Metabolomic Insights into COVID-19 Severity: A Scoping Review
Abstract
:1. Introduction
- Mild illness: patients with variable symptoms related to COVID-19—a general feeling of being unwell, headache, fever, muscle pain, sore throat, cough, rhinorrhea—but no shortness of breath, dyspnea, or abnormal chest imaging.
- Moderate illness: patients with lower respiratory disease, as evidenced by history, exam findings, or imaging, and have oxygen saturation measured by pulse oximetry (SpO2) ≥ 94% on room air at sea level.
- Severe illness: a patient with a SpO2 < 94% on room air at sea level, a ratio of arterial partial pressure of oxygen to fraction of inspired oxygen (PaO2/FiO2) < 300 mm Hg, a respiratory rate > 30 breaths/min, or lung infiltrates of >50%.
- Critical illness: anyone suffering from respiratory failure, septic shock, or multiple organ dysfunction.
- It is, therefore, essential to have tools that would enable an ability to recognize, and possibly prevent, the progression of COVID-19 severity by helping clinicians with treatment adjustments to avoid further progression and complications.
2. Materials and Methods
2.1. Search Strategy
2.2. Data Collection and Classification
3. Results
3.1. Recurrent Metabolites Identified in Severity Groups Compared to Controls
3.2. Metabolites Increased or Decreased with Increasing Degree of Severity
Metabolite | Mild Compared to Control: Change Identified | Moderate/Severe Compared to Control: Change Identified | Supplemental | Controls/Refs. |
---|---|---|---|---|
Leucine | Decreased | Increased | Levels increased with progressing severity. Plasma samples. 1 | Healthy controls Correira et al. [16] |
Phenylalanine | Decreased | Increased *** | Levels increased with progressing severity. Plasma samples. 1 | Healthy controls Correira et al. [16] |
Increased * | Increased | Levels increased with progressing severity. Serum samples. 1 | Healthy controls Paez-Franco et al. [19] | |
Increased *** | Serum samples. 1 | Negative PCR. Paez-Franco et al. [21] | ||
Increased *** | Increased *** | Levels increased with progressing severity. Plasma samples. 2 | Negative PCR. Herrera-Van et al. [17] | |
Increased * | Increased * | Levels increased with progressing severity. Serum samples. 2 | Healthy controls Martinez-Gomez et al. [22] | |
Increased * | Increased * | Serum samples. 2 | Negative PCR Caterino M. et al. [23] | |
Tyrosine | Decreased | Increased ** | Levels increased with progressing severity. Plasma samples. 1 | Healthy controls Correira et al. [16] |
Lactate | Increased ** | Levels increased with progressing severity. Plasma samples. 1 | Healthy controls Correira et al. [16] | |
Increased * | Increased * | Serum samples. 2 | Negative PCR Caterino M. et al. [23] | |
Glucose | Decreased | Increased ** | Levels increased with progressing severity. Plasma samples. 1 | Healthy controls Correira et al. [16] |
Increased *** | Levels increased with progressing severity. Plasma samples. 2 | Negative PCR Villagrana- Bañuelos et al. [26] | ||
Tryptophan | Decreased *** | Decreased *** | Levels decreased with progressing severity. Plasma samples. 2 | Negative PCR Herrera-Van et al. [17] |
Decreased * | Decreased * | Levels decreased with progressing severity. Plasma samples. 1 | Healthy controls Occelli C. et al. [18] | |
Proline | Decreased | Decreased *** | Levels decreased with progressing severity. Serum samples. 1 | Healthy controls Paez-Franco et al. [19] |
Glutamic acid | Increased ** | Increased *** | Levels increased with the progressing severity. Serum samples. 1 | Healthy controls Paez-Franco et al. [19] |
