Schinus terebinthifolia Raddi—Untargeted Metabolomics Approach to Investigate the Chemical Variation in Volatile and Non-Volatile Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Ethanol Extraction
2.3. Headspace Solid Phase Microextraction (HS-SPME)
2.4. LC-MS Analysis
2.5. GC-MS Analysis
2.6. Data Processing
2.7. Biological Activity Prediction
3. Results and Discussion
3.1. Non-Volatile Compounds in the Ethanol Extracts and UHPLC-MS
Rt min | [M-H]− (m/z) | Fragments (m/z) | Collision Energy (eV) | Proposed Compound | Level | Reference |
---|---|---|---|---|---|---|
0.37 | 341.1111 | 297.1199; 267.9441; 221.0675; 161.0451; 131.0346; 101.0254; 89.0241; 71.0146; 59.0139 | 10 | Disaccharide C12H21O11 | 2 | [29] metlin |
0.50 | 173.0458 | 155.0347; 137.0246; 111.0451; 99.0449; 93.0344; 83.0504; 73.0294 | 10 | Shikimic acid C7H10O5 | 2 | [29] metlin |
2.48 | 183.0305 | 124.0168; 78.0108 | 20 | Methyl gallate C8H8O5 | 2 | [23] |
3.23 | 197.0457 | 169.0137; 124.0166; 78.0109 | 20 | Ethyl gallate C9H9O5 | 2 | [23] |
3.52 | 335.0418 | 183.0296; 124.0164; 78.0107 | 40 | Methyl digallate C15H11O9 | 2 | [23] |
3.84 | 349.5650 | 197.0458; 169.0145; 124.0169 | 20 | Ethyl digallate C16H14O9 | 2 | [23] |
4.68 | 255.2350 | - | 20 | C16H32O2 | 4 | - |
4.93 | 319.2285 | 275.2385 | 20 | Anacardic acid (13:0) C20H32O3 | 2 | [3] |
5.00 | 369.2473 | 325.2540; 119.0504 | 20 | C24H34O3 | 3 | - |
5.12 | 453.3373 | - | 40 | Masticadienoic acid C30H46O3 | 3 | [23] |
5.13 | 345.2434 | 301.2540 | 20 | Anacardic acid (15:1) C22H34O3 | 2 | [19] |
5.35 | 371.2651 | 327.2694; 133.0664; 119.0503; 106.0430 | 20 | Anacardic acid (17:2) C24H36O3 | 2 | [19] |
5.47 | 455.3549 | - | 40 | Schinol C30H48O3 | 3 | [23] |
5.65 | 347.2648 | 303.2687; 202.9666; 199.0358; 106.0423 | 40 | Anacardic acid (15:0) C22H36O3 | 3 | [19] |
5.79 | 373.2744 | 329.2846; 133.0663; 119.0505; 106.0428 | 40 | Anacardic acid (17:1) C24H38O3 | 2 | [19] |
6.30 | 375.2899 | 331.3007; 119.0502; 106.0425 | 40 | Anacardic acid (17:0) C24H40O3 | 2 | [19] |
3.2. Volatile Compounds by GC-MS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morton, J.F. Brazilian pepper-Its impact on people, animals and the environment. Econ. Bot. 1978, 32, 353–359. [Google Scholar] [CrossRef]
- Gilbert, B.; Favoreto, R. Schinus terebinthifolius Raddi. Rev. Fitos 2011, 6, 43–56. [Google Scholar] [CrossRef]
- El-Massrry, K.F.; El-Ghorab, A.H.; Shaaban, H.A.; Shibamoto, T. Chemical compositions and antioxidant/antimicrobial activities of various samples prepared from Schinus terebinthifolius leaves cultivated in Egypt. J. Agric. Food Chem. 2009, 57, 5265–5270. [Google Scholar] [CrossRef]
- Rosas, E.C.; Correa, L.B.; das Graças, H.M. Antiinflammatory properties of Schinus terebinthifolius and its use in arthritic conditions. In Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases, 2nd ed.; Academic Press: Cambridge, MA, USA, 2019; Chapter 28; pp. 489–505. [Google Scholar] [CrossRef]
- Vieira, J.d.S.; de Oliveira, V.S.; Carneiro, M.J.; da Silva, T.L.; Augusta, I.M.; de Carvalho, M.G.; Sawaya, A.C.H.F.; Saldanha, T. Phenolic composition and insights into the use of pink pepper (Schinus terebentifolius Raddi) fruit against lipid oxidation in food systems. Food Biosci. 2023, 53, 102556. [Google Scholar] [CrossRef]
