First Insights into the Fecal Metabolome of Healthy, Free-Roaming Giraffes (Giraffa camelopardalis): An Untargeted GCxGC/TOF-MS Metabolomics Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Sample Preparation and Extraction
2.3. Comprehensive Gas Chromatography Time-of-Flight Mass Spectrometry (GCxGC/TOFMS Analysis)
2.4. Data Analysis
3. Results
3.1. Population
3.2. Overview of the Metabolomic Data and Subgroup Comparisons
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chi, L.; Bian, X.; Gao, B.; Tu, P.; Lai, Y.; Ru, H.; Lu, K. Effects of the Artificial Sweetener Neotame on the Gut Microbiome and Fecal Metabolites in Mice. Molecules 2018, 23, 367. [Google Scholar] [CrossRef] [PubMed]
- Frankenfeld, C.L. Fecal Metabolome: New Addition to the Toolbox for Dietary Assessment? J. Nutr. 2022, 152, 2643–2644. [Google Scholar] [CrossRef]
- Erben, V.; Poschet, G.; Schrotz-King, P.; Brenner, H. Evaluation of Different Stool Extraction Methods for Metabolomics Measurements in Human Faecal Samples. BMJ Nutr. Prev. Health 2021, 4, 374–384. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Li, X.H.; Chen, W.N. An Untargeted Fecal and Urine Metabolomics Analysis of the Interplay between the Gut Microbiome, Diet and Human Metabolism in Indian and Chinese Adults. Sci. Rep. 2019, 9, 9191. [Google Scholar] [CrossRef] [PubMed]
- Gregor, R.; Probst, M.; Eyal, S.; Aksenov, A.; Sasson, G.; Horovitz, I.; Dorrestein, P.C.; Meijler, M.M.; Mizrahi, I. Mammalian Gut Metabolomes Mirror Microbiome Composition and Host Phylogeny. ISME J. 2022, 16, 1262–1274. [Google Scholar] [CrossRef] [PubMed]
- Goldansaz, S.A.; Guo, A.C.; Sajed, T.; Steele, M.A.; Plastow, G.S.; Wishart, D.S. Livestock Metabolomics and the Livestock Metabolome: A Systematic Review. PLoS ONE 2017, 12, e0177675. [Google Scholar] [CrossRef]
- Osthoff, G.; Wiese, I.; Deacon, F. African Elephant Milk Short Saccharide and Metabolite Composition and Their Changes over Lactation. Animals 2023, 13, 544. [Google Scholar] [CrossRef]
- Van Zyl, C.D.W.; Van Reenen, M.; Osthoff, G.; Du Preez, I. Evaluation of BAYESIL for Automated Annotation of 1H NMR Data Using Limited Sample Volumes: Application to African Elephant Serum. Metabolomics 2023, 19, 31. [Google Scholar] [CrossRef]
- Di Minno, A.; Gelzo, M.; Stornaiuolo, M.; Ruoppolo, M.; Castaldo, G. The Evolving Landscape of Untargeted Metabolomics. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1645–1652. [Google Scholar] [CrossRef]
- Chen, L.; Lu, W.; Wang, L.; Xing, X.; Chen, Z.; Teng, X.; Zeng, X.; Muscarella, A.D.; Shen, Y.; Cowan, A.; et al. Metabolite Discovery through Global Annotation of Untargeted Metabolomics Data. Nat. Methods 2021, 18, 1377–1385. [Google Scholar] [CrossRef]
- Du Preez, I.; Loots, D.T. New Sputum Metabolite Markers Implicating Adaptations of the Host to Mycobacterium Tuberculosis, and Vice Versa. Tuberculosis 2013, 93, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Garhwal, R.; Sangwan, K.; Mehra, R.; Bhardwaj, A.; Pal, Y.; Nayan, V.; Legha, R.A.; Tiwari, M.; Chauhan, M.S.; Iquebal, M.A.; et al. Comparative Metabolomics Analysis of Halari Donkey Colostrum and Mature Milk throughout Lactation Stages Using 1H Nuclear Magnetic Resonance. LWT 2023, 182, 114805. [Google Scholar] [CrossRef]