Increased *** | Increased *** | Higher concentration in mild compared to severe cases. Serum samples. 1 | Negative PCR Paez-Franco et al. [21] | |
Increased *** | Increased *** | Levels increased with progressing severity. Plasma samples. 2 | Negative PCR Herrera-Van et al. [17] | |
Increased * | Increased * | Serum samples. 2 | Negative PCR Caterino M. et al. [23] | |
Glutamine | Decreased | Decreased *** | Levels decreased with progressing severity. Serum samples. 1 | Healthy controls Paez-Franco et al. [19] |
Citric acid | Decreased *** | Levels decreased with progressing severity. Serum samples. 1 | Negative PCR Paez-Franco et al. [21] | |
Decreased *** | Decreased *** | Levels decreased with progressing severity. Plasma samples. 2 | Negative PCR Herrera-Van et al. [17] | |
Kynurenine/Tryptophan | Increased *** | Plasma simples. 2 | Healthy controls D’Amora P et al. [25] | |
Increased *** | Plasma simples. 2 | Negative PCR | ||
Herrera-Van et al. [17] | ||||
Kynurenine | Increased *** | Increased *** | Levels increased with progressing severity. Plasma simples. 2 | Negative PCR Herrera-Van et al. [17] |
Decreased * | Increased * | Levels increased with progressing severity. Plasma simples. 1 | Healthy controls Occelli C. et al. [18] | |
C10:2 | Increased *** | Levels increased with progressing severity. Plasma samples. 2 | Negative PCR Herrera-Van et al. [17] | |
Citrulline | Decreased | Decreased | Levels decreased with progressing severity. Plasma samples. | Healthy controls Rahnavard A. et al. [20] |
Isoleucine | Decreased | Decreased | Levels decreased with progressing severity. Plasma samples. | Healthy controls Rahnavard A. et al. [20] |
Ornithine | Increased * | Increased * | Serum samples. 2 | Negative PCR |
Caterino M et al. [23] | ||||
Xanthine | Increased * | Increased * | Serum samples. 2 | Negative PCR Caterino M et al. [23] |
Arachidonic Acid | Increased * | Increased * | Serum samples. 2 | Negative PCR Caterino M et al. [23] |
3-hydroxybutyric acid | Increased * | Serum samples. 1 | Negative PCR Paez-Franco et al. [21] | |
Increased * | Increased | Plasma samples. 1 | Non-COVID Valdes A. et al. [22] |
3.3. Pathway Analysis Related to COVID-19 Severity
4. Discussion
4.1. Pathway Analysis and Implications
4.2. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cevik, M.; Kuppalli, K.; Kindrachuk, J.; Peiris, M. Virology, transmission, and pathogenesis of SARS-CoV-2. BMJ 2020, 371, m3862. [Google Scholar] [CrossRef] [PubMed]
- Murgolo, N.; Therien, A.G.; Howell, B.; Klein, D.; Koeplinger, K.; Lieberman, L.A.; Adam, G.C.; Flynn, J.; McKenna, P.; Swaminathan, G.; et al. SARS-CoV-2 tropism, entry, replication, and propagation: Considerations for drug discovery and development. PLoS Pathog. 2021, 17, e1009225. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. COVID-19 Epidemiological Update–19 January 2024. 2024. Available online: https://www.who.int/publications/m/item/covid-19-epidemiological-update---19-january-2024 (accessed on 6 November 2024).
- World Health Organization. COVID-19 Epidemiological Update–13 August 2024. 2024. Available online: https://www.who.int/publications/m/item/covid-19-epidemiological-update-edition-170 (accessed on 6 November 2024).
- National Institutes of Health. Clinical Spectrum of SARS-CoV-2 Infection. In COVID-19 Treatment Guidelines. Available online: https://www.ncbi.nlm.nih.gov/books/NBK570371/pdf/Bookshelf_NBK570371.pdf (accessed on 6 November 2024).
