Scholar] [CrossRef]
- Maurmayr, A.; Pegolo, S.; Malchiodi, F.; Bittante, G.; Cecchinato, A. Milk protein composition in purebred Holsteins and in first/second-generation crossbred cows from Swedish Red, Montbeliarde and Brown Swiss bulls. Animal 2018, 12, 2214–2220. [Google Scholar] [CrossRef]
- Gutierrez-Reinoso, M.A.; Aponte, P.M.; Garcia-Herreros, M. Genomic Analysis, Progress and Future Perspectives in Dairy Cattle Selection: A Review. Animals 2021, 11, 599. [Google Scholar] [CrossRef] [PubMed]
- Britt, J.H.; Cushman, R.A.; Dechow, C.D.; Dobson, H.; Humblot, P.; Hutjens, M.F.; Jones, G.A.; Mitloehner, F.M.; Ruegg, P.L.; Sheldon, I.M.; et al. Review: Perspective on high-performing dairy cows and herds. Animal 2021, 15, 100298. [Google Scholar] [CrossRef]
- Hu, H.; Mu, T.; Ma, Y.; Wang, X.; Ma, Y. Analysis of Longevity Traits in Holstein Cattle: A Review. Front. Genet. 2021, 12, 695543. [Google Scholar] [CrossRef]
- Ingvartsen, K.L.; Dewhurst, R.J.; Friggens, N. On the relationship between lactational performance and health: Is it yield or metabolic imbalance that cause production diseases in dairy cattle? A position paper. Livest. Prod. Sci. 2003, 83, 277–308. [Google Scholar] [CrossRef]
- Stiglbauer, K.; Cicconi-Hogan, K.; Richert, R.; Schukken, Y.; Ruegg, P.; Gamroth, M. Assessment of herd management on organic and conventional dairy farms in the United States. J. Dairy Sci. 2013, 96, 1290–1300. [Google Scholar] [CrossRef] [PubMed]
- Malchiodi, F.; Cecchinato, A.; Bittante, G. Fertility traits of purebred Holsteins and 2- and 3-breed crossbred heifers and cows obtained from Swedish Red, Montbéliarde, and Brown Swiss sires. J. Dairy Sci. 2014, 97, 7916–7926. [Google Scholar] [CrossRef]
- Taylor, E.N.; Channa, K.; Hanks, J.; Taylor, N.M. Milk recording data indicates the importance of fertility, including age at first calving, on the progression of first lactation cows to second lactation. PLoS ONE 2024, 19, e0297657. [Google Scholar] [CrossRef] [PubMed]
- Hutchison, J.L.; VanRaden, P.M.; Null, D.J.; Cole, J.B.; Bickhart, D.M. Genomic evaluation of age at first calving. J. Dairy Sci. 2017, 100, 6853–6861. [Google Scholar] [CrossRef]
- Berglund, B. Genetic Improvement of Dairy Cow Reproductive Performance. Reprod. Domest. Anim. 2008, 43, 89–95. [Google Scholar] [CrossRef]
- Buckley, F.; Lopez-Villalobos, N.; Heins, B.J. Crossbreeding: Implications for dairy cow fertility and survival. Animal 2014, 8, 122–133. [Google Scholar] [CrossRef]
- Clasen, J.B.; Fogh, A.; Kargo, M. Differences between performance of F1 crossbreds and Holsteins at different production levels. J. Dairy Sci. 2019, 102, 436–441. [Google Scholar] [CrossRef]
- Bieber, A.; Wallenbeck, A.; Spengler Neff, A.; Leiber, F.; Simantke, C.; Knierim, U.; Ivemeyer, S. Comparison of performance and fitness traits in German Angler, Swedish Red and Swedish Polled with Holstein dairy cattle breeds under organic production. Animal 2020, 14, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Pipino, D.F.; Piccardi, M.; Lopez-Villalobos, N.; Hickson, R.E.; Vázquez, M.I. Fertility and survival of Swedish Red and White × Holstein crossbred cows and purebred Holstein cows. J. Dairy Sci. 2023, 106, 2475–2486. [Google Scholar] [CrossRef] [PubMed]
