A Comprehensive LC–MS Metabolomics Assay for Quantitative Analysis of Serum and Plasma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Reagents, and Materials
2.2. Stock Solutions, Internal Standard (ISTD) Mixtures, and Calibration Curve Standards
2.3. Liquid Chromatography/Direct Flow Injection–Tandem Mass Spectrometry (LC/DFI–MS/MS) Analysis Using the MEGA Assay
2.3.1. Sample Preparations
2.3.2. LC/DFI–MS/MS Analysis
2.4. Method Validation
2.4.1. Calibration Regression
2.4.2. Accuracy and Precision
2.4.3. Recovery
2.4.4. Limits of Detection and Quantification
2.5. High-Resolution NMR Analysis of NIST® SRM® 1950
2.6. Analysis of Plasma Samples Acquired During a Dietary Intervention Study of Mild Cognitive Impairment (MCI)
2.6.1. Dietary Intervention Plasma Samples
2.6.2. Data Analysis
3. Results and Discussion
3.1. Liquid Chromatography
3.2. Assay Validation
3.3. Orthogonal Validation on NIST® SRM® 1950 by NMR
3.4. Application to a Dietary Intervention Study
3.5. Method Comparison
3.6. Platform Compatibility
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gika, H.; Virgiliou, C.; Theodoridis, G.; Plumb, R.S.; Wilson, I.D. Untargeted LC/MS-based metabolic phenotyping (metabonomics/metabolomics): The state of the art. J. Chromatogr. B 2019, 1117, 136. [Google Scholar] [CrossRef] [PubMed]
- Roberts, L.D.; Souza, A.L.; Gerszten, R.E.; Clish, C.B. Targeted metabolomics. Curr. Protoc. Mol. Biol. 2012, 98, 30.2.1–30.2.24. [Google Scholar] [CrossRef] [PubMed]
- Tautenhahn, R.; Patti, G.J.; Rinehart, D.; Siuzdak, G. XCMS online: A web-based platform to process untargeted metabolomic data. Anal. Chem. 2012, 84, 5035–5039. [Google Scholar] [CrossRef] [PubMed]
- Guijas, C.; Montenegro-Burke, R.; Domingo-Almenara, X.; Palermo, A.; Warth, B.; Hemann, G.; Koellensperger, G.; Huan, T.; Uritboonthai, W.; Aisporna, A.; et al. METLIN: A technology platform for identifying knowns and unknowns. Anal. Chem. 2018, 90, 3156–3164. [Google Scholar] [CrossRef] [PubMed]
- Schrimpe-Rutledge, A.C.; Codreanu, S.G.; Sherrod, S.D.; McLean, J.A. Untargeted metabolomics strategies—Challenges and emerging directions. J. Am. Soc. Mass. Spectrom. 2016, 27, 1897–1905. [Google Scholar] [CrossRef]
- Zhang, L.; Zheng, J.; Ahmed, R.; Huang, G.; Reid, J.; Mandal, R.; Maksymuik, A.; Sitar, D.S.; Tappia, P.S.; Ramjiawan, B.; et al. A high-performing plasma metabolite panel for early-stage lung cancer detection. Cancers 2020, 12, 622. [Google Scholar] [CrossRef]
- Gowda, G.A.N.; Zhang, S.; Gu, H.; Asiago, V.; Shanaiah, N.; Raftery, D. Metabolomics-based methods for early disease diagnostics. Expert. Rev. Mol. Diagn. 2008, 8, 617–633. [Google Scholar] [CrossRef]
- Pang, H.; Hu, Z. Metabolomics in drug research and development: The recent advances in technologies and applications. Acta Pharm. Sin. B 2023, 13, 3238–3251. [Google Scholar] [CrossRef]
- Bedia, C. Metabolomics in environmental toxicology: Applications and challenges. Trends Environ. Anal. Chem. 2022, 34, e00161. [Google Scholar] [CrossRef]
- Rout, M.; Lipfert, M.; Lee, B.L.; Berjanskii, M.; Assempour, N.; Fresno, R.V.; Cayuela, A.S.; Dong, Y.; Johnson, M.; Shahin, H.; et al. MagMet: A fully automated web server for targeted nuclear magnetic resonance metabolomics of plasma and serum. Magn. Reson. Chem. 2023, 61, 681–704. [Google Scholar] [CrossRef]
- Ravanbakhsh, S.; Liu, P.; Bjordahl, T.C.; Mandal, R.; Grant, J.R.; Wilson, M.; Eisner, R.; Sinelnikov, I.; Hu, X.; Luchinat, C.; et al. Accurate, fully-automated NMR spectral profiling for metabolomics. PLoS ONE 2015, 10, e0124219. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.L.; Rout, M.; Mandal, R.; Wishart, D.S. Automated identification and quantification of metabolites in human fecal extracts by nuclear magnetic resonance spectroscopy. Magn. Reson. Chem. 2023, 61, 705–717. [Google Scholar] [CrossRef]