- Schmidt, D.A.; Ball, R.L.; Grobler, D.; Ellersieck, M.R.; Griffin, M.E.; Citino, S.B.; Bush, M. Serum Concentrations of Amino Acids, Fatty Acids, Lipoproteins, Vitamins A and E, and Minerals in Apparently Healthy, Free-ranging Southern Giraffe (Giraffa camelopardalis giraffe). Zoo. Biol. 2007, 26, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Orellana, C.; Parraguez, V.H.; Arana, W.; Escanilla, J.; Zavaleta, C.; Castellaro, G. Use of Fecal Indices as a Non-Invasive Tool for Nutritional Evaluation in Extensive-Grazing Sheep. Animals 2020, 10, 46. [Google Scholar] [CrossRef] [PubMed]
- Pannoni, S.B.; Proffit, K.M.; Holben, W.E. Non-invasive Monitoring of Multiple Wildlife Health Factors by Fecal Microbiome Analysis. Ecol. Evol. 2022, 12, e8564. [Google Scholar] [CrossRef]
- Muller, Z. The IUCN Red List of Threatened Species: Giraffa Camelopardalis, Giraffe; Errata Version; 2016, Giraffa camelopardalis. The IUCN Red List of Threatened Species 2016: E.T9194A109326950. Available online: https://www.iucnredlist.org/species/9194/136266699 (accessed on 11 May 2024).
- Webster, A.B.; Ganswindt, A.; Small, C.; Rossouw, R. Optimised ICP-MS Quantification Method for Using Animal Faeces as a Measure of Protected Area Ecosystem Health. MethodsX 2021, 8, 101441. [Google Scholar] [CrossRef]
- Zhu, C.; Fasoli, S.; Isani, G.; Laghi, L. First Insights into the Urinary Metabolome of Captive Giraffes by Proton Nuclear Magnetic Resonance Spectroscopy. Metabolites 2020, 10, 157. [Google Scholar] [CrossRef]
- Mucina, L.; Rutherford, M.C. The Vegetation of South Africa, Lesotho and Swaziland; South African National Biodiversity Institute: Pretoria, South Africa, 2006; Volume Strelitzia 19, ISBN 978-1-919976-21-1. [Google Scholar]
- Wrench, J.M.; Meissner, H.H.; Grant, C.C.; Casey, N.H. Environmental Factors That Affect the Concentration of P and N in Faecal Samples Collected for the Determination of Nutritional Status. Koedoe 1996, 39, a291. [Google Scholar] [CrossRef]
- Carbillet, J.; Palme, R.; Maublanc, M.L.; Cebe, N.; Gilot-Fromont, E.; Verheyden, H.; Rey, B. Instability of Fecal Glucocorticoid Metabolites at 4 °C: Time to Freeze Matters. J. Exp. Zool. Part. A Ecol. Integr. Physiol. 2023, 339, 625–632. [Google Scholar] [CrossRef]
- Leslie, D.M.; Starkey, E.E. Fecal Indices to Dietary Quality of Cervids in Old-Growth Forests. J. Wildl. Manag. 1985, 49, 142. [Google Scholar] [CrossRef]
- Wild G Lubern Normal Game Pellet Composition 2024. Product Information Sheet. Available online: http://www.lubern.co.za/wp-content/uploads/2019/02/Lubern-Booklet2-2_Page_45.jpg (accessed on 22 October 2024).
- Voermol Game Pellet Composition 2024. Product Information Sheet. Available online: https://voermol.co.za/wp-content/uploads/2018/07/Game_Pellets_100.pdf (accessed on 11 May 2024).