- Hazel, A.R.; Heins, B.J.; Hansen, L.B. Health treatment cost, stillbirth, survival, and conformation of Viking Red-, Montbéliarde-, and Holstein-sired crossbred cows compared with pure Holstein cows during their first 3 lactations. J. Dairy Sci. 2020, 103, 10917–10939. [Google Scholar] [CrossRef]
- Pereira, G.M.; Hansen, L.B.; Heins, B.J. Birth traits of Holstein calves compared with Holstein, Jersey, Montbéliarde, Normande, and Viking Red-sired crossbred calves. J. Dairy Sci. 2022, 105, 9286–9295. [Google Scholar] [CrossRef] [PubMed]
- Puppel, K.; Slósarz, J.; Solarczyk, P.; Grodkowski, G.; Kostusiak, P.; Kalińska, A.; Balcerak, M.; Kunowska-Slósarz, M.; Gołębiewski, M. Assessing the Usefulness of Interleukin-8 as a Biomarker of Inflammation and Metabolic Dysregulation in Dairy Cows. Int. J. Mol. Sci. 2024, 25, 11129. [Google Scholar] [CrossRef]
- Velingkar, A.; Vuree, S.; Prabhakar, P.K.; Kalashikam, R.R.; Banerjee, A.; Kondeti, S. Fibroblast growth factor 21 as a potential master regulator in metabolic disorders. Am. J. Physiol. Endocrinol. Metab. 2023, 324, E409–E424. [Google Scholar] [CrossRef]
- Ntallaris, T.; Humblot, P.; Båge, R.; Sjunnesson, Y.; Dupont, J.; Berglund, B. Effect of energy balance profiles on metabolic and reproductive response in Holstein and Swedish Red cows. Theriogenology 2017, 90, 276–283. [Google Scholar] [CrossRef]
- Ospina, P.; Nydam, D.; Stokol, T.; Overton, T. Evaluation of nonesterified fatty acids and β-hydroxybutyrate in transition dairy cattle in the northeastern United States: Critical thresholds for prediction of clinical diseases. J. Dairy Sci. 2010, 93, 546–554. [Google Scholar] [CrossRef]
- Mohammed, S.E.; Ahmad, F.O.; Frah, E.A.M.; Elfaki, I. Determination of Blood Glucose, Total Protein, Certain Minerals, and Triiodothyronine during Late Pregnancy and Postpartum Periods in Crossbred Dairy Cows. Vet. Med. Int. 2021, 2021, 6610362. [Google Scholar] [CrossRef]
- Karlsson, J.; Lindberg, M.; Åkerlind, M.; Holtenius, K. Feed intake, milk yield and metabolic status of early-lactation Swedish Holstein and Swedish Red dairy cows of different parities fed grass silage and two levels of byproduct-based concentrate. Livest. Sci. 2020, 242, 104304. [Google Scholar] [CrossRef]
- Giannuzzi, D.; Mota, L.F.M.; Pegolo, S.; Tagliapietra, F.; Schiavon, S.; Gallo, L.; Marsan, P.A.; Trevisi, E.; Cecchinato, A. Prediction of detailed blood metabolic profile using milk infrared spectra and machine learning methods in dairy cattle. J. Dairy Sci. 2023, 106, 3321–3344. [Google Scholar] [CrossRef] [PubMed]
- Megahed, A.A.; Hiew, M.W.H.; Ragland, D.; Constable, P.D. Changes in skeletal muscle thickness and echogenicity and plasma creatinine concentration as indicators of protein and intramuscular fat mobilization in periparturient dairy cows. J. Dairy Sci. 2019, 102, 5550–5565. [Google Scholar] [CrossRef] [PubMed]
