Understanding the Role of Alcohol in Metabolic Dysfunction and Male Infertility
Abstract
:1. Introduction
2. Alcohol and Metabolic Health
2.1. The Physiology of Alcohol Metabolism
2.2. Pathophysiology of Alcohol-Associated Diseases
2.2.1. Oxidative Stress
2.2.2. Lipid Metabolism
2.2.3. Carbohydrate Metabolism
2.2.4. Protein Metabolism
2.2.5. Apoptosis
2.2.6. Mitochondrial Dysfunction
2.2.7. Inflammation
2.2.8. Sex Hormones and Sex Hormone-Binding Globulin
3. The Chemistry of Alcohol: The Effect on Testosterone Production
3.1. Acute Alcohol Consumption Effects on Testosterone Production
3.2. Chronic Alcohol Consumption Effect on Testosterone Production
3.3. Alcohol Abuse Consequences on Testosterone Production
4. Distilled Disruption: Unravelling Alcohol’s Effects on Male Reproductive Health
4.1. Acute Alcohol Consumption Effects on Spermatogenesis
4.2. Chronic Alcohol Consumption Effect on Spermatogenesis
4.3. Alcohol Abuse Consequence on Spermatogenesis
Type of Alcohol Consumption | Testosterone Serum Levels | References |
---|---|---|
Acute Consumption | Reduction | [108,109,110] |
Null Effect | [111] | |
Increase | [112] | |
Chronic Consumption | Reduction | [101,121,165,166,167,168,169,170,171,172] |
Null Effect | [173] | |
Increase | [97,155,174,175,176,177] | |
Abuse | Reduction | |
Null Effect | [149] | |
Increase |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Şenadım, S.; Alpaydın Baslo, S.; Uygun, E.; Erdoğan, M.; Balçik, Z.E.; Tekin, B.; Ataklı, D. The strategies for coping with stress of epilepsy patients. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2021, 42, 4265–4270. [Google Scholar] [CrossRef] [PubMed]
- Farokhnia, M.; Abshire, K.M.; Hammer, A.; Deschaine, S.L.; Saravanakumar, A.; Cobbina, E.; You, Z.B.; Haass-Koffler, C.L.; Lee, M.R.; Akhlaghi, F.; et al. Neuroendocrine Response to Exogenous Ghrelin Administration, Combined with Alcohol, in Heavy-Drinking Individuals: Findings From a Randomized, Double-Blind, Placebo-Controlled Human Laboratory Study. Int. J. Neuropsychopharmacol. 2021, 24, 464–476. [Google Scholar] [CrossRef] [PubMed]
- Birková, A.; Hubková, B.; Čižmárová, B.; Bolerázska, B. Current View on the Mechanisms of Alcohol-Mediated Toxicity. Int. J. Mol. Sci. 2021, 22, 9686. [Google Scholar] [CrossRef]
- Grubb, A.F.; Greene, S.J.; Fudim, M.; Dewald, T.; Mentz, R.J. Drugs of Abuse and Heart Failure. J. Card. Fail. 2021, 27, 1260–1275. [Google Scholar] [CrossRef]
- Varghese, D.S.; Ali, B.R. Pathological Crosstalk Between Oxidized LDL and ER Stress in Human Diseases: A Comprehensive Review. Front. Cell Dev. Biol. 2021, 9, 674103. [Google Scholar] [CrossRef] [PubMed]
- Bennion, L.J.; Li, T.K. Alcohol metabolism in American Indians and whites. Lack of racial differences in metabolic rate and liver alcohol dehydrogenase. N. Engl. J. Med. 1976, 294, 9–13. [Google Scholar] [CrossRef]
- Kopun, M.; Propping, P. The kinetics of ethanol absorption and elimination in twins and supplementary repetitive experiments in singleton subjects. Eur. J. Clin. Pharmacol. 1977, 11, 337–344. [Google Scholar] [CrossRef]
- Cederbaum, A.I. Alcohol metabolism. Clin. Liver Dis. 2012, 16, 667–685. [Google Scholar] [CrossRef]
- Lieber, C.S.; DeCarli, L.M. Ethanol oxidation by hepatic microsomes: Adaptive increase after ethanol feeding. Science 1968, 162, 917–918. [Google Scholar] [CrossRef]
- Thomasson, H.R.; Crabb, D.W.; Edenberg, H.J.; Li, T.K. Alcohol and aldehyde dehydrogenase polymorphisms and alcoholism. Behav. Genet. 1993, 23, 131–136. [Google Scholar] [CrossRef]
- Heier, C.; Xie, H.; Zimmermann, R. Nonoxidative ethanol metabolism in humans-from biomarkers to bioactive lipids. IUBMB Life 2016, 68, 916–923. [Google Scholar] [CrossRef] [PubMed]
- Maenhout, T.M.; De Buyzere, M.L.; Delanghe, J.R. Non-oxidative ethanol metabolites as a measure of alcohol intake. Clin. Chim. Acta Int. J. Clin. Chem. 2013, 415, 322–329. [Google Scholar] [CrossRef]
- Laposata, E.A.; Lange, L.G. Presence of nonoxidative ethanol metabolism in human organs commonly damaged by ethanol abuse. Science 1986, 231, 497–499. [Google Scholar] [CrossRef]
- Knott, C.; Bell, S.; Britton, A. Alcohol Consumption and the Risk of Type 2 Diabetes: A Systematic Review and Dose-Response Meta-analysis of More Than 1.9 Million Individuals from 38 Observational Studies. Diabetes Care 2015, 38, 1804–1812. [Google Scholar] [CrossRef]
- Briasoulis, A.; Agarwal, V.; Messerli, F.H. Alcohol consumption and the risk of hypertension in men and women: A systematic review and meta-analysis. J. Clin. Hypertens. 2012, 14, 792–798. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Shin, S.Y.; Won, S.; Relton, C.L.; Davey Smith, G.; Shin, M.J. Alcohol intake and cardiovascular risk factors: A Mendelian randomisation study. Sci. Rep. 2015, 5, 18422. [Google Scholar] [CrossRef]
- Calvert, C.M.; Toomey, T.; Jones-Webb, R. Are people aware of the link between alcohol and different types of Cancer? BMC Public Health 2021, 21, 734. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos Maidana, M.; Varela Junior, A.S.; Corcini, C.D.; Pereira, J.R.; Pires, D.M.; Tavella, R.A.; Fernandes, C.L.F.; Dos Santos, M.; Garcia, E.M.; da Silva Júnior, F.M.R. Oral cytological changes in young adults related to alcohol consumption. Arch. Oral. Biol. 2021, 126, 105127. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Stepanova, M.; Ong, J.; Yilmaz, Y.; Duseja, A.; Eguchi, Y.; El Kassas, M.; Castellanos-Fernandez, M.; George, J.; Jacobson, I.M.; et al. Effects of Alcohol Consumption and Metabolic Syndrome on Mortality in Patients with Nonalcoholic and Alcohol-Related Fatty Liver Disease. Clin. Gastroenterol. Hepatol. 2019, 17, 1625–1633.e1. [Google Scholar] [CrossRef]