- Phua, L.C.; Koh, P.K.; Cheah, P.Y.; Ho, H.K.; Chan, E.C.Y. Global Gas Chromatography/Time-of-Flight Mass Spectrometry (GC/TOFMS)-Based Metabonomic Profiling of Lyophilized Human Feces. J. Chromatogr. B 2013, 937, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Broadhurst, D.; Goodacre, R.; Reinke, S.N.; Kuligowski, J.; Wilson, I.D.; Lewis, M.R.; Dunn, W.B. Guidelines and Considerations for the Use of System Suitability and Quality Control Samples in Mass Spectrometry Assays Applied in Untargeted Clinical Metabolomic Studies. Metabolomics 2018, 14, 72. [Google Scholar] [CrossRef] [PubMed]
- Beukes, D.; Van Reenen, M.; Loots, D.T.; Du Preez, I. Tuberculosis Is Associated with Sputum Metabolome Variations, Irrespective of Patient Sex or HIV Status: An Untargeted GCxGC-TOFMS Study. Metabolomics 2023, 19, 55. [Google Scholar] [CrossRef]
- Excel Microsoft 365 Office Excel Data Analysis ToolPak 2016, Version 2409; Microsoft: Redmond, WA, USA.
- Pang, Z.; Lu, Y.; Zhou, G.; Hui, F.; Xu, L.; Viau, C.; Spigelman, A.F.; MacDonald, P.E.; Wishart, D.S.; Li, S.; et al. MetaboAnalyst 6.0: Towards a Unified Platform for Metabolomics Data Processing, Analysis and Interpretation. Nucleic Acids Res. 2024, 52, W398–W406. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2024. [Google Scholar]
- Leuthold, B.M.; Leuthold, W. Food Habits of Giraffe in Tsavo National Park, Kenya. East. Afr. Wildl. J. 1972, 10, 129–141. [Google Scholar] [CrossRef]
- Janecke, B.B.; Smit, G.N. Faecal Nitrogen of Browser and Mixed Feeder Game Species during Different Seasons. Afr. J. Range Forage Sci. 2015, 32, 203–212. [Google Scholar] [CrossRef]
- Paulse, J. The Behaviour and Feeding Ecology of Extralimital Giraffe within Albany Thicket Vegetation in the Little Karoo, South Africa. Master’s Thesis, University of the Western Cape, Bellville, South Africa, 2018. [Google Scholar]
- Deacon, F.; Smit, G.N.; Grobbelaar, A. Resources and Habitat Requirements for Giraffes’ (Giraffa Camelopardalis) Diet Selection in the Northwestern Kalahari, South Africa. Animals 2023, 13, 2188. [Google Scholar] [CrossRef]
- Dagg, A.I. Food Preferences of the Giraffe. Proc. Zool. Soc. Lond. 1960, 135, 640–642. [Google Scholar]
- Mitchell, G. How Giraffes Work; Oxford University Press: New York, NY, USA, 2021; ISBN 978-0-19-757119-4. [Google Scholar]
- Theron, M.E. Voedingsgedrag van kameelperde (Giraffa camelopardalis) in die Sentrale Vrystaat. Master’s Thesis, University of the Free State, Bloemfontein, South Africa, 2005. [Google Scholar]
- Caister, L.E.; Shields, W.M.; Gosser, A. Female Tannin Avoidance: A Possible Explanation for Habitat and Dietary Segregation of Giraffes (Giraffa camelopardalis peralta) in Niger. Afr. J. Ecol. 2003, 41, 201–210. [Google Scholar] [CrossRef]