- Andjelić, B.; Djoković, R.; Cincović, M.; Bogosavljević-Bošković, S.; Petrović, M.; Mladenović, J.; Čukić, A. Relationships between Milk and Blood Biochemical Parameters and Metabolic Status in Dairy Cows during Lactation. Metabolites 2022, 12, 733. [Google Scholar] [CrossRef] [PubMed]
- Gross, J.; van Dorland, H.A.; Bruckmaier, R.M.; Schwarz, F.J. Milk fatty acid profile related to energy balance in dairy cows. J. Dairy Res. 2011, 78, 479–488. [Google Scholar] [CrossRef]
- Puppel, K.; Gołębiewski, M.; Slósarz, J.; Kunowska-Slósarz, M.; Solarczyk, P.; Grodkowski, G.; Kostusiak, P.; Grodkowska, K.; Madras-Majewska, B.; Sakowski, T. The Influence of Cold-Pressed Linseed Cake Supplementation on Fatty-Acid Profile and Fat-Soluble Vitamins of Cows’ Milk in an Organic Production System. Animals 2023, 13, 1631. [Google Scholar] [CrossRef]
- Poulsen, N.A.; Gustavsson, F.; Glantz, M.; Paulsson, M.; Larsen, L.B.; Larsen, M.K. The influence of feed and herd on fatty acid composition in 3 dairy breeds (Danish Holstein, Danish Jersey, and Swedish Red). J. Dairy Sci. 2012, 95, 6362–6371. [Google Scholar] [CrossRef]
PHF (n = 30) | PHF × SRB (n = 30) | p-Value | |||
---|---|---|---|---|---|
LSM | SEM | LSM | SEM | ||
Milk yield [kg] | 32.08 | 0.292 | 27.44 | 0.297 | <0.001 |
Fat [%] | 3.83 | 0.046 | 3.97 | 0.047 | 0.045 |
Protein [%] | 3.27 | 0.016 | 3.53 | 0.016 | <0.001 |
Casein [%] | 2.77 | 0.011 | 2.89 | 0.011 | <0.001 |
F/P | 1.17 | 0.015 | 1.14 | 0.015 | 0.098 |
PHF (n = 30) | PHF × SRB (n = 30) | p-Value | |||
---|---|---|---|---|---|
LSM | SEM | LSM | SEM | ||
AFI [days] | 452.5 | 1.40 | 434.9 | 1.42 | <0.001 |
PI [in units] | 1.44 | 0.033 | 1.48 | 0.034 | 0.465 |
SP [days] | 13.4 | 0.95 | 14.00 | 0.96 | 0.656 |
GL [days] | 280.3 | 0.32 | 280.9 | 0.32 | 0.200 |
AFC | PHF | PHF × SRB | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
LSM | SEM | LSM | SEM | LSM | SEM | LSM | SEM | ||
<2 (n = 15) | >2 (n = 15) | <2 (n = 15) | >2 (n = 15) | ||||||
AFC [days] | 708.3 | 1.67 | 787.1 | 1.48 | 705.0 | 1.67 | 754.4 | 1.54 | <0.001 |
PPD [days] | 97.5 | 2.23 | 87.7 | 1.97 | 78.5 | 2.23 | 86.2 | 2.05 | <0.001 |
PI [in units] | 2.09 | 0.082 | 2.43 | 0.073 | 2.27 | 0.082 | 1.54 | 0.076 | <0.001 |
SP [days] | 59.8 | 4.87 | 62.9 | 4.31 | 37.1 | 4.87 | 28.9 | 4.48 | 0.224 |
IP [days] | 157.3 | 5.49 | 150.6 | 4.87 | 115.5 | 5.49 | 115.1 | 5.05 | 0.556 |
PBC [days] | 437.7 | 5.38 | 430.6 | 4.77 | 398.8 | 5.38 | 393.3 | 4.95 | 0.878 |
GL [days] | 280.5 | 0.47 | 280.0 | 0.41 | 283.3 | 0.47 | 278.2 | 0.43 | <0.001 |
Age | PHF | PHF × SRB | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
LSM | SEM | LSM | SEM | LSM | SEM | LSM | SEM | ||
<2 (n = 15) | >2 (n = 15) | <2 (n = 15) | >2 (n = 15) | ||||||
NEFA [mmol/L] | 0.405 | 0.042 | 0.420 | 0.104 | 0.281 | 0.042 | 0.282 | 0.038 | <0.001 |
BHBA [mmol/L] | 0.725 | 0.038 | 1.111 | 0.034 | 0.695 | 0.038 | 0.711 | 0.035 | <0.001 |
Glucose [mg/dL] | 65.234 | 0.817 | 61.812 | 0.724 | 64.061 | 0.817 | 60.559 | 0.751 | <0.001 |