- Seitz, H.K.; Bataller, R.; Cortez-Pinto, H.; Gao, B.; Gual, A.; Lackner, C.; Mathurin, P.; Mueller, S.; Szabo, G.; Tsukamoto, H. Alcoholic liver disease. Nat. Rev. Dis. Primers 2018, 4, 16. [Google Scholar] [CrossRef]
- Celli, R.; Zhang, X. Pathology of Alcoholic Liver Disease. J. Clin. Transl. Hepatol. 2014, 2, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Teschke, R. Alcoholic steatohepatitis (ASH) and alcoholic hepatitis (AH): Cascade of events, clinical aspects, and pharmacotherapy options. Expert Opin. Pharmacother. 2018, 19, 779–793. [Google Scholar] [CrossRef] [PubMed]
- Li, X.H.; Yu, F.F.; Zhou, Y.H.; He, J. Association between alcohol consumption and the risk of incident type 2 diabetes: A systematic review and dose-response meta-analysis. Am. J. Clin. Nutr. 2016, 103, 818–829. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Wang, X.; Li, X.; Heianza, Y.; Qi, L. Moderate alcohol drinking with meals is related to lower incidence of type 2 diabetes. Am. J. Clin. Nutr. 2022, 116, 1507–1514. [Google Scholar] [CrossRef]
- Baliunas, D.O.; Taylor, B.J.; Irving, H.; Roerecke, M.; Patra, J.; Mohapatra, S.; Rehm, J. Alcohol as a risk factor for type 2 diabetes: A systematic review and meta-analysis. Diabetes Care 2009, 32, 2123–2132. [Google Scholar] [CrossRef]
- Zeng, T.; Zhang, C.L.; Zhao, N.; Guan, M.J.; Xiao, M.; Yang, R.; Zhao, X.L.; Yu, L.H.; Zhu, Z.P.; Xie, K.Q. Impairment of Akt activity by CYP2E1 mediated oxidative stress is involved in chronic ethanol-induced fatty liver. Redox Biol. 2018, 14, 295–304. [Google Scholar] [CrossRef]
- Longato, L.; Ripp, K.; Setshedi, M.; Dostalek, M.; Akhlaghi, F.; Branda, M.; Wands, J.R.; de la Monte, S.M. Insulin resistance, ceramide accumulation, and endoplasmic reticulum stress in human chronic alcohol-related liver disease. Oxid. Med. Cell. Longev. 2012, 2012, 479348. [Google Scholar] [CrossRef]
- Liu, J.; Kong, D.; Ai, D.; Xu, A.; Yu, W.; Peng, Z.; Peng, J.; Wang, Z.; Wang, Z.; Liu, R.; et al. Insulin resistance enhances binge ethanol-induced liver injury through promoting oxidative stress and up-regulation CYP2E1. Life Sci. 2022, 303, 120681. [Google Scholar] [CrossRef]
- Xu, J.; Lai, K.K.Y.; Verlinsky, A.; Lugea, A.; French, S.W.; Cooper, M.P.; Ji, C.; Tsukamoto, H. Synergistic steatohepatitis by moderate obesity and alcohol in mice despite increased adiponectin and p-AMPK. J. Hepatol. 2011, 55, 673–682. [Google Scholar] [CrossRef]
- Simon, L.; Souza-Smith, F.M.; Molina, P.E. Alcohol-Associated Tissue Injury: Current Views on Pathophysiological Mechanisms. Annu. Rev. Physiol. 2022, 84, 87–112. [Google Scholar] [CrossRef]
- Mantle, D.; Preedy, V.R. Free radicals as mediators of alcohol toxicity. Adverse Drug React. Toxicol. Rev. 1999, 18, 235–252. [Google Scholar] [PubMed]
- Finelli, R.; Mottola, F.; Agarwal, A. Impact of Alcohol Consumption on Male Fertility Potential: A Narrative Review. Int. J. Environ. Res. Public Health 2021, 19, 328. [Google Scholar] [CrossRef]
- Yan, T.; Zhao, Y.; Zhang, X. Acetaldehyde Induces Cytotoxicity of SH-SY5Y Cells via Inhibition of Akt Activation and Induction of Oxidative Stress. Oxid. Med. Cell. Longev. 2016, 2016, 4512309. [Google Scholar] [CrossRef] [PubMed]
- Clavijo-Cornejo, D.; Gutiérrez-Carrera, M.; Palestino-Domínguez, M.; Dominguez-Perez, M.; Nuño, N.; Souza, V.; Miranda, R.U.; Kershenobich, D.; Gutiérrez-Ruiz, M.C.; Bucio, L.; et al. Acetaldehyde targets superoxide dismutase 2 in liver cancer cells inducing transient enzyme impairment and a rapid transcriptional recovery. Food Chem. Toxicol. 2014, 69, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Yeligar, S.M.; Harris, F.L.; Hart, C.M.; Brown, L.A. Ethanol induces oxidative stress in alveolar macrophages via upregulation of NADPH oxidases. J. Immunol. 2012, 188, 3648–3657. [Google Scholar] [CrossRef] [PubMed]
- Manzo-Avalos, S.; Saavedra-Molina, A. Cellular and mitochondrial effects of alcohol consumption. Int. J. Environ. Res. Public Health 2010, 7, 4281–4304. [Google Scholar] [CrossRef]
- Niemelä, O. Acetaldehyde adducts in circulation. Novartis Found. Symp. 2007, 285, 183–192, discussion 193–197. [Google Scholar] [CrossRef]
- Tuma, D.J. Role of malondialdehyde-acetaldehyde adducts in liver injury. Free. Radic. Biol. Med. 2002, 32, 303–308. [Google Scholar] [CrossRef]
- Ambade, A.; Mandrekar, P. Oxidative stress and inflammation: Essential partners in alcoholic liver disease. Int. J. Hepatol. 2012, 2012, 853175. [Google Scholar] [CrossRef]
- Grunnet, N.; Kondrup, J. The effect of ethanol on the beta-oxidation of fatty acids. Alcohol. Clin. Exp. Res. 1986, 10 (Suppl. S6), 64s–68s. [Google Scholar] [CrossRef]
- Morel, C.; Chowdhary, V.; Thevkar Nagesh, P.; Ribeiro, M.; Hawryluk, D.; Catalano, D.; Adorini, L.; Szabo, G. Altered ethanol metabolism and increased oxidative stress enhance alcohol-associated liver injury in farnesoid X receptor-deficient mice. Liver Int. 2023, 43, 100–114. [Google Scholar] [CrossRef] [PubMed]
- Spaggiari, G.; Cignarelli, A.; Sansone, A.; Baldi, M.; Santi, D. To beer or not to beer: A meta-analysis of the effects of beer consumption on cardiovascular health. PLoS ONE 2020, 15, e0233619. [Google Scholar] [CrossRef] [PubMed]
- Doege, H.; Baillie, R.A.; Ortegon, A.M.; Tsang, B.; Wu, Q.; Punreddy, S.; Hirsch, D.; Watson, N.; Gimeno, R.E.; Stahl, A. Targeted deletion of FATP5 reveals multiple functions in liver metabolism: Alterations in hepatic lipid homeostasis. Gastroenterology 2006, 130, 1245–1258. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.G.; Tran, J.L.; Erion, D.M.; Vera, N.B.; Febbraio, M.; Weiss, E.J. Hepatocyte-Specific Disruption of CD36 Attenuates Fatty Liver and Improves Insulin Sensitivity in HFD-Fed Mice. Endocrinology 2016, 157, 570–585. [Google Scholar] [CrossRef] [PubMed]