- Lee, B.L.; Rout, M.; Dong, Y.; Lipfert, M.; Berjanskii, M.; Shahin, F.; Bhattacharyya, D.; Selim, A.; Mandal, R.; Wishart, D.S. Automatic chemical profiling of wine by proton nuclear magnetic resonance spectroscopy. ACS Food Sci. Technol. 2024, 4, 1937–1949. [Google Scholar] [CrossRef] [PubMed]
- Bruker FoodScreener (NMR)|Bruker. Available online: https://www.bruker.com/en/products-and-solutions/mr/nmr-food-solutions/food-screener.html (accessed on 22 September 2021).
- Julkunen, H.; Cichońska, A.; Tiainen, M.; Koskela, H.; Nybo, K.; Mäkelä, V.; Nokso-Koivisto, J.; Kristiansson, K.; Perola, M.; Salomaa, V.; et al. Atlas of plasma NMR biomarkers for health and disease in 118,461 individuals from the UK Biobank. Nat. Commun. 2023, 14, 604. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, L.; Johnson, M.; Mandal, R.; Wishart, D.S. Comprehensive targeted metabolomic assay for urine analysis. Anal. Chem. 2020, 92, 10627–10634. [Google Scholar] [CrossRef] [PubMed]
- Wei, R.; Li, G.; Seymour, A.B. High-throughput and multiplexed LC/MS/MRM method for targeted metabolomics. Anal. Chem. 2010, 82, 5527–5533. [Google Scholar] [CrossRef]
- Thompson, J.W.; Adams, K.J.; Adamski, J.; Asad, Y.; Borts, D.; Bowden, J.A.; Byram, G.; Dang, V.; Dunn, W.B.; Fernandez, F.; et al. International ring trial of a high resolution targeted metabolomics and lipidomics platform for serum and plasma analysis. Anal. Chem. 2019, 91, 14407–14416. [Google Scholar] [CrossRef]
- McMillen, T.S.; Leslie, A.; Chisholm, K.; Penny, S.; Gallant, J.; Cohen, A.; Drucker, A.; Fawcett, J.P.; Pinto, D.M. A large-scale, targeted metabolomics method for the analysis and quantification of metabolites in human plasma via liquid chromatography-mass spectrometry. Anal. Chim. Acta 2023, 1279, 341791. [Google Scholar] [CrossRef]
- Xie, G.; Wang, L.; Chen, T.; Zhou, K.; Zhang, Z.; Li, J.; Sun, B.; Guo, Y.; Wang, X.; Wang, Y.; et al. A metabolite array technology for precision medicine. Anal. Chem. 2021, 93, 5709–5717. [Google Scholar] [CrossRef]
- Khaniani, Y.; Lipfert, M.; Bhattacharyya, D.; Perez Pineiro, R.; Zheng, J.; Wishart, D. A simple and convenient synthesis of unlabeled and 13C-labeled 3-(3-hydroxyphenyl)-3-hydroxypropionic acid and its quantification in human urine samples. Metabolites 2018, 8, 80. [Google Scholar] [CrossRef]
- Wishart, D.S.; Guo, A.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, B.L.; et al. HMDB 5.0: The Human Metabolome Database for 2022. Nucleic. Acids. Res. 2022, 50, D622–D631. [Google Scholar] [CrossRef] [PubMed]
- Psychogios, N.; Hau, D.D.; Peng, J.; Guo, A.C.; Mandal, R.; Bouatra, S.; Sinelnikov, I.; Krishnamurthy, R.; Eisner, R.; Gautam, B.; et al. The human serum metabolome. PLoS ONE 2011, 6, e16957. [Google Scholar] [CrossRef] [PubMed]
- Saude, E.J.; Slupsky, C.M.; Sykes, B.D. Optimization of NMR analysis of biological fluids for quantitative accuracy. Metabolomics 2006, 2, 113–123. [Google Scholar] [CrossRef]
- Voehler, M.W.; Collier, G.; Young, J.K.; Stone, M.P.; Germann, M.W. Performance of cryogenic probes as a function of ionic strength and sample tube geometry. J. Magn. Reson. 2006, 183, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Cardelo, M.P.; Corina, A.; Leon-Acuña, A.; Quintana-Navarro, G.M.; Alcala-Diaz, J.F.; Rangel-Zuñiga, O.A.; Camargo, A.; Conde-Gavilan, C.; Carmona-Medialdea, C.; Vallejo-Casas, J.A.; et al. Effect of the Mediterranean diet and probiotic supplementation in the management of mild cognitive impairment: Rationale, methods, and baseline characteristics. Front. Nutr. 2022, 9, 1037842. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.r-project.org/ (accessed on 17 October 2024).