- Shen, T.; Wang, T. Metabolic Reprogramming in COVID-19. Int. J. Mol. Sci. 2021, 22, 11475. [Google Scholar] [CrossRef] [PubMed]
- Buergel, T.; Steinfeldt, J.; Ruyoga, G.; Pietzner, M.; Bizzarri, D.; Vojinovic, D.; zu Belzen, J.U.; Loock, L.; Kittner, P.; Christmann, L.; et al. Metabolomic profiles predict individual multidisease outcomes. Nat. Med. 2022, 28, 2309–2320. [Google Scholar] [CrossRef]
- Ahadi, S.; Zhou, W.; Rose, S.M.S.-F.; Sailani, M.R.; Contrepois, K.; Avina, M.; Ashland, M.; Brunet, A.; Snyder, M. Personal aging markers and ageotypes revealed by deep longitudinal profiling. Nat. Med. 2020, 26, 83–90. [Google Scholar] [CrossRef]
- Deelen, J.; Kettunen, J.; Fischer, K.; van der Spek, A.; Trompet, S.; Kastenmüller, G.; Boyd, A.; Zierer, J.; Akker, E.B.v.D.; Ala-Korpela, M.; et al. A metabolic profile of all-cause mortality risk identified in an observational study of 44,168 individuals. Nat. Commun. 2019, 10, 3346. [Google Scholar] [CrossRef]
- Lewis, H.-M.; Liu, Y.; Frampas, C.F.; Longman, K.; Spick, M.; Stewart, A.; Sinclair, E.; Kasar, N.; Greener, D.; Whetton, A.D.; et al. Metabolomics Markers of COVID-19 Are Dependent on Collection Wave. Metabolites 2022, 12, 713. [Google Scholar] [CrossRef]
- Lee, C.H.; Banoei, M.M.; Ansari, M.; Cheng, M.P.; Lamontagne, F.; Griesdale, D.; Lasry, D.E.; Demir, K.; Dhingra, V.; Tran, K.C.; et al. Using a targeted metabolomics approach to explore differences in ARDS associated with COVID-19 compared to ARDS caused by H1N1 influenza and bacterial pneumonia. Crit. Care 2024, 28, 63. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Xu, G.; Xie, Y.; Wang, X.; Wu, J.; Chen, H. Plasma metabolomic characterization of SARS-CoV-2 Omicron infection. Cell Death Dis. 2023, 14, 276. [Google Scholar] [CrossRef]
- Chen, W.; Yao, M.; Chen, M.; Ou, Z.; Yang, Q.; He, Y.; Zhang, N.; Deng, M.; Wu, Y.; Chen, R.; et al. Using an untargeted metabolomics approach to analyze serum metabolites in COVID-19 patients with nucleic acid turning negative. Front. Pharmacol. 2022, 13, 964037. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. Prisma Extension for Scoping Reviews (Prisma-Scr): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Correia, B.S.; Ferreira, V.G.; Piagge, P.M.; Almeida, M.B.; Assunção, N.A.; Raimundo, J.R.; Fonseca, F.L.; Carrilho, E.; Cardoso, D.R. 1H qNMR-Based Metabolomics Discrimination of COVID-19 Severity. J. Proteome Res. 2022, 21, 1640–1653. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Van Oostdam, A.S.; Castañeda-Delgado, J.E.; Oropeza-Valdez, J.J.; Borrego, J.C.; Monárrez-Espino, J.; Zheng, J.; Mandal, R.; Zhang, L.; Soto-Guzmán, E.; Fernández-Ruiz, J.C. Immunometabolic signatures predict risk of progression to sepsis in COVID-19. PLoS ONE 2021, 16, e0256784. [Google Scholar] [CrossRef] [PubMed]
- Occelli, C.; Guigonis, J.-M.; Lindenthal, S.; Cagnard, A.; Graslin, F.; Brglez, V.; Seitz-Polski, B.; Dellamonica, J.; Levraut, J.; Pourcher, T. Untargeted plasma metabolomic fingerprinting highlights several biomarkers for the diagnosis and prognosis of coronavirus disease 19. Front. Med. 2022, 9, 995069. [Google Scholar] [CrossRef] [PubMed]
- Páez-Franco, J.C.; Maravillas-Montero, J.L.; Mejía-Domínguez, N.R.; Torres-Ruiz, J.; Tamez-Torres, K.M.; Pérez-Fragoso, A.; Germán-Acacio, J.M.; Ponce-De-León, A.; Gómez-Martín, D.; Ulloa-Aguirre, A. Metabolomics analysis identifies glutamic acid and cystine imbalances in COVID-19 patients without comorbid conditions. Implications on redox homeostasis and COVID-19 pathophysiology. PLoS ONE 2022, 17, e0274910. [Google Scholar] [CrossRef]