- Marmier, S.; Dentin, R.; Daujat-Chavanieu, M.; Guillou, H.; Bertrand-Michel, J.; Gerbal-Chaloin, S.; Girard, J.; Lotersztajn, S.; Postic, C. Novel role for carbohydrate responsive element binding protein in the control of ethanol metabolism and susceptibility to binge drinking. Hepatology 2015, 62, 1086–1100. [Google Scholar] [CrossRef]
- Bi, L.; Jiang, Z.; Zhou, J. The role of lipin-1 in the pathogenesis of alcoholic fatty liver. Alcohol. Alcohol. 2015, 50, 146–151. [Google Scholar] [CrossRef]
- Yin, H.; Hu, M.; Liang, X.; Ajmo, J.M.; Li, X.; Bataller, R.; Odena, G.; Stevens, S.M., Jr.; You, M. Deletion of SIRT1 from hepatocytes in mice disrupts lipin-1 signaling and aggravates alcoholic fatty liver. Gastroenterology 2014, 146, 801–811. [Google Scholar] [CrossRef]
- Yin, H.; Hu, M.; Zhang, R.; Shen, Z.; Flatow, L.; You, M. MicroRNA-217 promotes ethanol-induced fat accumulation in hepatocytes by down-regulating SIRT1. J. Biol. Chem. 2012, 287, 9817–9826. [Google Scholar] [CrossRef]
- Park, S.H.; Seo, W.; Xu, M.J.; Mackowiak, B.; Lin, Y.; He, Y.; Fu, Y.; Hwang, S.; Kim, S.J.; Guan, Y.; et al. Ethanol and its Nonoxidative Metabolites Promote Acute Liver Injury by Inducing ER Stress, Adipocyte Death, and Lipolysis. Cell. Mol. Gastroenterol. Hepatol. 2023, 15, 281–306. [Google Scholar] [CrossRef]
- Souza-Mello, V. Peroxisome proliferator-activated receptors as targets to treat non-alcoholic fatty liver disease. World J. Hepatol. 2015, 7, 1012–1019. [Google Scholar] [CrossRef]
- Ding, W.X.; Li, M.; Chen, X.; Ni, H.M.; Lin, C.W.; Gao, W.; Lu, B.; Stolz, D.B.; Clemens, D.L.; Yin, X.M. Autophagy reduces acute ethanol-induced hepatotoxicity and steatosis in mice. Gastroenterology 2010, 139, 1740–1752. [Google Scholar] [CrossRef] [PubMed]
- You, M.; Arteel, G.E. Effect of ethanol on lipid metabolism. J. Hepatol. 2019, 70, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Dornhorst, A.; Ouyang, A. Effect of alcohol on glucose tolerance. Lancet 1971, 2, 957–959. [Google Scholar] [CrossRef]
- Mokuda, O.; Tanaka, H.; Hayashi, T.; Ooka, H.; Okazaki, R.; Sakamoto, Y. Ethanol stimulates glycogenolysis and inhibits both glycogenesis via gluconeogenesis and from exogenous glucose in perfused rat liver. Ann. Nutr. Metab. 2004, 48, 276–280. [Google Scholar] [CrossRef]
- Kubota, M.; Virkamäki, A.; Yki-Järvinen, H. Ethanol stimulates glycogenolysis in livers from fed rats. Proc. Soc. Exp. Biol. Med. 1992, 201, 114–118. [Google Scholar] [CrossRef]
- Thurman, R.G.; Scholz, R. Interaction of glycolysis and respiration in perfused rat liver. Changes in oxygen uptake following the addition of ethanol. Eur. J. Biochem./FEBS 1977, 75, 13–21. [Google Scholar] [CrossRef]
- Coker, C.R.; Aguilar, E.A.; Snyder, A.E.; Bingaman, S.S.; Graziane, N.M.; Browning, K.N.; Arnold, A.C.; Silberman, Y. Access schedules mediate the impact of high fat diet on ethanol intake and insulin and glucose function in mice. Alcohol 2020, 86, 45–56. [Google Scholar] [CrossRef]
- Tsai, W.W.; Matsumura, S.; Liu, W.; Phillips, N.G.; Sonntag, T.; Hao, E.; Lee, S.; Hai, T.; Montminy, M. ATF3 mediates inhibitory effects of ethanol on hepatic gluconeogenesis. Proc. Natl. Acad. Sci. USA 2015, 112, 2699–2704. [Google Scholar] [CrossRef] [PubMed]
- Oba-Yamamoto, C.; Takeuchi, J.; Nakamura, A.; Takikawa, R.; Ozaki, A.; Nomoto, H.; Kameda, H.; Cho, K.Y.; Atsumi, T.; Miyoshi, H. Combination of alcohol and glucose consumption as a risk to induce reactive hypoglycemia. J. Diabetes Investig. 2021, 12, 651–657. [Google Scholar] [CrossRef]
- Steiner, J.L.; Lang, C.H. Dysregulation of skeletal muscle protein metabolism by alcohol. Am. J. Physiol. Endocrinol. Metab. 2015, 308, E699–E712. [Google Scholar] [CrossRef]
- Shah, O.J.; Anthony, J.C.; Kimball, S.R.; Jefferson, L.S. 4E-BP1 and S6K1: Translational integration sites for nutritional and hormonal information in muscle. American journal of physiology. Endocrinol. Metab. 2000, 279, E715–E729. [Google Scholar] [CrossRef]
- Korzick, D.H.; Sharda, D.R.; Pruznak, A.M.; Lang, C.H. Aging accentuates alcohol-induced decrease in protein synthesis in gastrocnemius. American journal of physiology. Regul. Integr. Comp. Physiol. 2013, 304, R887–R898. [Google Scholar] [CrossRef] [PubMed]
- Lang, C.H.; Frost, R.A.; Svanberg, E.; Vary, T.C. IGF-I/IGFBP-3 ameliorates alterations in protein synthesis, eIF4E availability, and myostatin in alcohol-fed rats. American journal of physiology. Endocrinol. Metab. 2004, 286, E916–E926. [Google Scholar] [CrossRef]
- Koll, M.; Ahmed, S.; Mantle, D.; Donohue, T.M.; Palmer, T.N.; Simanowski, U.A.; Seltz, H.K.; Peters, T.J.; Preedy, V.R. Effect of acute and chronic alcohol treatment and their superimposition on lysosomal, cytoplasmic, and proteosomal protease activities in rat skeletal muscle in vivo. Metab. Clin. Exp. 2002, 51, 97–104. [Google Scholar] [CrossRef]
- Reilly, M.E.; Mantle, D.; Salisbury, J.; Peters, T.J.; Preedy, V.R. Comparative effects of acute ethanol dosage on liver and muscle protein metabolism. Biochem. Pharmacol. 2000, 60, 1773–1785. [Google Scholar] [CrossRef] [PubMed]
- Steiner, J.L.; Gordon, B.S.; Lang, C.H. Moderate alcohol consumption does not impair overload-induced muscle hypertrophy and protein synthesis. Physiol. Rep. 2015, 3, e12333. [Google Scholar] [CrossRef]
- Thapaliya, S.; Runkana, A.; McMullen, M.R.; Nagy, L.E.; McDonald, C.; Naga Prasad, S.V.; Dasarathy, S. Alcohol-induced autophagy contributes to loss in skeletal muscle mass. Autophagy 2014, 10, 677–690. [Google Scholar] [CrossRef]