- Dannenberg, G.d.S.; Funck, G.D.; da Silva, W.P.; Fiorentini, A.M. Essential oil from pink pepper (Schinus terebinthifolius Raddi): Chemical composition, antibacterial activity and mechanism of action. Food Control 2019, 95, 115–120. [Google Scholar] [CrossRef]
- Carneiro, M.J.; Pinheiro, G.P.; Baseggio, A.M.; Maróstica-Júnior, M.R.; Sawaya AC, H.F. Chemical Composition and Antioxidant Activity of Essential Oil from Male and Female Schinus terebinthifolius. Pharmacogn. Res. 2023, 15, 484–491. [Google Scholar] [CrossRef]
- Brazil, Ministério da Saúde. Relação Nacional de Medicamentos 2022. In Secretaria de Ciência, Tecnologia, Inovação e Insumos Estratégicos em Saúde; Brazil, Ministério da Saúde: Brasília, Brazil, 2022; Available online: https://www.conass.org.br/wp-content/uploads/2022/01/RENAME-2022.pdf (accessed on 10 November 2024).
- Rocha, P.d.S.; Campos, J.F.; Nunes-Souza, V.; Vieira, M.d.C.; Boleti, A.P.d.A.; Rabelo, L.A.; dos Santos, E.L.; de Picoli, S.K. Antioxidant and protective effects of Schinus terebinthifolius Raddi against doxorubicin-induced toxicity. Appl. Biochem. Biotechnol. 2018, 184, 869–884. [Google Scholar] [CrossRef]
- Almeida, C.L.; Xavier, R.M.; Borghi, A.A.; dos Santos, V.F.; Sawaya, A.C.H.F. Effect of seasonality and growth conditions on the content of coumarin, chlorogenic acid and dicaffeoylquinic acids in Mikania laevigata Schultz and Mikania glomerata Sprengel (Asteraceae) by UHPLC–MS/MS. Int. J. Mass Spectrom. 2017, 418, 162–172. [Google Scholar] [CrossRef]
- Ueno, V.A.; Sawaya, A.C.H.F. Influence of environmental factors on the volatile composition of two Brazilian medicinal plants: Mikania laevigata and Mikania glomerata. Metabolomics 2019, 15, 91. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing: Carol Stream, IL, USA, 2007; Volume 4, ISBN 978-1-932633-11-4. [Google Scholar]
- Smith, C.A.; Want, E.J.; O’Maille, G.; Abagyan, R.; Siuzdak, G. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 2006, 78, 779–787. [Google Scholar] [CrossRef]
- Kuhl, C.; Tautenhahn, R.; Boettcher, C.; Larson, T.R.; Neumann, S. CAMERA: An integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal. Chem. 2012, 84, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Libiseller, G.; Dvorzak, M.; Kleb, U.; Gander, E.; Eisenberg, T.; Madeo, F.; Neumann, S.; Trausinger, G.; Sinner, F.; Pieber, T.; et al. IPO: A tool for automated optimization of XCMS parameters. BMC Bioinform. 2010, 16, 118. [Google Scholar] [CrossRef] [PubMed]
- Chong, J.; Wishart, D.S.; Xia, J. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr. Protoc. Bioinform. 2019, 68, e86. [Google Scholar] [CrossRef]
- Filimonov, D.A.; Lagunin, A.A.; Gloriozova, T.A.; Rudik, A.V.; Druzhilovskii, D.S.; Pogodin, P.V.; Poroikov, V.V. Prediction of the biological activity spectra of organic compounds using the pass online web resource. Chem. Heterocycl. Compd. 2014, 50, 444–457. [Google Scholar] [CrossRef]
- Salek, R.M.; Steinbeck, C.; Viant, M.R.; Goodacre, R.; Dunn, W.B. The role of reporting standards for metabolite annotation and identification in metabolomic studies. GigaScience 2013, 2, 2–4. [Google Scholar] [CrossRef]