- Rahnavard, A.; Mann, B.; Giri, A.; Chatterjee, R.; Crandall, K.A. Metabolite, protein, and tissue dysfunction associated with COVID-19 disease severity. Sci. Rep. 2022, 12, 12204. [Google Scholar] [CrossRef]
- Páez-Franco, J.C.; Torres-Ruiz, J.; Sosa-Hernández, V.A.; Cervantes-Díaz, R.; Romero-Ramírez, S.; Pérez-Fragoso, A.; Meza-Sánchez, D.E.; Germán-Acacio, J.M.; Maravillas-Montero, J.L.; Mejía-Domínguez, N.R. Metabolomics analysis reveals a modified amino acid metabolism that correlates with altered oxygen homeostasis in COVID-19 patients. Sci. Rep. 2021, 11, 6350. [Google Scholar] [CrossRef]
- Martínez-Gómez, L.E.; Ibarra-González, I.; Fernández-Lainez, C.; Tusie, T.; Moreno-Macías, H.; Martinez-Armenta, C.; Jimenez-Gutierrez, G.E.; Vázquez-Cárdenas, P.; Vidal-Vázquez, P.; Ramírez-Hinojosa, J.P. Metabolic Reprogramming in SARS-CoV-2 Infection Impacts the Outcome of COVID-19 Patients. Front. Immunol. 2022, 13, 936106. [Google Scholar] [CrossRef]
- Caterino, M.; Costanzo, M.; Fedele, R.; Cevenini, A.; Gelzo, M.; Di Minno, A.; Andolfo, I.; Capasso, M.; Russo, R.; Annunziata, A.; et al. The Serum Metabolome of Moderate and Severe COVID-19 Patients Reflects Possible Liver Alterations Involving Carbon and Nitrogen Metabolism. Int. J. Mol. Sci. 2021, 22, 9548. [Google Scholar] [CrossRef]
- Ceperuelo-Mallafré, V.; Reverté, L.; Peraire, J.; Madeira, A.; Maymó-Masip, E.; López-Dupla, M.; Gutierrez-Valencia, A.; Ruiz-Mateos, E.; Buzón, M.J.; Jorba, R.; et al. Circulating pyruvate is a potent prognostic marker for critical COVID-19 outcomes. Front. Immunol. 2022, 13, 912579. [Google Scholar] [CrossRef]
- D’Amora, P.; Silva, I.D.C.G.; Budib, M.A.; Ayache, R.; Silva, R.M.S.; Silva, F.C.; Appel, R.M.; Júnior, S.S.; Pontes, H.B.; Alvarenga, A.C. Towards risk stratification and prediction of disease severity and mortality in COVID-19: Next generation metabolomics for the measurement of host response to COVID-19 infection. PLoS ONE 2021, 16, e0259909. [Google Scholar] [CrossRef] [PubMed]
- Villagrana-Bañuelos, K.E.; Maeda-Gutiérrez, V.; Alcalá-Rmz, V.; Oropeza-Valdez, J.J.; Oostdam, A.S.H.-V.; Castañeda-Delgado, J.E.; López, J.A.; Moreno, J.C.B.; Galván-Tejada, C.E.; Galván-Tejeda, J.I.; et al. COVID-19 outcome prediction by integrating clinical and metabolic data using machine learning algorithms. Rev. Investig. Clin. 2022, 74, 314–327. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Wishart, D.S. MetPA: A web-based metabolomics tool for pathway analysis and visualization. Bioinformatics 2010, 26, 2342–2344. [Google Scholar] [CrossRef] [PubMed]
- Karu, N.; Kindt, A.; van Gammeren, A.J.; Ermens, A.A.M.; Harms, A.C.; Portengen, L.; Vermeulen, R.C.H.; Dik, W.A.; Langerak, A.W.; van der Velden, V.H.J.; et al. Severe COVID-19 Is Characterised by Perturbations in Plasma Amines Correlated with Immune Response Markers, and Linked to Inflammation and Oxidative Stress. Metabolites 2022, 12, 618. [Google Scholar] [CrossRef] [PubMed]
- Ansone, L.; Briviba, M.; Silamikelis, I.; Terentjeva, A.; Perkons, I.; Birzniece, L.; Rovite, V.; Rozentale, B.; Viksna, L.; Kolesova, O.; et al. Amino Acid Metabolism is Significantly Altered at the Time of Admission in Hospital for Severe COVID-19 Patients: Findings from Longitudinal Targeted Metabolomics Analysis. Microbiol. Spectr. 2021, 9, e0033821. [Google Scholar] [CrossRef]