- Tuma, D.J.; Jennett, R.B.; Sorrell, M.F. Effect of ethanol on the synthesis and secretion of hepatic secretory glycoproteins and albumin. Hepatology 1981, 1, 590–598. [Google Scholar] [CrossRef] [PubMed]
- Bhopale, K.K.; Amer, S.M.; Kaphalia, L.; Soman, K.V.; Wiktorowicz, J.E.; Shakeel Ansari, G.A.; Kaphalia, B.S. Proteomic Profiling of Liver and Plasma in Chronic Ethanol Feeding Model of Hepatic Alcohol Dehydrogenase-Deficient Deer Mice. Alcohol. Clin. Exp. Res. 2017, 41, 1675–1685. [Google Scholar] [CrossRef]
- Osna, N.A.; Tikhanovich, I.; Ortega-Ribera, M.; Mueller, S.; Zheng, C.; Mueller, J.; Li, S.; Sakane, S.; Weber, R.C.G.; Kim, H.Y.; et al. Alcohol-Associated Liver Disease Outcomes: Critical Mechanisms of Liver Injury Progression. Biomolecules 2024, 14, 404. [Google Scholar] [CrossRef]
- Aroor, A.R.; Shukla, S.D. MAP kinase signaling in diverse effects of ethanol. Life Sci. 2004, 74, 2339–2364. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, M.P.; Bhopale, K.K.; Caracheo, A.A.; Kaphalia, L.; Loganathan, G.; Balamurugan, A.N.; Rastellini, C.; Kaphalia, B.S. Differential cytotoxicity, ER/oxidative stress, dysregulated AMPKα signaling, and mitochondrial stress by ethanol and its metabolites in human pancreatic acinar cells. Alcohol. Clin. Exp. Res. 2021, 45, 961–978. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Ahmad, M.F.; Nagy, L.E.; Tsukamoto, H. Inflammatory pathways in alcoholic steatohepatitis. J. Hepatol. 2019, 70, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Llopis, M.; Cassard, A.M.; Wrzosek, L.; Boschat, L.; Bruneau, A.; Ferrere, G.; Puchois, V.; Martin, J.C.; Lepage, P.; Le Roy, T.; et al. Intestinal microbiota contributes to individual susceptibility to alcoholic liver disease. Gut 2016, 65, 830–839. [Google Scholar] [CrossRef]
- Chen, A. Acetaldehyde stimulates the activation of latent transforming growth factor-beta1 and induces expression of the type II receptor of the cytokine in rat cultured hepatic stellate cells. Biochem. J. 2002, 368 Pt 3, 683–693. [Google Scholar] [CrossRef]
- Gaitantzi, H.; Meyer, C.; Rakoczy, P.; Thomas, M.; Wahl, K.; Wandrer, F.; Bantel, H.; Alborzinia, H.; Wölfl, S.; Ehnert, S.; et al. Ethanol sensitizes hepatocytes for TGF-β-triggered apoptosis. Cell Death Dis. 2018, 9, 51. [Google Scholar] [CrossRef]
- Morio, Y.; Tsuji, M.; Inagaki, M.; Nakagawa, M.; Asaka, Y.; Oyamada, H.; Furuya, K.; Oguchi, K. Ethanol-induced apoptosis in human liver adenocarcinoma cells (SK-Hep1): Fas- and mitochondria-mediated pathways and interaction with MAPK signaling system. Toxicol. Vitr. 2013, 27, 1820–1829. [Google Scholar] [CrossRef]
- Francis, H.; McDaniel, K.; Han, Y.; Liu, X.; Kennedy, L.; Yang, F.; McCarra, J.; Zhou, T.; Glaser, S.; Venter, J.; et al. Regulation of the extrinsic apoptotic pathway by microRNA-21 in alcoholic liver injury. J. Biol. Chem. 2014, 289, 27526–27539. [Google Scholar] [CrossRef]
- Han, D.; Ybanez, M.D.; Johnson, H.S.; McDonald, J.N.; Mesropyan, L.; Sancheti, H.; Martin, G.; Martin, A.; Lim, A.M.; Dara, L.; et al. Dynamic adaptation of liver mitochondria to chronic alcohol feeding in mice: Biogenesis, remodeling, and functional alterations. J. Biol. Chem. 2012, 287, 42165–42179. [Google Scholar] [CrossRef]
- Palma, E.; Ma, X.; Riva, A.; Iansante, V.; Dhawan, A.; Wang, S.; Ni, H.M.; Sesaki, H.; Williams, R.; Ding, W.X.; et al. Dynamin-1-Like Protein Inhibition Drives Megamitochondria Formation as an Adaptive Response in Alcohol-Induced Hepatotoxicity. Am. J. Pathol. 2019, 189, 580–589. [Google Scholar] [CrossRef]
- Ma, X.; Chen, A.; Melo, L.; Clemente-Sanchez, A.; Chao, X.; Ahmadi, A.R.; Peiffer, B.; Sun, Z.; Sesaki, H.; Li, T.; et al. Loss of hepatic DRP1 exacerbates alcoholic hepatitis by inducing megamitochondria and mitochondrial maladaptation. Hepatology 2023, 77, 159–175. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.A.; Ni, H.M.; Ding, Y.; Ding, W.X. Parkin regulates mitophagy and mitochondrial function to protect against alcohol-induced liver injury and steatosis in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2015, 309, G324–G340. [Google Scholar] [CrossRef] [PubMed]
- Bingol, B.; Sheng, M. Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond. Free. Radic. Biol. Med. 2016, 100, 210–222. [Google Scholar] [CrossRef]
- Han, D.; Johnson, H.S.; Rao, M.P.; Martin, G.; Sancheti, H.; Silkwood, K.H.; Decker, C.W.; Nguyen, K.T.; Casian, J.G.; Cadenas, E.; et al. Mitochondrial remodeling in the liver following chronic alcohol feeding to rats. Free. Radic. Biol. Med. 2017, 102, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Venkatraman, A.; Shiva, S.; Davis, A.J.; Bailey, S.M.; Brookes, P.S.; Darley-Usmar, V.M. Chronic alcohol consumption increases the sensitivity of rat liver mitochondrial respiration to inhibition by nitric oxide. Hepatology 2003, 38, 141–147. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, W.; Zhong, W.; Sun, X.; Zhou, Z. Pharmacological inhibition of NOX4 ameliorates alcohol-induced liver injury in mice through improving oxidative stress and mitochondrial function. Biochim. Biophys. Acta Gen. Subj. 2017, 1861 Pt 1, 2912–2921. [Google Scholar] [CrossRef]
- Luther, J.; Khan, S.; Gala, M.K.; Kedrin, D.; Sridharan, G.; Goodman, R.P.; Garber, J.J.; Masia, R.; Diagacomo, E.; Adams, D.; et al. Hepatic gap junctions amplify alcohol liver injury by propagating cGAS-mediated IRF3 activation. Proc. Natl. Acad. Sci. USA 2020, 117, 11667–11673. [Google Scholar] [CrossRef]
- Retraction: Current role of multiparametric magnetic resonance imaging for prostate cancer. Quant. Imaging Med. Surg. 2024, 14, 2736. [CrossRef]