- Gonzalez, C.; Choquette, S. Certificate of Analysis Standard Reference Material 1950 Metabolites in Frozen Human Plasma; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2020. [Google Scholar]
- Vignoli, A.; Tenori, L.; Morsiani, C.; Turano, P.; Capri, M.; Luchinat, C. Serum or plasma (and which plasma), that is the question. J. Proteome Res. 2022, 21, 1061–1072. [Google Scholar] [CrossRef]
- Yin, F. Lipid metabolism and Alzheimer’s disease: Clinical evidence, mechanistic link and therapeutic promise. FEBS J. 2023, 290, 1420–1453. [Google Scholar] [CrossRef]
- Gustafson, D.R.; Bäckman, K.; Scarmeas, N.; Stern, Y.; Manly, J.J.; Mayeux, R.; Gu, Y. Dietary fatty acids and risk of Alzheimer’s disease and related dementias: Observations from the Washington Heights-Hamilton Heights-Inwood Columbia Aging Project (WHICAP). Alzheimers Dement. 2020, 16, 1638–1649. [Google Scholar] [CrossRef]
- Petersson, S.D.; Philippou, E. Mediterranean diet, cognitive function, and dementia: A systematic review of the evidence. Adv. Nutr. 2016, 7, 889–904. [Google Scholar] [CrossRef]
- Fu, J.; Tan, L.J.; Lee, J.E.; Shin, S. Association between the Mediterranean diet and cognitive health among healthy adults: A systematic review and meta-analysis. Front. Nutr. 2022, 9, 946361. [Google Scholar] [CrossRef]
- Gómez, C.; Stücheli, S.; Kratschmar, D.V.; Bouitbir, J.; Odermatt, A. Development and validation of a highly sensitive LC-MS/MS method for the analysis of bile acids in serum, plasma, and liver tissue samples. Metabolites 2020, 10, 282. [Google Scholar] [CrossRef] [PubMed]
- Häkkinen, M.R.; Heinosalo, T.; Saarinen, N.; Linnanen, T.; Voutilainen, R.; Lakka, T.; Jääskeläinen, J.; Poutanen, M.; Auriola, S. Analysis by LC–MS/MS of endogenous steroids from human serum, plasma, endometrium and endometriotic tissue. J. Pharm. Biomed. Anal. 2018, 152, 165. [Google Scholar] [CrossRef] [PubMed]
- Adams, K.J.; Pratt, B.; Bose, N.; Dubois, L.G.; St. John-Williams, L.; Perrott, K.M.; Ky, K.; Kapahi, P.; Sharma, V.; Maccoss, M.J.; et al. Skyline for small molecules: A unifying software package for quantitative metabolomics. J. Proteome Res. 2020, 19, 1447–1458. [Google Scholar] [CrossRef] [PubMed]
Analyte | Correlation Coefficient (R2) | LOD (μM) | LOQ (μM) |
---|---|---|---|
Creatinine Tryptophan | 0.9993 | 0.327 | 1.09 |
0.9998 | 0.0340 | 0.113 | |