- Ripon, A.R.; Bhowmik, D.R.; Amin, M.T.; Hossain, M.S. Role of arachidonic cascade in COVID-19 infection: A review. Prostaglandins Other Lipid Mediat. 2021, 154, 106539. [Google Scholar] [CrossRef]
- Hoxha, M. What about COVID-19 and arachidonic acid pathway? Eur. J. Clin. Pharmacol. 2020, 76, 1501–1504. [Google Scholar] [CrossRef]
- Barberis, E.; Timo, S.; Amede, E.; Vanella, V.V.; Puricelli, C.; Cappellano, G.; Raineri, D.; Cittone, M.G.; Rizzi, E.; Pedrinelli, A.R. Large-Scale Plasma Analysis Revealed New Mechanisms and Molecules Associated with the Host Response to SARS-CoV-2. Int. J. Mol. Sci. 2020, 21, 8623. [Google Scholar] [CrossRef]
- Mateos-Islas, M.; Ventura-Pérez, P.; Ariza-Ortega, J.A. Ácidos grasos de cadena corta y media como precursores para inhibir los síntomas del coronavirus. Educ. Salud Boletín Científico Inst. Cienc. Salud Univ. Autónoma Del Estado Hidalgo 2021, 9, 224–231. [Google Scholar] [CrossRef]
- Cecchini, R.; Cecchini, A.L. SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression. Med. Hypotheses 2020, 143, 110102. [Google Scholar] [CrossRef]
- World Health Organization. Clinical Management of COVID-19: Interim Guidance; Report No.: WHO/2019-nCoV/clinical/2020.5; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- López-Hernández, Y.; Monárrez-Espino, J.; Oostdam, A.-S.H.-V.; Delgado, J.E.C.; Zhang, L.; Zheng, J.; Valdez, J.J.O.; Mandal, R.; González, F.d.L.O.; Moreno, J.C.B.; et al. Targeted metabolomics identifies high performing diagnostic and prognostic biomarkers for COVID-19. Sci. Rep. 2021, 11, 14732. [Google Scholar] [CrossRef] [PubMed]
- Baiges-Gaya, G.; Iftimie, S.; Castañé, H.; Rodríguez-Tomàs, E.; Jiménez-Franco, A.; López-Azcona, A.F.; Castro, A.; Camps, J.; Joven, J. Combining Semi-Targeted Metabolomics and Machine Learning to Identify Metabolic Alterations in the Serum and Urine of Hospitalized Patients with COVID-19. Biomolecules 2023, 13, 163. [Google Scholar] [CrossRef] [PubMed]
- Sindelar, M.; Stancliffe, E.; Schwaiger-Haber, M.; Anbukumar, D.S.; Adkins-Travis, K.; Goss, C.W.; O’halloran, J.A.; Mudd, P.A.; Liu, W.-C.; Albrecht, R.A.; et al. Longitudinal metabolomics of human plasma reveals prognostic markers of COVID-19 disease severity. Cell Rep. Med. 2021, 2, 100369. [Google Scholar] [CrossRef]
- Liu, J.; Li, Z.-B.; Lu, Q.-Q.; Yu, Y.; Zhang, S.-Q.; Ke, P.-F.; Zhang, F.; Li, J.-C. Metabolite profile of COVID-19 revealed by UPLC-MS/MS-based widely targeted metabolomics. Front. Immunol. 2022, 13, 894170. [Google Scholar] [CrossRef]
- Grassin-Delyle, S.; Roquencourt, C.; Moine, P.; Saffroy, G.; Carn, S.; Heming, N.; Fleuriet, J.; Salvator, H.; Naline, E.; Couderc, L.-J.; et al. Metabolomics of exhaled breath in critically ill COVID-19 patients: A pilot study. EBioMedicine 2021, 63, 103154. [Google Scholar] [CrossRef]
- Ivanisenko, V.A.; Gaisler, E.V.; Basov, N.V.; Rogachev, A.D.; Cheresiz, S.V.; Ivanisenko, T.V.; Demenkov, P.S.; Mishchenko, E.L.; Khripko, O.P.; Khripko, Y.I. Plasma metabolomics and gene regulatory networks analysis reveal the role of nonstructural SARS-CoV-2 viral proteins in metabolic dysregulation in COVID-19 patients. Sci. Rep. 2022, 12, 19977. [Google Scholar] [CrossRef]