- Gomes, R.B.d.A.; de Souza, E.S.; Barraqui, N.S.G.; Tosta, C.L.; Nunes, A.P.F.; Schuenck, R.P.; Ruas, F.G.; Ventura, J.A.; Filgueiras, P.R.; Kuster, R.M. Residues from the Brazilian pepper tree (Schinus terebinthifolia Raddi) processing industry: Chemical profile and antimicrobial activity of extracts against hospital bacteria. Ind. Crop. Prod. 2020, 143, 111430. [Google Scholar] [CrossRef]
- Erşan, S.; Güçlü, Ü.Ö.; Carle, R.; Schweiggert, R.M. Identification of phenolic compounds in red and green pistachio (Pistacia vera L.) hulls (exo- and mesocarp) by HPLC-DAD-ESI-(HR)-MSn. J. Agric. Food Chem. 2016, 64, 5334–5344. [Google Scholar] [CrossRef]
- Schulze-Kaysers, N.; Feuereisen, M.M.; Schieber, A. Phenolic compounds in edible species of the Anacardiaceae family—A review. RSC Adv. 2015, 5, 73301–73314. [Google Scholar] [CrossRef]
- Morais, S.M.; Silva, K.A.; Araujo, H.; Vieira, I.G.P.; Alves, D.R.; Fontenelle, R.O.S.; Silva, A.M.S. Anacardic acid constituents from cashew nut shell liquid: NMR characterization and the effect of unsaturation on its biological activities. Pharmaceuticals 2017, 10, 31. [Google Scholar] [CrossRef]
- Gomes, A.L.; Dimitrova-Tchekalarova, J.; Atanasova, M.; da Conceição-Machado, K.; de Sousa Rios, M.A.; Paz Jardim, M.F.; Găman, M.A.; Găman, A.M.; Yele, S.; Shill, M.C.; et al. Anticonvulsant effect of anacardic acid in murine models: Putative role of GABAergic and antioxidant mechanisms. Biomed. Pharmacother. 2018, 106, 1686–1695. [Google Scholar] [CrossRef]
- Johann, S.; Sá, N.P.; Lima, L.A.R.S.; Cisalpino, P.S.; Cota, B.B.; Alves, T.M.A.; Siqueira, E.P.; Zani, C.L. Antifungal activity of schinol and a new biphenyl compound isolated from Schinus terebinthifolius against the pathogenic fungus Paracoccidioides brasiliensis. Ann. Clin. Microbiol. Antimicrob. 2010, 9, 30. [Google Scholar] [CrossRef] [PubMed]
- Morais, T.R.; da Costa-Silva, T.A.; Tempone, A.G.; Borborema SE, T.; Scotti, M.T.; de Sousa RM, F.; Araujo AC, C.; de Oliveira, A.; de Morais SA, L.; Sartorelli, P.; et al. Antiparasitic activity of natural and semi-synthetic tirucallane triterpenoids from Schinus terebinthifolius (anacardiaceae): Structure/activity relationships. Molecules 2019, 19, 5761–5776. [Google Scholar] [CrossRef] [PubMed]
- da Silva, J.H.S.; Simas, N.K.; Alviano, C.S.; Alviano, D.S.; Ventura, J.A.; de Lima, E.J.; Seabra, S.H.; Kuster, R.M. Anti-Escherichia coli activity of extracts from Schinus terebinthifolius fruits and leaves. Nat. Prod. Res. 2018, 32, 1365–1368. [Google Scholar] [CrossRef] [PubMed]
- Ceruks, M.; Romoff, P.; Fávero, O.A.; Lago JH, G. Constituíntes fenólicos polares de Schinus terebinthifolius Raddi (Anacardiaceae). Quím. Nova 2007, 30, 597–599. [Google Scholar] [CrossRef]
- ALZahrani, N.A.; El-Shishtawy, R.M.; Asiri, A.M. Recent developments of gallic acid derivatives and their hybrids in medicinal chemistry: A review. Eur. J. Med. Chem. 2020, 204, 112609. [Google Scholar] [CrossRef] [PubMed]
- METLIN. Available online: https://metlin.scripps.edu/landing_page.php?pgcontent=simple_search (accessed on 10 October 2020).