- Barnes, M.A.; McMullen, M.R.; Roychowdhury, S.; Pisano, S.G.; Liu, X.; Stavitsky, A.B.; Bucala, R.; Nagy, L.E. Macrophage migration inhibitory factor contributes to ethanol-induced liver injury by mediating cell injury, steatohepatitis, and steatosis. Hepatology 2013, 57, 1980–1991. [Google Scholar] [CrossRef]
- Petrasek, J.; Bala, S.; Csak, T.; Lippai, D.; Kodys, K.; Menashy, V.; Barrieau, M.; Min, S.Y.; Kurt-Jones, E.A.; Szabo, G. IL-1 receptor antagonist ameliorates inflammasome-dependent alcoholic steatohepatitis in mice. J. Clin. Investig. 2012, 122, 3476–3489. [Google Scholar] [CrossRef]
- Iracheta-Vellve, A.; Petrasek, J.; Gyogyosi, B.; Bala, S.; Csak, T.; Kodys, K.; Szabo, G. Interleukin-1 inhibition facilitates recovery from liver injury and promotes regeneration of hepatocytes in alcoholic hepatitis in mice. Liver Int. 2017, 37, 968–973. [Google Scholar] [CrossRef]
- de Carvalho Ribeiro, M.; Babuta, M.; Szabo, G. Reply: Alcohol-induced extracellular ASC specks perpetuate liver inflammation and damage in alcohol-associated hepatitis even after alcohol cessation. Hepatology 2024, 79, E28–E29. [Google Scholar] [CrossRef]
- Tsuchida, T.; Friedman, S.L. Mechanisms of hepatic stellate cell activation. Nature reviews. Gastroenterol. Hepatol. 2017, 14, 397–411. [Google Scholar] [CrossRef]
- Jeong, W.I.; Park, O.; Gao, B. Abrogation of the antifibrotic effects of natural killer cells/interferon-gamma contributes to alcohol acceleration of liver fibrosis. Gastroenterology 2008, 134, 248–258. [Google Scholar] [CrossRef]
- Erol, A.; Karpyak, V.M. Sex and gender-related differences in alcohol use and its consequences: Contemporary knowledge and future research considerations. Drug Alcohol. Depend. 2015, 156, 1–13. [Google Scholar] [CrossRef]
- Rachdaoui, N.; Sarkar, D.K. Pathophysiology of the Effects of Alcohol Abuse on the Endocrine System. Alcohol. Res. 2017, 38, 255–276. [Google Scholar]
- Ho, A.M.; Geske, J.R.; Bakalkin, G.; Winham, S.J.; Karpyak, V.M. Correlations between sex-related hormones, alcohol dependence and alcohol craving. Drug Alcohol. Depend. 2019, 197, 183–190. [Google Scholar] [CrossRef]
- Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.; Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M.; et al. UK biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015, 12, e1001779. [Google Scholar] [CrossRef]
- Liang, X.; Cheng, S.; Ye, J.; Chu, X.; Wen, Y.; Liu, L.; Qi, X.; Jia, Y.; Zhang, F. Evaluating the genetic effects of sex hormone traits on the development of mental traits: A polygenic score analysis and gene-environment-wide interaction study in UK Biobank cohort. Mol. Brain 2021, 14, 3. [Google Scholar] [CrossRef]
- Ho, A.M.; Pozsonyiova, S.; Waller, T.C.; Song, Y.; Geske, J.R.; Karpyak, V.M.; Winham, S.J. Associations of sex-related steroid hormones and proteins with alcohol dependence: A United Kingdom Biobank study. Drug Alcohol. Depend. 2023, 244, 109781. [Google Scholar] [CrossRef]
- Iturriaga, H.; Lioi, X.; Valladares, L. Sex hormone-binding globulin in non-cirrhotic alcoholic patients during early withdrawal and after longer abstinence. Alcohol. Alcohol. 1999, 34, 903–909. [Google Scholar] [CrossRef]
- Waller, C.; Ho, A.; Batzler, A.; Geske, J.; Karpyak, V.; Biernacka, J.; Winham, S. Genetic correlations of alcohol consumption and alcohol use disorder with sex hormone levels in females and males. Res. Sq. 2024. [Google Scholar] [CrossRef]
- Balogh, A.; Karpati, E.; Schneider, A.E.; Hetey, S.; Szilagyi, A.; Juhasz, K.; Laszlo, G.; Hupuczi, P.; Zavodszky, P.; Papp, Z.; et al. Sex hormone-binding globulin provides a novel entry pathway for estradiol and influences subsequent signaling in lymphocytes via membrane receptor. Sci. Rep. 2019, 9, 4. [Google Scholar] [CrossRef]
- Ding, E.L.; Song, Y.; Manson, J.E.; Hunter, D.J.; Lee, C.C.; Rifai, N.; Buring, J.E.; Gaziano, J.M.; Liu, S. Sex hormone-binding globulin and risk of type 2 diabetes in women and men. N. Engl. J. Med. 2009, 361, 1152–1163. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, H.; Wang, B.; Wang, Y.; Wang, N.; Lu, Y. Sex hormone-binding globulin, genetic susceptibility, and the risk of type 2 diabetes in men and postmenopausal women. Chin. Med. J. 2023, 136, 1993–1995. [Google Scholar] [CrossRef]
- Cicero, T.J. Alcohol-induced deficits in the hypothalamic-pituitary-luteinizing hormone axis in the male. Alcohol. Clin. Exp. Res. 1982, 6, 207–215. [Google Scholar] [CrossRef]
- Emanuele, M.A.; Emanuele, N. Alcohol and the male reproductive system. Alcohol. Res. Health 2001, 25, 282–287. [Google Scholar]
- Frias, J.; Torres, J.M.; Miranda, M.T.; Ruiz, E.; Ortega, E. Effects of acute alcohol intoxication on pituitary-gonadal axis hormones, pituitary-adrenal axis hormones, beta-endorphin and prolactin in human adults of both sexes. Alcohol. Alcohol. 2002, 37, 169–173. [Google Scholar] [CrossRef]
- Ida, Y.; Tsujimaru, S.; Nakamaura, K.; Shirao, I.; Mukasa, H.; Egami, H.; Nakazawa, Y. Effects of acute and repeated alcohol ingestion on hypothalamic-pituitary-gonadal and hypothalamic-pituitary-adrenal functioning in normal males. Drug Alcohol. Depend. 1992, 31, 57–64. [Google Scholar] [CrossRef]
- Mendelson, J.H.; Mello, N.K.; Ellingboe, J. Effects of acute alcohol intake on pituitary-gonadal hormones in normal human males. J. Pharmacol. Exp. Ther. 1977, 202, 676–682. [Google Scholar]
- Bannister, P.; Handley, T.; Chapman, C.; Losowsky, M.S. LH pulsatility following acute ethanol ingestion in men. Clin. Endocrinol. 1986, 25, 143–150. [Google Scholar] [CrossRef]
- Sarkola, T.; Eriksson, C.J. Testosterone increases in men after a low dose of alcohol. Alcohol. Clin. Exp. Res. 2003, 27, 682–685. [Google Scholar] [CrossRef]