- Yang, J.; Chen, C.; Chen, W.; Huang, L.; Fu, Z.; Ye, K.; Lv, L.; Nong, Z.; Zhou, X.; Lu, W.; et al. Proteomics and metabonomics analyses of Covid-19 complications in patients with pulmonary fibrosis. Sci. Rep. 2021, 11, 14601. [Google Scholar] [CrossRef]
- Roberts, I.; Muelas, M.W.; Taylor, J.M.; Davison, A.S.; Xu, Y.; Grixti, J.M.; Gotts, N.; Sorokin, A.; Goodacre, R.; Kell, D.B. Untargeted metabolomics of COVID-19 patient serum reveals potential prognostic markers of both severity and outcome. Metabolomics 2022, 18, 6. [Google Scholar] [CrossRef]
- Frampas, C.F.; Longman, K.; Spick, M.; Lewis, H.-M.; Costa, C.D.S.; Stewart, A.; Dunn-Walters, D.; Greener, D.; Evetts, G.; Skene, D.J. Untargeted saliva metabolomics by liquid chromatography—Mass spectrometry reveals markers of COVID-19 severity. PLoS ONE 2022, 17, e0274967. [Google Scholar] [CrossRef]
- Dewulf, J.P.; Martin, M.; Marie, S.; Oguz, F.; Belkhir, L.; De Greef, J.; Yombi, J.C.; Wittebole, X.; Laterre, P.F.; Jadoul, M. Urine metabolomics links dysregulation of the tryptophan-kynurenine pathway to inflammation and severity of COVID-19. Sci. Rep. 2022, 12, 9959. [Google Scholar] [CrossRef]
- D’alessandro, A.; Thomas, T.; Akpan, I.J.; Reisz, J.A.; Cendali, F.I.; Gamboni, F.; Nemkov, T.; Thangaraju, K.; Katneni, U.; Tanaka, K.; et al. Biological and Clinical Factors contributing to the Metabolic Heterogeneity of Hospitalized Patients with and without COVID-19. Cells 2021, 10, 2293. [Google Scholar] [CrossRef] [PubMed]
- Saccon, E.; Bandera, A.; Sciumè, M.; Mikaeloff, F.; Lashari, A.A.; Aliberti, S.; Sachs, M.C.; Billi, F.; Blasi, F.; Gabriel, E.E.; et al. Distinct Metabolic Profile Associated with a Fatal Outcome in COVID-19 Patients during the Early Epidemic in Italy. Microbiol. Spectr. 2021, 9, e0054921. [Google Scholar] [CrossRef] [PubMed]
- Stutz, M.R.; Dylla, N.P.; Pearson, S.D.; Lecompte-Osorio, P.; Nayak, R.; Khalid, M.; Adler, E.; Boissiere, J.; Lin, H.; Leiter, W.; et al. Immunomodulatory fecal metabolites are associated with mortality in COVID-19 patients with respiratory failure. Nat. Commun. 2022, 13, 6615. [Google Scholar] [CrossRef] [PubMed]
- Buyukozkan, M.; Alvarez-Mulett, S.; Racanelli, A.C.; Schmidt, F.; Batra, R.; Hoffman, K.L.; Sarwath, H.; Engelke, R.; Gomez-Escobar, L.; Simmons, W.; et al. Integrative metabolomic and proteomic signatures define clinical outcomes in severe COVID-19. iScience 2022, 25, 104612. [Google Scholar] [CrossRef]
- Ceballos, F.C.; Virseda-Berdices, A.; Resino, S.; Ryan, P.; Martínez-González, O.; Peréz-García, F.; Martin-Vicente, M.; Brochado-Kith, O.; Blancas, R.; Bartolome-Sánchez, S.; et al. Metabolic Profiling at COVID-19 Onset Shows Disease Severity and Sex-Specific Dysregulation. Front. Immunol. 2022, 13, 925558. [Google Scholar] [CrossRef]
- Marín-Corral, J.; Rodríguez-Morató, J.; Gomez-Gomez, A.; Pascual-Guardia, S.; Muñoz-Bermúdez, R.; Salazar-Degracia, A.; Pérez-Terán, P.; Restrepo, M.I.; Khymenets, O.; Haro, N.; et al. Metabolic Signatures Associated with Severity in Hospitalized COVID-19 Patients. Int. J. Mol. Sci. 2021, 22, 4794. [Google Scholar] [CrossRef]
- Elrayess, M.A.; Cyprian, F.S.; Abdallah, A.M.; Emara, M.M.; Diboun, I.; Anwardeen, N.; Schuchardt, S.; Yassine, H.M. Metabolic Signatures of Type 2 Diabetes Mellitus and Hypertension in COVID-19 Patients With Different Disease Severity. Front. Med. 2022, 8, 788687. [Google Scholar] [CrossRef]