Protein [g/L] | 70.488 | 1.204 | 66.640 | 1.067 | 66.725 | 1.204 | 64.690 | 1.107 | 0.016 |
Albumins [g/L] | 35.999 | 0.583 | 35.356 | 0.517 | 38.453 | 0.583 | 40.306 | 0.537 | 0.008 |
Creatynine [mg/dL] | 0.970 | 0.022 | 0.939 | 0.019 | 1.016 | 0.022 | 1.198 | 0.020 | <0.001 |
GGTP [U/L] | 19.572 | 2.652 | 24.506 | 1.215 | 16.427 | 2.652 | 15.853 | 1.638 | 0.015 |
Age | PHF | PHF × SRB | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
LSM | SEM | LSM | SEM | LSM | SEM | LSM | SEM | ||
<2 (n = 15) | >2 (n = 15) | <2 (n = 15) | >2 (n = 15) | ||||||
C6:0 [g/100g fat] | 1.868 | 0.045 | 1.457 | 0.040 | 1.548 | 0.045 | 1.600 | 0.042 | < 0.001 |
C10:0 [g/100g fat] | 1.983 | 0.087 | 2.167 | 0.077 | 2.929 | 0.087 | 2.745 | 0.080 | 0.024 |
C12:0 [g/100g fat] | 2.247 | 0.090 | 2.800 | 0.080 | 2.909 | 0.090 | 3.058 | 0.083 | 0.001 |
C16:0 [g/100g fat] | 27.655 | 0.388 | 32.195 | 0.344 | 29.238 | 0.388 | 32.148 | 0.357 | 0.107 |
C18:0 [g/100g fat] | 13.102 | 0.231 | 11.983 | 0.205 | 10.236 | 0.231 | 9.802 | 0.213 | 0.587 |
C20:0 [g/100g fat] | 0.243 | 0.010 | 0.153 | 0.009 | 0.072 | 0.010 | 0.103 | 0.009 | < 0.001 |
CLA9 [g/100g fat] | 0.480 | 0.012 | 0.437 | 0.011 | 0.518 | 0.012 | 0.469 | 0.011 | < 0.001 |
CLA10 [g/100g fat] | 0.038 | 0.003 | 0.030 | 0.003 | 0.034 | 0.03 | 0.018 | 0.003 | 0.059 |
C22:0 [g/100g fat] | 0.011 | 0.006 | 0.063 | 0.005 | 0.020 | 0.006 | 0.048 | 0.005 | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solarczyk, P.; Gołębiewski, M.; Slósarz, J.; Natalello, A.; Musati, M.; Menci, R.; Sakowski, T.; Tucki, K.; Puppel, K. Effect of Age at First Calving on the Reproduction Parameters, Metabolic Profile, and Fatty Acid Composition of Polish Holstein Friesian (PHF) and Crossbreds PHF × Swedish Red (SRB) Cattle. Metabolites 2024, 14, 583. https://doi.org/10.3390/metabo14110583
Solarczyk P, Gołębiewski M, Slósarz J, Natalello A, Musati M, Menci R, Sakowski T, Tucki K, Puppel K. Effect of Age at First Calving on the Reproduction Parameters, Metabolic Profile, and Fatty Acid Composition of Polish Holstein Friesian (PHF) and Crossbreds PHF × Swedish Red (SRB) Cattle. Metabolites. 2024; 14(11):583. https://doi.org/10.3390/metabo14110583
Chicago/Turabian StyleSolarczyk, Paweł, Marcin Gołębiewski, Jan Slósarz, Antonio Natalello, Martino Musati, Ruggero Menci, Tomasz Sakowski, Karol Tucki, and Kamila Puppel. 2024. "Effect of Age at First Calving on the Reproduction Parameters, Metabolic Profile, and Fatty Acid Composition of Polish Holstein Friesian (PHF) and Crossbreds PHF × Swedish Red (SRB) Cattle" Metabolites 14, no. 11: 583. https://doi.org/10.3390/metabo14110583
APA StyleSolarczyk, P., Gołębiewski, M., Slósarz, J., Natalello, A., Musati, M., Menci, R., Sakowski, T., Tucki, K., & Puppel, K. (2024). Effect of Age at First Calving on the Reproduction Parameters, Metabolic Profile, and Fatty Acid Composition of Polish Holstein Friesian (PHF) and Crossbreds PHF × Swedish Red (SRB) Cattle. Metabolites, 14(11), 583. https://doi.org/10.3390/metabo14110583