Epinephrine Valine | 0.9997 | 0.0100 | 0.0334 |
0.9989 | 0.295 | 0.982 | |
2-Hydroxybutyric acid Succinic acid Lactic acid N-Acetyl-proline | 0.9993 | 0.115 | 0.384 |
0.9997 | 0.167 | 0.556 | |
0.9992 | 2.00 | 6.66 | |
0.9982 | 0.0131 | 0.0437 |
Analyte | Intra-day | Inter-day | |||
---|---|---|---|---|---|
Fortified concentration (μM) | Accuracy (%) | CV (%) | Accuracy (%) | CV (%) | |
Creatinine | 80.0 | 104 | 2.26 | 106 | 3.72 |
320 | 106 | 4.02 | 111 | 5.72 | |
640 | 105 | 0.223 | 105 | 4.60 | |
Tryptophan | 40.0 | 102 | 2.43 | 99.8 | 3.07 |
160 | 102 | 1.49 | 101 | 4.51 | |
320 | 111 | 4.79 | 104 | 6.83 | |
Epinephrine | 0.800 | 114 | 1.00 | 111 | 2.39 |
3.20 | 105 | 0.983 | 104 | 7.21 | |
6.40 | 94.0 | 2.48 | 96.4 | 9.82 | |
Valine | 80.0 | 97.5 | 2.53 | 100 | 2.54 |
320 | 99.7 | 1.60 | 101 | 2.76 | |
640 | 113 | 3.92 | 108 | 4.53 | |
2-Hydroxybutyric acid | 16.0 | 99.1 | 1.98 | 96.9 | 2.34 |
64.0 | 97.4 | 2.74 | 94.8 | 6.02 | |
128 | 103 | 1.24 | 101 | 4.75 | |
Succinic acid | 8.00 | 99.0 | 1.13 | 102 | 2.74 |
32.0 | 97.8 | 0.332 | 97.5 | 4.77 | |
64.0 | 104 | 1.43 | 106 | 1.98 | |
Lactic acid | 800 | 104 | 3.23 | 100 | 4.78 |
3200 | 98.9 | 3.87 | 95.2 | 4.11 | |
6400 | 106 | 1.68 | 103 | 2.18 | |
N-Acetyl-proline | 0.500 | 90.4 | 1.06 | 91.4 | 3.10 |
2.00 | 91.7 | 1.28 | 90.6 | 4.79 | |
4.00 | 97.9 | 1.64 | 99.5 | 1.88 |
Analyte | Spiked Concentration (μM) | Calculated Concentration (μM) | Recovery (%) |
---|---|---|---|
Creatinine | 10.0 | 10.9 | 109 |
100 | 110 | 110 | |
300 | 336 | 112 | |
Tryptophan | 5.00 | 5.30 | 106 |
50.0 | 52.5 | 105 | |
150 | 153 | 102 | |
Epinephrine | 0.100 | 0.0836 | 83.6 |
1.00 | 0.864 | 86.4 | |
3.00 | 2.50 | 83.4 | |
Valine | 10.0 | 11.8 | 118 |
100 | 107 | 107 | |
300 | 321 | 107 | |
2-Hydroxybutyric acid | 2.00 | 1.79 | 89.6 |
20.0 | 18.6 | 93.1 | |
60.0 | 53.5 | 89.1 | |
Succinic acid | 1.00 | 0.934 | 93.4 |
10.0 | 9.63 | 96.3 | |
30.0 | 27.3 | 90.9 | |
Lactic acid | 100 | 92.9 | 92.9 |
1000 | 954 | 95.4 | |
3000 | 2757 | 91.9 | |
N-Acetyl-proline | 0.0625 | 0.0603 | 96.5 |
0.625 | 0.579 | 92.6 | |
1.88 | 1.84 | 98.0 |
Analyte | Accuracy (%) | CV (%) | Recovery (%) | LOD (μM) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Low | Mid | High | Low | Mid | High | Low | Mid | High | ||
Carnitine (C0) | 101 | 104 | 90.6 | 13.0 | 7.82 | 1.25 | 97.3 | 109 | 106 | 0.222 |
Hexose | 99.1 | 100 | 101 | 1.88 | 0.961 | 3.92 | 103 | 97.2 | 105 | 22.5 |