- Tangsrisakda, N.; Iamsaard, S. Effect of ethanol on the changes in testicular protein expression in adult male rats. Andrologia 2020, 52, e13784. [Google Scholar] [CrossRef]
- Johnston, D.E.; Chiao, Y.B.; Gavaler, J.S.; Van Thiel, D.H. Inhibition of testosterone synthesis by ethanol and acetaldehyde. Biochem. Pharmacol. 1981, 30, 1827–1831. [Google Scholar] [CrossRef]
- Castenfors, H.; Hultman, E.; Josephson, B. Effect of intravenous infusions of ethyl alcohol on estimated hepatic blood flow in man. J. Clin. Investig. 1960, 39, 776–781. [Google Scholar] [CrossRef]
- Cicero, T.J. Neuroendocrinological effects of alcohol. Annu. Rev. Med. 1981, 32, 123–142. [Google Scholar] [CrossRef]
- Fabbri, A.; Jannini, E.A.; Gnessi, L.; Ulisse, S.; Moretti, C.; Isidori, A. Neuroendocrine control of male reproductive function. The opioid system as a model of control at multiple sites. J. Steroid Biochem. 1989, 32, 145–150. [Google Scholar] [CrossRef]
- Shi, Q.; Hales, D.B.; Emanuele, N.V.; Emanuele, M.A. Interaction of ethanol and nitric oxide in the hypothalamic-pituitary-gonadal axis in the male rat. Alcohol. Clin. Exp. Res. 1998, 22, 1754–1762. [Google Scholar] [CrossRef]
- Rivier, C. Alcohol rapidly lowers plasma testosterone levels in the rat: Evidence that a neural brain-gonadal pathway may be important for decreased testicular responsiveness to gonadotropin. Alcohol. Clin. Exp. Res. 1999, 23, 38–45. [Google Scholar] [CrossRef]
- Bhalla, V.K.; Chen, C.J.; Gnanaprakasam, M.S. Effects of in vivo administration of human chorionic gonadotropin and ethanol on the processes of testicular receptor depletion and replenishment. Life Sci. 1979, 24, 1315–1323. [Google Scholar] [CrossRef]
- Santi, D.; Cignarelli, A.; Baldi, M.; Sansone, A.; Spaggiari, G.; Simoni, M.; Corona, G. The chronic alcohol consumption influences the gonadal axis in men: Results from a meta-analysis. Andrology 2024, 12, 768–780. [Google Scholar] [CrossRef]
- Lelbach, W.K. Cirrhosis in the alcoholic and its relation to the volume of alcohol abuse. Ann. N. Y. Acad. Sci. 1975, 252, 85–105. [Google Scholar] [CrossRef]
- Rydberg, U.; Skerfving, S. Toxicity of alcohol. A trial to evaluate the risks. Lakartidningen 1974, 71, 2275–2277. [Google Scholar]
- Lelbach, W.K. Epidemiology of alcoholic liver disease. Prog. Liver Dis. 1976, 5, 494–515. [Google Scholar]
- Lieber, C.S. Alcohol-nutrition interaction. Bol. Asoc. Med. P. R. 1984, 76, 445–447. [Google Scholar]
- Dees, W.L.; Mc Arthur, N.H.; Farr, K.L.; Culler, M.D.; Harms, P.G. Effects of ethanol on rat hypothalamic luteinizing hormone releasing hormone. A study utilizing radioimmunoassay. Biol. Reprod. 1983, 28, 1066–1070. [Google Scholar] [CrossRef]
- Salonen, I.; Huhtaniemi, I. Effects of chronic ethanol diet on pituitary-testicular function of the rat. Biol. Reprod. 1990, 42, 55–62. [Google Scholar] [CrossRef]
- Adams, M.L.; Cicero, T.J. Effects of alcohol on beta-endorphin and reproductive hormones in the male rat. Alcohol. Clin. Exp. Res. 1991, 15, 685–692. [Google Scholar] [CrossRef]
- Little, P.J.; Adams, M.L.; Cicero, T.J. Effects of alcohol on the hypothalamic-pituitary-gonadal axis in the developing male rat. J. Pharmacol. Exp. Ther. 1992, 263, 1056–1061. [Google Scholar]
- Cicero, T.J.; Bernstein, D.; Badger, T.M. Effects of acute alcohol administration on reproductive endocrinology in the male rat. Alcohol. Clin. Exp. Res. 1978, 2, 249–254. [Google Scholar] [CrossRef]
- Cicero, T.J.; Meyer, E.R.; Bell, R.D. Effects of ethanol on the hypothalamic-pituitary-luteinizing hormone axis and testicular steroidogenesis. J. Pharmacol. Exp. Ther. 1979, 208, 210–215. [Google Scholar]
- Bhalla, V.K.; Haskell, J.; Grier, H.; Mahesh, V.B. Gonadotropin binding factor(s). Extraction of high affinity gonadotropin binding sites from rat testis and partial characterization of their interaction with human follitropin, lutropin, and choriogonadotropin. J. Biol. Chem. 1976, 251, 4947–4957. [Google Scholar] [CrossRef]
- Li, N.; Shi, X.; Fu, S.; Zhu, F.; Yang, S. Chronic alcohol administration increases serum prolactin level and pituitary cell proliferation, and alters hypothalamus neurotransmitters in rat. Neuro Endocrinol. Lett. 2011, 32, 170–175. [Google Scholar]
- Nardoni, A.; Marchetti, E.; Geatti, O.; Di Piazza, V.; Rossi, G.; Cedaro, P. Prolactin in chronic alcoholic liver diseases with and without gynecomastia. Minerva Med. 1985, 76, 37–42. [Google Scholar]
- Välimäki, M.; Pelkonen, R.; Härkönen, M.; Ylikahri, R. Hormonal changes in noncirrhotic male alcoholics during ethanol withdrawal. Alcohol. Alcohol. 1984, 19, 235–242. [Google Scholar]
- Van Thiel, D.H.; Gavaler, J.; Lester, R. Ethanol inhibition of vitamin A metabolism in the testes: Possible mechanism for sterility in alcoholics. Science 1974, 186, 941–942. [Google Scholar] [CrossRef]
- Eng, E.T.; Ye, J.; Williams, D.; Phung, S.; Moore, R.E.; Young, M.K.; Gruntmanis, U.; Braunstein, G.; Chen, S. Suppression of estrogen biosynthesis by procyanidin dimers in red wine and grape seeds. Cancer Res. 2003, 63, 8516–8522. [Google Scholar]
- Kijima, I.; Phung, S.; Hur, G.; Kwok, S.L.; Chen, S. Grape seed extract is an aromatase inhibitor and a suppressor of aromatase expression. Cancer Res. 2006, 66, 5960–5967. [Google Scholar] [CrossRef]
- Kao, Y.C.; Zhou, C.; Sherman, M.; Laughton, C.A.; Chen, S. Molecular basis of the inhibition of human aromatase (estrogen synthetase) by flavone and isoflavone phytoestrogens: A site-directed mutagenesis study. Environ. Health Perspect. 1998, 106, 85–92. [Google Scholar] [CrossRef]
- Gordon, G.G.; Altman, K.; Southren, A.L.; Rubin, E.; Lieber, C.S. Effect of alcohol (ethanol) administration on sex-hormone metabolism in normal men. N. Engl. J. Med. 1976, 295, 793–797. [Google Scholar] [CrossRef]