- Roggenbuck, M.; Sauer, C.; Poulsen, M.; Bertelsen, M.F.; Sørensen, S.J. The Giraffe (Giraffa Camelopardalis) Rumen Microbiome. FEMS Microbiol. Ecol. 2014, 90, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Shipley, L.A.; Blomquist, S.; Danell, K. Diet Choices Made by Free-Ranging Moose in Northern Sweden in Relation to Plant Distribution, Chemistry, and Morphology. Can. J. Zool. 1998, 76, 1722–1733. [Google Scholar] [CrossRef]
- Saengkerdsub, S.; Ricke, S.C. Ecology and Characteristics of Methanogenic Archaea in Animals and Humans. Crit. Rev. Microbiol. 2013, 40, 97–116. [Google Scholar] [CrossRef] [PubMed]
- Ley, R.E.; Hamady, M.; Lozupone, C.; Turnbaugh, P.J.; Ramey, R.R.; Bircher, J.S.; Schlegel, M.L.; Tucker, T.A.; Schrenzel, M.D.; Knight, R.; et al. Evolution of Mammals and Their Gut Microbes. Science 2008, 320, 1647–1651. [Google Scholar] [CrossRef]
- Dehority, B.A.; Odenyo, A.A. Influence of Diet on the Rumen Protozoal Fauna of Indigenous African Wild Ruminants. J. Eukaryot. Microbiol. 2003, 50, 220–223. [Google Scholar] [CrossRef]
- van der Walt, E. Characterisation of the African Elephant (Loxodonta Africana) Gut Microbiome for Bio-Energy Applications. Master’s Thesis, University of the Free State, Bloemfontein, South Africa, 2020. [Google Scholar]
- Youngblut, N.D.; Reischer, G.H.; Walters, W.; Schuster, N.; Walzer, C.; Stalder, G.; Ley, R.E.; Farnleitner, A.H. Host Diet and Evolutionary History Explain Different Aspects of Gut Microbiome Diversity among Vertebrate Clades. Nat. Commun. 2019, 10, 2200. [Google Scholar] [CrossRef]
- Zierer, J.; Jackson, M.A.; Kastenmüller, G.; Mangino, M.; Long, T.; Telenti, A.; Mohney, R.P.; Small, K.S.; Bell, J.T.; Steves, C.J.; et al. The Fecal Metabolome as a Functional Readout of the Gut Microbiome. Nat. Genet. 2018, 50, 790–795. [Google Scholar] [CrossRef]
- Zoelzer, F.; Burger, A.L.; Dierkes, P.W. Unraveling Differences in Fecal Microbiota Stability in Mammals: From High Variable Carnivores and Consistently Stable Herbivores. Anim. Microbiome 2021, 3, 77. [Google Scholar] [CrossRef]
- Leslie, D.M.; Bowyer, R.T.; Jenks, J.A. Facts From Feces: Nitrogen Still Measures Up as a Nutritional Index for Mammalian Herbivores. J. Wildl. Manag. 2008, 72, 1420–1433. [Google Scholar] [CrossRef]
- Codron, D.; Codron, J. Reliability of δ13C and δ15N in Faeces for Reconstructing Savanna Herbivore Diet. Mamm. Biol. 2009, 74, 36–48. [Google Scholar] [CrossRef]
- Ley, R.E.; Lozupone, C.A.; Hamady, M.; Knight, R.; Gordon, J.I. Worlds within Worlds: Evolution of the Vertebrate Gut Microbiota. Nat. Rev. Microbiol. 2008, 6, 776–788. [Google Scholar] [CrossRef] [PubMed]
- Giebelhaus, R.T.; Nguyen, G.; Schmidt, S.A.; Wang, S.; Mesfin, E.Y.; Nam, S.L.; De La Mata, A.P.; Harynuk, J.J. GC×GC-TOFMS Analysis of Fecal Metabolome Stabilized Using an At-Home Stool Collection Device. Appl. Biosci. 2024, 3, 348–359. [Google Scholar] [CrossRef]
- Dagg, A.I. Giraffe: Biology, Behaviour and Conservation; Cambridge University Press: Cambridge, UK, 2014; ISBN 978-1-107-03486-0. [Google Scholar]