CE(17:0) | 98.9 | 97.0 | 98.3 | 6.91 | 9.79 | 6.76 | 110 | 108 | 94.5 | 0.126 |
Cer(d18:1/18:0) | 112 | 114 | 120 | 3.23 | 2.20 | 4.51 | 96.3 | 91.2 | 97.2 | 0.0104 |
DG(18:1/18:1) | 111 | 111 | 112 | 4.99 | 4.47 | 5.63 | 88.2 | 89.1 | 87.3 | 0.0356 |
TG(18:1/36:2) | 98.7 | 94.7 | 110 | 4.08 | 7.45 | 10.8 | 89.3 | 86.3 | 92.4 | 0.0334 |
LacCer(d18:1/18:0) | 105 | 106 | 110 | 4.14 | 3.60 | 1.61 | 109 | 116 | 102 | 0.0104 |
LysoPC a C18:0 | 99.3 | 93.9 | 93.9 | 3.34 | 2.55 | 2.99 | 92.5 | 98.3 | 91.2 | 0.0532 |
SM C18:0 | 105 | 97.4 | 101 | 3.39 | 5.00 | 3.08 | 109 | 110 | 94.2 | 0.127 |
PC aa C36:0 | 101 | 104 | 105 | 4.50 | 1.63 | 2.34 | 92.3 | 107 | 96.2 | 0.159 |
Analyte | MEGA Assay (Average ± SD, µM) | NMR (µM) | NIST® SRM® 1950 COA (µM) |
---|---|---|---|
3-Hydroxybutyric acid | 128 ± 3.90 | 139 | / |
Acetylcarnitine | 7.20 ± 0.261 | 8.3 | / |
Alanine | 303 ± 14.5 | 299 | 300 ± 26.0 |
alpha-Aminobutyric acid | 13.3 ± 1.42 | 12.4 | / |
Arginine | 83.8 ± 3.45 | 77.1 | 81.4 ± 2.30 |
Asparagine | 31.2 ± 1.82 | 27.3 | / |
Aspartic acid | 8.55 ± 0.537 | 8.16 | / |
Betaine | 45.9 ± 3.58 | 46.0 | / |
Carnitine | 31.6 ± 2.22 | 32.5 | / |
Choline | 14.6 ± 0.938 | 12.9 | / |
Citrulline | 32.8 ± 3.51 | / | / |
Creatinine | 67.4 ± 1.43 | 58.8 | 60.0 ± 0.900 |
Hexose/Glucose | 4469 ± 101 | 4464.8 | 4560 ± 56.0 |
Glutamic acid | 62.5 ± 4.88 | 53.8 | / |
Glutamine | 464 ± 12.3 | 428 | / |
Glycine | 242 ± 7.11 | 248 | 245 ± 16.0 |
Histidine | 68.8 ± 3.42 | 65.8 | 72.6 ± 3.60 |
Hypoxanthine | 3.10 ± 0.143 | 2.83 | / |
Isoleucine | 55.1 ± 5.03 | 52.4 | 55.5 ± 3.40 |
Lactic acid | 2370 ± 108 | 2538 | / |
Leucine | 94.5 ± 7.41 | 103 | 100 ± 6.30 |
Lysine | 146 ± 3.19 | 148 | 140 ± 14.0 |
Methionine | 22.1 ± 1.18 | 20.4 | 22.3 ± 1.80 |
Ornithine | 59.3 ± 3.09 | 56.0 | / |
Phenylalanine | 53.7 ± 3.02 | 51.6 | 51.0 ± 7.00 |
Proline | 188 ± 5.82 | 178 | 177 ± 9.00 |
Pyruvic acid | 65.9 ± 4.88 | 72.8 | / |
Serine | 98.2 ± 3.77 | 86.1 | 95.9 ± 4.30 |
Succinic acid | 2.23 ± 0.154 | 2.1 | / |
Threonine | 118 ± 4.73 | 117 | 120 ± 6.10 |
Tyrosine | 55.1 ± 3.53 | 57.1 | 57.3 ± 3.00 |
Urea | 3780 ± 222 | / | 3900 ± 80.0 |
Uric acid | 244 ± 5.66 | / | 254 ± 5.00 |
Valine | 183 ± 2.33 | 178 | 182 ± 10.4 |
Metabolite | p-Value | Percent Change (%) | V1 Mean ± SD (µM) | V2 Mean ± SD (µM) |
---|---|---|---|---|
Cer(d18:2/22:0) | 0.0120 | −15.9 | 0.150 0.0727 | 0.126 0.0631 |