- Van Thiel, D.H.; Lester, R. Editorial: Sex and alcohol. N. Engl. J. Med. 1974, 291, 251–253. [Google Scholar] [CrossRef]
- Van Thiel, D.H.; Lester, R. Alcoholism: Its effect on hypothalamic pituitary gonadal function. Gastroenterology 1976, 71, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Van Thiel, D.H. Ethanol: Its adverse effects upon the hypothalamic-pituitary-gonadal axis. J. Lab. Clin. Med. 1983, 101, 21–33. [Google Scholar] [PubMed]
- Alcohol use and burden for 195 countries and territories, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2018, 392, 1015–1035. [CrossRef]
- Van Thiel, D.H.; Gavaler, J.S.; Lester, R.; Loriaux, D.L.; Braunstein, G.D. Plasma estrone, prolactin, neurophysin, and sex steroid-binding globulin in chronic alcoholic men. Metabolism 1975, 24, 1015–1019. [Google Scholar] [CrossRef]
- Eagon, P.K.; Porter, L.E.; Gavaler, J.S.; Egler, K.M.; Van Thiel, D.H. Effect of ethanol feeding upon levels of a male-specific hepatic estrogen-binding protein: A possible mechanism for feminization. Alcohol. Clin. Exp. Res. 1981, 5, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Chiao, Y.B.; Van Thiel, D.H. Biochemical mechanisms that contribute to alcohol-induced hypogonadism in the male. Alcohol. Clin. Exp. Res. 1983, 7, 131–134. [Google Scholar] [CrossRef]
- Castilla-Cortazar, I.; Quiroga, J.; Prieto, J. Insulin-like growth factor-I, liver function, and hypogonadism in rats with experimentally induced cirrhosis. Hepatology 2000, 31, 1379. [Google Scholar] [CrossRef]
- Martínez-Riera, A.; Santolaria-Fernández, F.; González Reimers, E.; Milena, A.; Gómez-Sirvent, J.L.; Rodríguez-Moreno, F.; González-Martín, I.; Rodríguez-Rodríguez, E. Alcoholic hypogonadism: Hormonal response to clomiphene. Alcohol 1995, 12, 581–587. [Google Scholar] [CrossRef]
- Lotti, F.; Marchiani, S.; Corona, G.; Maggi, M. Metabolic Syndrome and Reproduction. Int. J. Mol. Sci. 2021, 22, 1988. [Google Scholar] [CrossRef]
- Salvio, G.; Ciarloni, A.; Cutini, M.; Delli Muti, N.; Finocchi, F.; Perrone, M.; Rossi, S.; Balercia, G. Metabolic Syndrome and Male Fertility: Beyond Heart Consequences of a Complex Cardiometabolic Endocrinopathy. Int. J. Mol. Sci. 2022, 23, 5497. [Google Scholar] [CrossRef] [PubMed]
- Boivin, J.; Bunting, L.; Collins, J.A.; Nygren, K.G. International estimates of infertility prevalence and treatment-seeking: Potential need and demand for infertility medical care. Hum. Reprod. 2007, 22, 1506–1512. [Google Scholar] [CrossRef] [PubMed]
- Pajarinen, J.; Karhunen, P.J.; Savolainen, V.; Lalu, K.; Penttilä, A.; Laippala, P. Moderate alcohol consumption and disorders of human spermatogenesis. Alcohol. Clin. Exp. Res. 1996, 20, 332–337. [Google Scholar] [CrossRef]
- Silva, J.V.; Cruz, D.; Gomes, M.; Correia, B.R.; Freitas, M.J.; Sousa, L.; Silva, V.; Fardilha, M. Study on the short-term effects of increased alcohol and cigarette consumption in healthy young men’s seminal quality. Sci. Rep. 2017, 7, 45457. [Google Scholar] [CrossRef] [PubMed]
- Jensen, T.K.; Swan, S.; Jørgensen, N.; Toppari, J.; Redmon, B.; Punab, M.; Drobnis, E.Z.; Haugen, T.B.; Zilaitiene, B.; Sparks, A.E.; et al. Alcohol and male reproductive health: A cross-sectional study of 8344 healthy men from Europe and the USA. Hum. Reprod. 2014, 29, 1801–1809. [Google Scholar] [CrossRef]
- Ricci, E.; Al Beitawi, S.; Cipriani, S.; Candiani, M.; Chiaffarino, F.; Viganò, P.; Noli, S.; Parazzini, F. Semen quality and alcohol intake: A systematic review and meta-analysis. Reprod. Biomed. Online 2017, 34, 38–47. [Google Scholar] [CrossRef]
- Karmon, A.E.; Toth, T.L.; Chiu, Y.H.; Gaskins, A.J.; Tanrikut, C.; Wright, D.L.; Hauser, R.; Chavarro, J.E. Male caffeine and alcohol intake in relation to semen parameters and in vitro fertilization outcomes among fertility patients. Andrology 2017, 5, 354–361. [Google Scholar] [CrossRef]
- Trautman, A.; Gurumoorthy, A.; Hansen, K.A. Effects of alcohol use on sperm chromatin structure, a retrospective analysis. Basic Clin. Androl. 2023, 33, 14. [Google Scholar] [CrossRef]
- Trautman, A. Effects of Alcohol Use on Sperm Chromatin Structure. South Dak. Med. J. South Dak. State Med. Assoc. 2023, 76, 408. [Google Scholar]
- Kuller, L.H.; May, S.J.; Perper, J.A. The relationship between alcohol, liver disease, and testicular pathology. Am. J. Epidemiol. 1978, 108, 192–199. [Google Scholar] [CrossRef]
- Pajarinen, J.T.; Karhunen, P.J. Spermatogenic arrest and ‘Sertoli cell-only’ syndrome—common alcohol-induced disorders of the human testis. Int. J. Androl. 1994, 17, 292–299. [Google Scholar] [CrossRef] [PubMed]
- Kucheria, K.; Saxena, R.; Mohan, D. Semen analysis in alcohol dependence syndrome. Andrologia 1985, 17, 558–563. [Google Scholar] [CrossRef] [PubMed]
- Muthusami, K.R.; Chinnaswamy, P. Effect of chronic alcoholism on male fertility hormones and semen quality. Fertil. Steril. 2005, 84, 919–924. [Google Scholar] [CrossRef]
- Guthauser, B.; Boitrelle, F.; Plat, A.; Thiercelin, N.; Vialard, F. Chronic excessive alcohol consumption and male fertility: A case report on reversible azoospermia and a literature review. Alcohol. Alcohol. 2014, 49, 42–44. [Google Scholar] [CrossRef]
- Bertello, P.; Agrimonti, F.; Gurioli, L.; Frairia, R.; Fornaro, D.; Angeli, A. Circadian patterns of plasma cortisol and testosterone in chronic male alcoholics. Alcohol. Clin. Exp. Res. 1982, 6, 475–481. [Google Scholar] [CrossRef]
- Heinz, A.; Dettling, M.; Kuhn, S.; Dufeu, P.; Gräf, K.J.; Kürten, I.; Rommelspacher, H.; Schmidt, I.G. Blunted growth hormone response is associated with early relapse in alcohol-dependent patients. Alcohol. Clin. Exp. Res. 1995, 19, 62–65. [Google Scholar]