- Malheiros, J.M.; Correia, B.S.B.; Ceribeli, C.; Cardoso, D.R.; Colnago, L.A.; Junior, S.B.; Reecy, J.M.; Mourão, G.B.; Coutinho, L.L.; Palhares, J.C.P.; et al. Comparative Untargeted Metabolome Analysis of Ruminal Fluid and Feces of Nelore Steers (Bos indicus). Sci. Rep. 2021, 11, 12752. [Google Scholar] [CrossRef] [PubMed]
- Shipley, L.A. Grazers and Browsers: How Digestive Morphology Affects Diet Selection. Ida. For. Wildl. Range Exp. Sta. Bull. 1999, 70, 20–27. [Google Scholar]
- Gordon, I.J. Browsing and Grazing Ruminants: Are They Different Beasts? For. Ecol. Manag. 2003, 181, 13–21. [Google Scholar] [CrossRef]
- Krizsan, S.J.; Mateos-Rivera, A.; Bertilsson, S.; Felton, A.; Anttila, A.; Ramin, M.; Vaga, M.; Gidlund, H.; Huhtanen, P. An in Vitro Evaluation of Browser and Grazer Fermentation Efficiency and Microbiota Using European Moose Spring and Summer Foods. Ecol. Evol. 2018, 8, 4183–4196. [Google Scholar] [CrossRef]
- Cordeiro, L.; Cabrita, A.R.J.; Oliveira, H.M.; Maia, M.R.G.; Rodrigues, J.A.; Fonseca, A.J.M.; Valente, I.M. A Novel Approach for Monitoring the Volatile Metabolome in Biological Samples from Ruminants through Miniaturized Liquid–Liquid Extraction and Multiclass Gas Chromatography Analysis. J. Agric. Food Chem. 2022, 70, 3886–3897. [Google Scholar] [CrossRef]
- Schrimpe-Rutledge, A.C.; Codreanu, S.G.; Sherrod, S.D.; McLean, J.A. Untargeted Metabolomics Strategies—Challenges and Emerging Directions. J. Am. Soc. Mass. Spectrom. 2016, 27, 1897–1905. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T. PubChem 2023 Update. Available online: https://pubchem.ncbi.nlm.nih.gov/docs/citation-guidelines (accessed on 15 August 2024).
- Wishart, D.S.; Guo, A.C.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Siyang, T. HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Res. 2022, 50, D622–D631. [Google Scholar] [CrossRef]
- Public Health Statement—Diisopropyl Methylphosphonate. 1998. Available online: https://www.atsdr.cdc.gov/ToxProfiles/tp119-c1-b.pdf (accessed on 11 May 2024).
- Dagg, A.I.; Foster, J.B. The Giraffe: Its Biology, Behavior and Ecology.; Van Nostrand Reinhold Co.: New York, NY, USA, 1976. [Google Scholar]
- Bercovitch, F.B.; Bashaw, M.J.; Del Castillo, S.M. Sociosexual Behavior, Male Mating Tactics, and the Reproductive Cycle of Giraffe Giraffa Camelopardalis. Horm. Behav. 2006, 50, 314–321. [Google Scholar] [CrossRef]
- Gundamalla, R.; Bantu, R.; Subba Reddy, B.V. Concise Approach for the Synthesis of 1,7-Dioxaspiro[5.5]Undecane, a Dacus Oleae Pheromone. Results Chem. 2023, 5, 100993. [Google Scholar] [CrossRef]
- Guo, X.; Lin, M.R.; Azizi, A.; Saldyt, L.P.; Kang, Y.; Pavlic, T.P.; Fewell, J.H. Decoding Alarm Signal Propagation of Seed-Harvester Ants Using Automated Movement Tracking and Supervised Machine Learning. Proc. R. Soc. B 2022, 289, 20212176. [Google Scholar] [CrossRef] [PubMed]