- Marangoni, J.A.; da Costa Pinto, J.V.; Kassuya CA, L.; de Oliveira, P.C., Jr.; dos Santos, S.M.; Cardoso CA, L.; Silva, R.M.M.F.; Espíndola da Silva, M.; Machado, C.D.; Manfron, J.; et al. Geographical variation in the chemical composition, anti-inflammatory activity of the essential oil, micromorphology and histochemistry of Schinus terebinthifolia Raddi. J. Ethnopharmacol. 2023, 301, 115786. [Google Scholar] [CrossRef]
- Uliana, M.P.; Fronza, M.; da Silva, A.G.; Vargas, T.S.; de Andrade, T.U.; Scherer, R. Composition and biological activity of Brazilian rose pepper (Schinus terebinthifolius Raddi) leaves. Ind. Crop. Prod. 2016, 83, 235–240. [Google Scholar] [CrossRef]
- Ennigrou, A.; Casabianca, H.; Vulliet, E.; Hanchi, B.; Hosni, K. Assessing the fatty acid, essential oil composition, their radical scavenging and antibacterial activities of Schinus terebinthifolius Raddi leaves and twigs. J. Food Sci. Technol. 2018, 55, 1582–1590. [Google Scholar] [CrossRef]
- Costa da Silva, M.M.; Bezerra de Araújo Neto, J.; Lucas dos Santos, A.T.; de Morais Oliveira-Tintino, C.D.; de Araújo, A.C.J.; Freitas, P.R.; da Silva, L.E.; do Amaral, W.; Deschamps, C.; de Azevedo, F.R.; et al. Antibiotic-Potentiating Activity of the Schinus terebinthifolius Raddi Essential Oil against MDR Bacterial Strains. Plants 2023, 12, 1587. [Google Scholar] [CrossRef]
Feature Detection | |
Method | matchedFilter |
FWHM | 10 |
step | 0.3 |
Retention Time Correction | |
Method | obiwarp |
profStep | 1 |
Alignment | |
bw | 22 |
minfrac | 0.4 |
mzwid | 0.1 |
Feature Number | R. I. lit | R.I. exp | Compounds | Class | Reference | Biological Properties—Predictive PASS Software |
---|---|---|---|---|---|---|
1 | 939 | 940 | α-Pinene | M | [7] | Phobic disorders treatment and carminative |
2 | 975 | 974 | Sabinene | M | [7] | Antiinflammatory and antineoplastic |
3 | 979 | 978 | β-Pinene | M | [7] | Ovulation inhibitor and cardiovascular analeptic |
4 | 990 | 994 | β-Myrcene | M | [30] | Mucomembranous protector and antineoplastic (breast cancer) |
5 | 1002 | 1007 | α-Phellandrene | M | [7] | Carminative and fibrinolytic |
6 | 1011 | 1017 | 3-Carene | M | [7] | Phobic disorders treatment and carminative |
7 | 1026 | 1030 | p-Cymene | M | [7] | Antieczematic and carminative |
8 | 1029 | 1030 | D-Limonene | M | [7] | Apoptosis agonist and antineoplastic |
9 | 1050 | 1049 | β-Ocimene | M | [7] | Apoptosis agonist and mucomembrane protector |
10 | - | 1057 | Unknown | - | - | - |
11 | 1059 | 1059 | γ-Terpinene | M | [7] | Phobic disorders treatment and carminative |
12 | 1086 | 1089 | Terpinolene | M | [31] | Antieczematic and carminative |
13 | - | 1102 | Unknown | - | - | - |
14 | - | 1131 | Unknown | - | - | - |
15 | 1177 | 1177 | Terpinen-4-ol | M a | [7] | Antiseborrheic, antieczematic and carminative |
16 | - | 1208 | Unknown | - | - | |
17 | - | 1348 | Unknown | - | - | |