- Sierksma, A.; Sarkola, T.; Eriksson, C.J.; van der Gaag, M.S.; Grobbee, D.E.; Hendriks, H.F. Effect of moderate alcohol consumption on plasma dehydroepiandrosterone sulfate, testosterone, and estradiol levels in middle-aged men and postmenopausal women: A diet-controlled intervention study. Alcohol. Clin. Exp. Res. 2004, 28, 780–785. [Google Scholar] [CrossRef] [PubMed]
- Maneesh, M.; Dutta, S.; Chakrabarti, A.; Vasudevan, D.M. Alcohol abuse-duration dependent decrease in plasma testosterone and antioxidants in males. Indian J. Physiol. Pharmacol. 2006, 50, 291–296. [Google Scholar]
- Hansen, M.L.; Thulstrup, A.M.; Bonde, J.P.; Olsen, J.; Håkonsen, L.B.; Ramlau-Hansen, C.H. Does last week’s alcohol intake affect semen quality or reproductive hormones? A cross-sectional study among healthy young Danish men. Reprod. Toxicol. 2012, 34, 457–462. [Google Scholar] [CrossRef]
- Rao, M.; Zuo, L.D.; Fang, F.; Martin, K.; Zheng, Y.; Zhang, H.P.; Li, H.G.; Zhu, C.H.; Xiong, C.L.; Guan, H.T. Association of Alcohol Consumption with Markers of Prostate Health and Reproductive Hormone Profiles: A Multi-Center Study of 4,535 Men in China. PLoS ONE 2015, 10, e0142780. [Google Scholar] [CrossRef]
- Kumari, S.; Mittal, A.; Dabur, R. Moderate alcohol consumption in chronic form enhances the synthesis of cholesterol and C-21 steroid hormones, while treatment with Tinospora cordifolia modulate these events in men. Steroids 2016, 114, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Koh, K.; Kim, S.S.; Kim, J.S.; Jung, J.G.; Yoon, S.J.; Suh, W.Y.; Kim, H.G.; Kim, N. Relationship between Alcohol Consumption and Testosterone Deficiency according to Facial Flushes among Middle-Aged and Older Korean Men. Korean J. Fam. Med. 2022, 43, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Gümüs, A. Evaluation of Ethanol Interference on Routine Biochemical Tests. Am. J. Clin. Pathol. 2018, 150, 507–511. [Google Scholar] [CrossRef] [PubMed]
- Markianos, M.; Moussas, G.; Lykouras, L.L. Normal testosterone plasma levels in non-abstinent alcoholics. Drug Alcohol. Depend. 1987, 20, 81–85. [Google Scholar] [CrossRef]
- Walter, M.; Gerhard, U.; Gerlach, M.; Weijers, H.G.; Boening, J.; Wiesbeck, G.A. Controlled study on the combined effect of alcohol and tobacco smoking on testosterone in alcohol-dependent men. Alcohol. Alcohol. 2007, 42, 19–23. [Google Scholar] [CrossRef]
- Jensen, T.K.; Gottschau, M.; Madsen, J.O.; Andersson, A.M.; Lassen, T.H.; Skakkebæk, N.E.; Swan, S.H.; Priskorn, L.; Juul, A.; Jørgensen, N. Habitual alcohol consumption associated with reduced semen quality and changes in reproductive hormones; a cross-sectional study among 1221 young Danish men. BMJ Open 2014, 4, e005462. [Google Scholar] [CrossRef]
- Heberlein, A.; Lenz, B.; Opfermann, B.; Gröschl, M.; Janke, E.; Stange, K.; Groh, A.; Kornhuber, J.; Frieling, H.; Bleich, S.; et al. Association of testosterone and BDNF serum levels with craving during alcohol withdrawal. Alcohol 2016, 54, 67–72. [Google Scholar] [CrossRef]
- Anifandis, G.; Bounartzi, T.; Messini, C.I.; Dafopoulos, K.; Sotiriou, S.; Messinis, I.E. The impact of cigarette smoking and alcohol consumption on sperm parameters and sperm DNA fragmentation (SDF) measured by Halosperm(®). Arch. Gynecol. Obstet. 2014, 290, 777–782. [Google Scholar] [CrossRef]
- Chia, S.E.; Tay, S.K.; Lim, S.T. What constitutes a normal seminal analysis? Semen parameters of 243 fertile men. Human Reprod. 1998, 13, 3394–3398. [Google Scholar] [CrossRef]
- Condorelli, R.A.; Calogero, A.E.; Vicari, E.; La Vignera, S. Chronic consumption of alcohol and sperm parameters: Our experience and the main evidences. Andrologia 2015, 47, 368–379. [Google Scholar] [CrossRef]
- Goverde, H.J.; Dekker, H.S.; Janssen, H.J.; Bastiaans, B.A.; Rolland, R.; Zielhuis, G.A. Semen quality and frequency of smoking and alcohol consumption--an explorative study. Int. J. Fertil. Menopausal Stud. 1995, 40, 135–138. [Google Scholar] [PubMed]
- Joo, K.J.; Kwon, Y.W.; Myung, S.C.; Kim, T.H. The effects of smoking and alcohol intake on sperm quality: Light and transmission electron microscopy findings. J. Int. Med. Res. 2012, 40, 2327–2335. [Google Scholar] [CrossRef] [PubMed]
- Martini, A.C.; Molina, R.I.; Estofán, D.; Senestrari, D.; Fiol de Cuneo, M.; Ruiz, R.D. Effects of alcohol and cigarette consumption on human seminal quality. Fertil. Steril. 2004, 82, 374–377. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Genchi, V.A.; Cignarelli, A.; Sansone, A.; Yannas, D.; Dalla Valentina, L.; Renda Livraghi, D.; Spaggiari, G.; Santi, D. Understanding the Role of Alcohol in Metabolic Dysfunction and Male Infertility. Metabolites 2024, 14, 626. https://doi.org/10.3390/metabo14110626
Genchi VA, Cignarelli A, Sansone A, Yannas D, Dalla Valentina L, Renda Livraghi D, Spaggiari G, Santi D. Understanding the Role of Alcohol in Metabolic Dysfunction and Male Infertility. Metabolites. 2024; 14(11):626. https://doi.org/10.3390/metabo14110626
Chicago/Turabian StyleGenchi, Valentina Annamaria, Angelo Cignarelli, Andrea Sansone, Dimitri Yannas, Leonardo Dalla Valentina, Daniele Renda Livraghi, Giorgia Spaggiari, and Daniele Santi. 2024. "Understanding the Role of Alcohol in Metabolic Dysfunction and Male Infertility" Metabolites 14, no. 11: 626. https://doi.org/10.3390/metabo14110626
APA StyleGenchi, V. A., Cignarelli, A., Sansone, A., Yannas, D., Dalla Valentina, L., Renda Livraghi, D., Spaggiari, G., & Santi, D. (2024). Understanding the Role of Alcohol in Metabolic Dysfunction and Male Infertility. Metabolites, 14(11), 626. https://doi.org/10.3390/metabo14110626