- del Castillo, S.M.; Bashaw, M.J.; Patton, M.L.; Rieches, R.R.; Bercovitch, F.B. Fecal Steroid Analysis of Female Giraffe (Giraffa camelopardalis) Reproductive Condition and the Impact of Endocrine Status on Daily Time Budgets. Gen. Comp. Endocrinol. 2005, 141, 271–281. [Google Scholar] [CrossRef] [PubMed]
- González-Sanz, S.; Barreñada, O.; Rial, E.; Brieño-Enriquez, M.A.; Del Mazo, J. The Antiandrogenic Vinclozolin Induces Differentiation Delay of Germ Cells and Changes in Energy Metabolism in 3D Cultures of Fetal Ovaries. Sci. Rep. 2020, 10, 18036. [Google Scholar] [CrossRef]
- Auer, K.E.; Kußmaul, M.; Möstl, E.; Hohlbaum, K.; Rülicke, T.; Palme, R. Measurement of Fecal Testosterone Metabolites in Mice: Replacement of Invasive Techniques. Animals 2020, 10, 165. [Google Scholar] [CrossRef]
- Otsuki, M.; Kohyama, K.; Goshima, W.; Kobayashi, M.; Hasegawa, Y.; Morita, Y.; Ijiri, S.; Mitani, Y. Non-Invasive Monitoring of Faecal Testosterone Metabolite Concentrations in a Northern Fur Seal (Callorhinus ursinus). Jpn. J. Zoo. Wildl. Med. 2020, 25, 29–34. [Google Scholar] [CrossRef]
Sample Code | Feeding Practice | Location | Age Class, Sex and Individual Number | Date(s) of Fecal Collection 1 | Assigned Season 2 |
---|---|---|---|---|---|
M01 | Supplemental feeding | 1 | Adult male (I) | 03, 18, 31 August 2021 | Winter, dry |
M03 | 1 | Adult male (I) | 09, 18, 28 March 2022 | Autumn, wet | |
M05 | 1 | Adult male (I) | 01, 14, 22 June 2022 | Winter, dry | |
M07 | 1 | Adult male (I) | 04, 23 November 2022 | Summer, wet | |
M02 | 1 | Adult male (I) | 13 February 2022 | Summer, wet | |
M04 | 1 | Adult male (I) | 05 and 27 April 2022 | Autumn, wet | |
M06 | 1 | Adult male (I) | 11, 24, 25 August 2022 | Winter, dry | |
M22 | 1 | Adult male (I) | 07 April 2023 | Autumn, wet | |
M24 | 1 | Adult male (I) | 20 March 2023 | Autumn, wet | |
M09 | 1 | Sub-adult male (II) | 11 February 2022 | N/A 2 | |
M11 | 1 | Sub-adult male (II) | 13, 19, 27 April 2022 | N/A | |
M19 | 1 | Sub-adult male (II) | 07 April 2023 | N/A | |
M08 | 1 | Sub-adult male (II) | 04, 09, 23 August 2021 | N/A | |
M10 | 1 | Sub-adult male (II) | 09, 18 March 2022 | N/A | |
M16 | 4 | Adult male (III) | 10 March 2023 | N/A | |
M18 | 4 | Adult female (IV) | 10 March 2023 | N/A | |
M28 | 5 | Adult female (V) | 13 September 2022 | N/A | |
M30 | 5 | Adult female (V) | 09 October 2022 | N/A | |
M15 | Natural available vegetation | 2 | Adult male (VI) | 10 March 2023 | N/A |
M23 | 2 | Adult female (VII) | 22 April 2023 | N/A | |
M14 | 2 | Adult female (VIII) | 10 March 2023 | N/A | |
M25 | 3 | Adult male (IX) | 10 April 2023 | N/A | |
M27 | 3 | Adult female (X) | 10 April 2023 | N/A | |
M26 | 3 | Adult female (XI) | 10 April 2023 | N/A | |
M13 | 6 | Adult male (XII) | 16 February 2023 | N/A | |
M12 | 6 | Adult male (XIII) | 16 February 2023 | N/A |
Class | Significant Differential Compounds (SF and NAV) | FC | Log2 (FC) | Higher (↑) or Lower (↓) in SF | p-Value |
---|---|---|---|---|---|