TG(18:3_32:0) | 0.0122 | −28.4 | 0.830 0.660 | 0.594 0.544 |
Cer(d18:2/24:0) | 0.0130 | −16.0 | 0.416 0.198 | 0.350 0.163 |
HexCer(d18:2/20:0) | 0.0137 | −28.3 | 0.0383 0.0223 | 0.0275 0.0194 |
TG(16:0_34:4) | 0.0243 | −18.3 | 0.656 0.526 | 0.536 0.483 |
beta-Alanine | 0.0259 | −12.5 | 1.57 0.431 | 1.37 0.449 |
HexCer(d18:2/22:0) | 0.0285 | −13.9 | 0.171 0.104 | 0.147 0.0809 |
TG(20:4_34:3) | 0.0303 | −24.6 | 0.633 0.496 | 0.477 0.395 |
TG(20:4_32:0) | 0.0307 | −34.9 | 0.881 0.921 | 0.573 0.692 |
PC aa C36:4 | 0.0317 | −12.9 | 202 102 | 176 60.1 |
TG(20:3_34:3) | 0.0351 | −18.4 | 0.331 0.280 | 0.270 0.239 |
PC ae C36:4 | 0.0396 | −11.5 | 15.0 5.04 | 13.3 4.11 |
LysoPC a C20:4 | 0.0401 | −20.3 | 4.50 3.48 | 3.59 1.71 |
PC aa C34:4 | 0.0409 | −23.7 | 1.36 0.710 | 1.03 0.475 |
PC aa C32:1 | 0.0446 | −15.2 | 19.8 8.15 | 16.8 5.44 |
TG(20:4_32:1) | 0.0452 | −20.9 | 1.02 0.834 | 0.810 1.03 |
TG(20:4_34:2) | 0.0459 | −20.9 | 4.11 3.79 | 3.25 3.05 |
PC aa C38:4 | 0.0471 | −9.25 | 11.4 4.19 | 9.72 3.80 |
PC aa C34:3 | 0.0482 | −14.4 | 11.4 4.19 | 9.72 3.80 |
TG(16:1_38:5) | 0.0493 | −17.2 | 0.504 0.347 | 0.418 0.292 |
TG(18:1_36:2) | 0.0494 | 22.4 | 96.7 64.0 | 118 52.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Zheng, J.; Johnson, M.; Mandal, R.; Cruz, M.; Martínez-Huélamo, M.; Andres-Lacueva, C.; Wishart, D.S. A Comprehensive LC–MS Metabolomics Assay for Quantitative Analysis of Serum and Plasma. Metabolites 2024, 14, 622. https://doi.org/10.3390/metabo14110622
Zhang L, Zheng J, Johnson M, Mandal R, Cruz M, Martínez-Huélamo M, Andres-Lacueva C, Wishart DS. A Comprehensive LC–MS Metabolomics Assay for Quantitative Analysis of Serum and Plasma. Metabolites. 2024; 14(11):622. https://doi.org/10.3390/metabo14110622
Chicago/Turabian StyleZhang, Lun, Jiamin Zheng, Mathew Johnson, Rupasri Mandal, Meryl Cruz, Miriam Martínez-Huélamo, Cristina Andres-Lacueva, and David S. Wishart. 2024. "A Comprehensive LC–MS Metabolomics Assay for Quantitative Analysis of Serum and Plasma" Metabolites 14, no. 11: 622. https://doi.org/10.3390/metabo14110622
APA StyleZhang, L., Zheng, J., Johnson, M., Mandal, R., Cruz, M., Martínez-Huélamo, M., Andres-Lacueva, C., & Wishart, D. S. (2024). A Comprehensive LC–MS Metabolomics Assay for Quantitative Analysis of Serum and Plasma. Metabolites, 14(11), 622. https://doi.org/10.3390/metabo14110622