Identification of Secondary Metabolites by Multi-Omics Methods
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Contributions
- Zhu, H.; Ren, X.; Huang, Y.; Su, T.; Yang, L. Chemical Constituents of Euphorbia stracheyi Boiss (Euphorbiaceae). Metabolites 2023, 13, 853. https://doi.org/10.3390/metabo13070852.
- Cadena-Zamudio, J.D.; Monribot-Villanueva, J.L.; Pérez-Torres, C.-A.; Alatorre-Cobos, F.; Guerrero-Analco, J.A.; Ibarra-Laclette, E. Non-Targeted Metabolomic Analysis of Arabidopsis thaliana (L.) Heynh: Metabolic Adaptive Responses to Stress Caused by N Starvation. Metabolites 2023, 13, 1021. https://doi.org/10.3390/metabo13091021.
- Ren, X.; Lin, C.; Huang, Y.; Su, T.; Guo, J.; Yang, L. Miltiradiene Production by Cytoplasmic Metabolic Engineering in Nicotiana benthamiana. Metabolites 2023, 13, 188. https://doi.org/10.3390/metabo13121188.
- Pan, L.; Yang, N.; Sui, Y.; Li, Y.; Zhao, W.; Zhang, L.; Mu, L.; Tang Z. Altitudinal Variation on Metabolites, Elements, and Antioxidant Activities of Medicinal Plant Asarum. Metabolites 2023, 13, 1193. https://doi.org/10.3390/metabo13121193.
- Yu, H.; Liu, B.; Zhao, Y.; Li, J.; Wu, G.; Ma, J.; Gui, F.; Tao, F.; Hao, X.; Ding, X.; Qin, X. Combined Activity of Saponin B Isolated from Dodonaea viscosa Seeds with Pesticide Azadirachtin against the Pest Spodoptera litura. Metab. 2024, 14, 15. https://doi.org/10.3390/metabo14010015.
References
- Smith, C.A.; Want, E.J.; O’Maille, G.; Abagyan, R.; Siuzdak, G. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 2006, 78, 779. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Riano, C.; Saiz, J.; Barbas, C.; Bergareche, A.; Huerta, J.M.; Ardanaz, E.; Konjevod, M.; Mondragon, E.; Erro, M.E.; Chirlaque, M.D.; et al. Prognostic biomarkers of Parkinson’s disease in the Spanish EPIC cohort: A multiplatform metabolomics approach. Npj Park. Dis. 2021, 7, 73. [Google Scholar] [CrossRef]
- Ding, J.; Ji, J.; Rabow, Z.; Shen, T.; Folz, J.; Brydges, C.R.; Fan, S.; Lu, X.; Mehta, S.; Showalter, M.R.; et al. A metabolome atlas of the aging mouse brain. Nat. Commun. 2021, 12, 6021. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, E.; Chetnik, K.; Flynn, T.; Barbieri, C.E.; Scherr, D.S.; Loda, M.; Krumsiek, J. Plasma metabolomics profiling of 580 patients from an Early Detection Research Network prostate cancer cohort. Sci. Data 2023, 10, 830. [Google Scholar] [CrossRef] [PubMed]
- Dührkop, K.; Nothias, L.F.; Fleischauer, M.; Reher, R.; Ludwig, M.; Hoffmann, M.A.; Petras, D.; Gerwick, W.H.; Rousu, J.; Dorrestein, P.C.; et al. Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nat. Biotechnol. 2021, 39, 462. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Park, Y.; Duraisingham, S.; Strobel, F.H.; Khan, N.; Soltow, Q.A.; Jones, D.P.; Pulendran, B. Predicting network activity from high throughput metabolomics. PLoS Comput. Biol. 2013, 9, e1003123. [Google Scholar] [CrossRef]
- Theodoridis, G.; Gika, H.; Raftery, D.; Goodacre, R.; Plumb, R.S.; Wilson, I.D. Ensuring Fact-Based Metabolite Identification in Liquid Chromatography–Mass Spectrometry-Based Metabolomics. Anal. Chem. 2023, 95, 3909. [Google Scholar] [CrossRef]
- Zhang, P.; Ang, I.L.; Lam, M.M.; Wei, R.; Lei, K.M.; Zhou, X.; Lam, H.H.; He, Q.Y.; Poon, T.C. Susceptibility to false discovery in biomarker research using liquid chromatography–high resolution mass spectrometry based untargeted metabolomics profiling. Clin. Transl. Med. 2021, 11, e469. [Google Scholar] [CrossRef]
- Shao, Y.; Li, T.; Liu, Z.; Wang, X.; Xu, X.; Li, S.; Xu, G.; Le, W. Comprehensive metabolic profiling of Parkinson’s disease by liquid chromatography-mass spectrometry. Mol. Neurodegener. 2021, 16, 4. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Guasch-Ferré, M.; Chung, W.; Ruiz-Canela, M.; Toledo, E.; Corella, D.; Bhupathiraju, S.N.; Tobias, D.K.; Tabung, F.K.; Hu, J.; et al. The Mediterranean diet, plasma metabolome, and cardiovascular disease risk. Eur. Heart J. 2020, 41, 2645. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Jarmusch, A.K.; Vargas, F.; Aksenov, A.A.; Gauglitz, J.M.; Weldon, K.; Petras, D.; da Silva, R.; Quinn, R.; Melnik, A.V.; et al. Mass spectrometry searches using MASST. Nat. Biotechnol. 2020, 38, 23–26. [Google Scholar] [CrossRef] [PubMed]
- Baratange, C.; Paris-Palacios, S.; Bonnard, I.; Delahaut, L.; Grandjean, D.; Wortham, L.; Sayen, S.; Gallorini, A.; Michel, J.; Renault, D.; et al. Metabolic, cellular and defense responses to single and co-exposure to carbamazepine and methylmercury in Dreissena polymorpha. Environ. Pollut. 2022, 300, 118933. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Xu, J.; Liu, Y.; Liu, J. Metabolomic profiling for identification of potential biomarkers in patients with dermatomyositis. Metabolomics 2019, 15, 77. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, X. Identification of Secondary Metabolites by Multi-Omics Methods. Metabolites 2024, 14, 597. https://doi.org/10.3390/metabo14110597
Fang X. Identification of Secondary Metabolites by Multi-Omics Methods. Metabolites. 2024; 14(11):597. https://doi.org/10.3390/metabo14110597
Chicago/Turabian StyleFang, Xin. 2024. "Identification of Secondary Metabolites by Multi-Omics Methods" Metabolites 14, no. 11: 597. https://doi.org/10.3390/metabo14110597
APA StyleFang, X. (2024). Identification of Secondary Metabolites by Multi-Omics Methods. Metabolites, 14(11), 597. https://doi.org/10.3390/metabo14110597