18 | 1374 | 1368 | Isoledene | S | [32] | Transplant rejection treatment |
19 | 1375 | 1381 | α-Copaene | S | [31,33] | carminative and anticancer |
20 | 1387 | 1379 | β-Bourbonene | S | [3] | Anticancer and prostate disorders treatment |
21 | - | 1381 | Unknown | - | - | - |
22 | 1390 | 1396 | β-Elemene | S | [7] | Carminative and anti-inflammatory |
23 | 1409 | 1407 | α-Gurjunene | S | [3] | Transplant rejection treatment |
24 | 1419 | 1420 | Caryophyllene | S | [7] | Antineoplastic and anti-inflammatory |
25 | - | 1424 | Unknown | - | - | - |
26 | 1441 | 1440 | Aromandendrene | S | [7] | Antineoplastic and antiosteoporosis |
27 | 1454 | 1451 | Humulene | S | [7] | Antineoplastic and anti-inflammatory |
28 | 1460 | 1460 | Alloaromadendrene | S | [7] | Antineoplastic and antieczematic |
29 | 1478 | 1472 | γ-Muurolene | S | [33] | Antieczematic and carminative |
30 | 1481 | 1481 | Germacrene D | S | [7] | Antieczematic and carminative |
31 | 1490 | 1488 | β-Selinene | S | [31] | Antipsoriatic and anti-inflammatory |
32 | 1498 | 1498 | α-Selinene | S | [31] | Carminative, antieczematic, antineoplastic, and apoptosis agonist |
33 | 1500 | 1501 | Bicyclogermacrene | S | [7] | Phobic disorders treatment and as an antieczematic |
34 | 1500 | 1502 | α-Muurolene | S | [33] | Carminative and antineoplastic |
35 | - | 1506 | Unknown | - | - | - |
36 | 1513 | 1519 | γ-Cadinene | S | [7] | Antieczematic and carminative |
37 | 1523 | 1526 | δ-Cadinene | S | [7] | Antieczematic and antipsoriatic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carneiro, M.J.; Pinheiro, G.P.; Antunes, E.R.M.; Hantao, L.W.; Moritz, T.; Sawaya, A.C.H.F. Schinus terebinthifolia Raddi—Untargeted Metabolomics Approach to Investigate the Chemical Variation in Volatile and Non-Volatile Compounds. Metabolites 2024, 14, 612. https://doi.org/10.3390/metabo14110612
Carneiro MJ, Pinheiro GP, Antunes ERM, Hantao LW, Moritz T, Sawaya ACHF. Schinus terebinthifolia Raddi—Untargeted Metabolomics Approach to Investigate the Chemical Variation in Volatile and Non-Volatile Compounds. Metabolites. 2024; 14(11):612. https://doi.org/10.3390/metabo14110612
Chicago/Turabian StyleCarneiro, Mara Junqueira, Guilherme Perez Pinheiro, Elisa Ribeiro Miranda Antunes, Leandro Wang Hantao, Thomas Moritz, and Alexandra Christine Helena Frankland Sawaya. 2024. "Schinus terebinthifolia Raddi—Untargeted Metabolomics Approach to Investigate the Chemical Variation in Volatile and Non-Volatile Compounds" Metabolites 14, no. 11: 612. https://doi.org/10.3390/metabo14110612
APA StyleCarneiro, M. J., Pinheiro, G. P., Antunes, E. R. M., Hantao, L. W., Moritz, T., & Sawaya, A. C. H. F. (2024). Schinus terebinthifolia Raddi—Untargeted Metabolomics Approach to Investigate the Chemical Variation in Volatile and Non-Volatile Compounds. Metabolites, 14(11), 612. https://doi.org/10.3390/metabo14110612