- Oliveira, L.B.; Mwangi, V.I.; Sartim, M.A.; Delafiori, J.; Sales, G.M.; De Oliveira, A.N.; Busanello, E.N.; Val, F.F.; Xavier, M.S.; Costa, F.T. Metabolomic Profiling of Plasma Reveals Differential Disease Severity Markers in COVID-19 Patients. Front. Microbiol. 2022, 13, 844283. [Google Scholar] [CrossRef]
- Lorente, J.A.; Nin, N.; Villa, P.; Vasco, D.; Miguel-Coello, A.B.; Rodriguez, I.; Herrero, R.; Peñuelas, O.; Ruiz-Cabello, J.; Izquierdo-Garcia, J.L. Metabolomic diferences between COVID-19 and H1N1 influenza induced ARDS. Crit. Care 2021, 25, 390. [Google Scholar] [CrossRef]
- Costantini, S.; Madonna, G.; Di Gennaro, E.; Capone, F.; Bagnara, P.; Capone, M.; Sale, S.; Nicastro, C.; Atripaldi, L.; Fiorentino, G.; et al. New Insights into the Identification of Metabolites and Cytokines Predictive of Outcome for Patients with Severe SARS-CoV-2 Infection Showed Similarity with Cancer. Int. J. Mol. Sci. 2023, 24, 4922. [Google Scholar] [CrossRef]
- More, T.H.; Mozafari, B.; Märtens, A.; Herr, C.; Lepper, P.M.; Danziger, G.; Volk, T.; Hoersch, S.; Krawczyk, M.; Guenther, K.; et al. Plasma Metabolome Alterations Discriminate between COVID-19 and Non-COVID-19 Pneumonia. Metabolites 2022, 12, 1058. [Google Scholar] [CrossRef] [PubMed]
- Taleb, S.; Yassine, H.M.; Benslimane, F.M.; Smatti, M.K.; Schuchardt, S.; Albagha, O.; Al-Thani, A.A.; Hssain, A.A.; Diboun, I.; Elrayess, M.A. Predictive Biomarkers of Intensive Care Unit and Mechanical Ventilation Duration in Critically-Ill Coronavirus Disease 2019 Patients. Front. Med. 2021, 8, 733657. [Google Scholar] [CrossRef] [PubMed]
- Ghini, V.; Meoni, G.; Pelagatti, L.; Celli, T.; Veneziani, F.; Petrucci, F.; Vannucchi, V.; Bertini, L.; Luchinat, C.; Landini, G.; et al. Profiling metabolites and lipoproteins in COMETA, an Italian cohort of COVID-19 patients. PLoS Pathog. 2022, 18, e1010443. [Google Scholar] [CrossRef] [PubMed]
- Baranovicova, E.; Bobcakova, A.; Vysehradsky, R.; Dankova, Z.; Halasova, E.; Nosal, V.; Lehotsky, J. The Ability to Normalise Energy Metabolism in Advanced COVID-19 Disease Seems to Be One of the Key Factors Determining the Disease Progression—A Metabolomic NMR Study on Blood Plasma. Appl. Sci. 2021, 11, 4231. [Google Scholar] [CrossRef]
- Batra, R.; Uni, R.; Akchurin, O.M.; Alvarez-Mulett, S.; Gómez-Escobar, L.G.; Patino, E.; Hoffman, K.L.; Simmons, W.; Whalen, W.; Chetnik, K.; et al. Urine-based multi-omic comparative analysis of COVID-19 and bacterial sepsis-induced ARDS. Mol. Med. 2023, 29, 13. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pimentel, E.; Banoei, M.M.; Kaur, J.; Lee, C.H.; Winston, B.W. Metabolomic Insights into COVID-19 Severity: A Scoping Review. Metabolites 2024, 14, 617. https://doi.org/10.3390/metabo14110617
Pimentel E, Banoei MM, Kaur J, Lee CH, Winston BW. Metabolomic Insights into COVID-19 Severity: A Scoping Review. Metabolites. 2024; 14(11):617. https://doi.org/10.3390/metabo14110617
Chicago/Turabian StylePimentel, Eric, Mohammad Mehdi Banoei, Jasnoor Kaur, Chel Hee Lee, and Brent W. Winston. 2024. "Metabolomic Insights into COVID-19 Severity: A Scoping Review" Metabolites 14, no. 11: 617. https://doi.org/10.3390/metabo14110617
APA StylePimentel, E., Banoei, M. M., Kaur, J., Lee, C. H., & Winston, B. W. (2024). Metabolomic Insights into COVID-19 Severity: A Scoping Review. Metabolites, 14(11), 617. https://doi.org/10.3390/metabo14110617