Amino acid related | Threonine | 42.55 | 5.41 | ↑ | p < 0.05 |
Amino acid related | 5-Oxoproline | 18.67 | 4.22 | ↑ | p < 0.05 |
Amino acid related | Serine | 18.49 | 4.21 | ↑ | p < 0.05 |
Amino acid related | Aspartic acid | 17.68 | 4.14 | ↑ | 0.003 |
Amino acid related | Alanine | 17.39 | 4.12 | ↑ | 0.0011 |
Amino acid related | Glutamic acid | 17.38 | 4.12 | ↑ | 0.0002 |
Amino acid related | 3-Hydroxyphenylacetic acid | 17.32 | 4.11 | ↑ | 0.002 |
Organic compound | Pyrrolidine | 0.029 | −5.10 | ↓ | p < 0.05 |
Organic compound | Pyrazine | 0.03 | −4.91 | ↓ | p < 0.05 |
Organic compound | Squalene | 31.36 | 4.97 | ↑ | p < 0.05 |
Organic compound | Gallic acid | 0.05 | −4.30 | ↓ | p < 0.05 |
Organic compound | Naphthalene | 17.49 | 4.13 | ↑ | 0.0002 |
Organic compound | 2-Pyrrolidinone | 0.058 | −4.31 | ↓ | p < 0.05 |
Dicarboxylic acid | 2,3-Dimethylsuccinic acid | 22.76 | 4.51 | ↑ | p < 0.05 |
Fatty alcohol | 2-Dodecanol | 44.95 | 5.49 | ↑ | 0.0002 |
Fatty nitriles | Dodecanenitrile | 0.035 | −4.83 | ↓ | p < 0.05 |
Phenol | Ferruginol | 35.69 | 5.16 | ↑ | p < 0.05 |
Phenol | 5-Nonadecylresorcinol | 71.85 | 6.17 | ↑ | 0.0003 |
Inorganic compound | Methylphosphonic acid | 77.35 | 6.27 | ↑ | 0.0004 |
Class | Significant Differential Compounds (Wet and Dry Seasons) | FC | Log2 (FC) | Higher (↑) or Lower (↓) in the Wet Season |
---|---|---|---|---|
Amino acid related | N-Acetylglucosamine | 18.43 | 4.20 | ↓ |
Carbohydrate related | Deoxyglucose | 0.02 | −5.87 | ↑ |
Carbohydrate related | D-Fructose | 0.04 | −4.51 | ↑ |
Carbohydrate related | N-Acetyl glucosamine methoxime | 0.05 | −4.43 | ↑ |
Carbohydrate related | Talopyranose | 0.05 | −4.25 | ↑ |
Carbohydrate related | d-Glucose | 0.06 | −4.09 | ↑ |
Carbohydrate related | Methyl galactoside | 0.001 | −9.08 | ↑ |
Carbohydrate related | D-Gluconic acid | 0.06 | −4.12 | ↑ |
Carbohydrate related | Ethyl à-D-glucopyranoside | 0.06 | −4.01 | ↑ |
Organic compound | Benzyl alcohol | 0.03 | −5.18 | ↑ |
Organic compound | Terthiophene | 0.03 | −4.92 | ↑ |
Sterol | Stigmastanol | 0.03 | −4.98 | ↑ |
Inorganic compound | Silane | 0.06 | −4.19 | ↑ |
Class | Significant Differential Compounds (Males and Females) | FC | Log2 (FC) | Higher (↑) or Lower (↓) in Females | p-Value |
---|---|---|---|---|---|
Amino acid related | L-Aspartic acid | 0.03 | −5.06 | ↓ | 0.0002 |
Carbohydrate related | D-Arabinose | 15598 | 13.93 | ↑ | 0.001 |
Carbohydrate related | D-Xylose UM 160 | 1587.5 | 10.63 | ↑ | 0.001 |
Carbohydrate related | D-Xylose UM 104 | 99.56 | 6.637 | ↑ | 0.001 |
Organic compound | Pyrrolidine | 21.61 | 4.434 | ↑ | 0.0003 |
Organic compound | Methylphosphonic acid | 0.04 | −4.477 | ↓ | NS |
Alkanes | Undecane | 18.50 | 4.21 | ↑ | 0.0002 |
Phenol | 3-Ethylphenol | 50.45 | 5.66 | ↑ | 0.001 |
Phenol | 5-Nonadecylresorcinol | 0.055 | −4.19 | ↓ | 0.001 |
Class | Significant Differential Compounds (SF Females, SF Males, NAV Females and NAV Males) | f-Value | p-Value | Higher (↑) or Lower (↓) in SF Females Compared to SF Males 1 | Higher (↑) or Lower (↓) in NAV Females Compared to NAV Males |
---|---|---|---|---|---|
Amino acid related | Serine | 14.105 | <0.001 | ↓ | ↑ |
Carbohydrate related | D-Talofuranose | 14.235 | <0.001 | ↓ | ↓ |
Fatty nitriles | Dodecanenitrile | 27.559 | <0.001 | ↑ | ↑ |
Organic compound | Bipyridine | 70.445 | <0.001 | ↓ | ↑ |
Organic compound | 2-Butyl-3-methylpyrazine | 27.936 | <0.001 | ↑ | ↑ |
Organic compound | Pyrrolidinyl-2 propanone | 27.675 | <0.001 | ↑ | ↓ |
Organic compound | Caryophyllene | 23.22 | <0.001 | ↓ | ↑ |
Organic compound | Vinclozolin | 21.978 | <0.001 | ↑ | ↑ |
Organic compound | Heptanedioic acid | 20.719 | <0.001 | ↑ | ↑ |
Organic compound | Humulene | 18.458 | <0.001 | ↓ | ↑ |
Organic compound | Stigmasterol | 18.444 | <0.001 | ↓ | ↓ |
Organic compound | Gallic acid | 14.032 | <0.001 | ↑ | ↑ |
Organic compound | Naphthalene | 13.417 | <0.001 | ↓ | ↑ |
Class | Significant Differential Compounds (Adult and Sub-Adult Males) | FC | Log2 (FC) | Higher (↑) or Lower (↓) in the Adult Male | p-Value |
---|---|---|---|---|---|
Amino acid related | L-proline | 0.11 | −3.14 | ↓ | NS |
Carbohydrate related | d-Mannose | 0.086 | −3.55 | ↓ | NS |
Carbohydrate related | D-Talopyranose | 9.05 | 3.18 | ↑ | NS |
Organic compound | Triazole | 0.039 | −4.70 | ↓ | NS |
Organic compound | Nonadecylresorcinol | 18.50 | 4.21 | ↑ | NS |
Organic compound | 3-hydroxyandrostan-17-one (androsterone) | 14.02 | 3.81 | ↑ | <0.001 |
Organic compound | Testosterone | 13.77 | 3.78 | ↑ | NS |
Organic compound | Ethene | 0.10 | −3.26 | ↓ | NS |
Organic compound | Pentanoic acid | 10.87 | 3.44 | ↑ | NS |
Organic compound | Hordenin | 0.11 | −3.14 | ↓ | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grobbelaar, A.; Osthoff, G.; du Preez, I.; Deacon, F. First Insights into the Fecal Metabolome of Healthy, Free-Roaming Giraffes (Giraffa camelopardalis): An Untargeted GCxGC/TOF-MS Metabolomics Study. Metabolites 2024, 14, 586. https://doi.org/10.3390/metabo14110586
Grobbelaar A, Osthoff G, du Preez I, Deacon F. First Insights into the Fecal Metabolome of Healthy, Free-Roaming Giraffes (Giraffa camelopardalis): An Untargeted GCxGC/TOF-MS Metabolomics Study. Metabolites. 2024; 14(11):586. https://doi.org/10.3390/metabo14110586
Chicago/Turabian StyleGrobbelaar, Andri, Gernot Osthoff, Ilse du Preez, and Francois Deacon. 2024. "First Insights into the Fecal Metabolome of Healthy, Free-Roaming Giraffes (Giraffa camelopardalis): An Untargeted GCxGC/TOF-MS Metabolomics Study" Metabolites 14, no. 11: 586. https://doi.org/10.3390/metabo14110586
APA StyleGrobbelaar, A., Osthoff, G., du Preez, I., & Deacon, F. (2024). First Insights into the Fecal Metabolome of Healthy, Free-Roaming Giraffes (Giraffa camelopardalis): An Untargeted GCxGC/TOF-MS Metabolomics Study. Metabolites, 14(11), 586. https://doi.org/10.3390/metabo14110586