Diabetes Causes Significant Alterations in Pulmonary Glucose Transporter Expression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Type 1 Diabetic Animal Model
2.2. Real-Time Quantitative PCR (qRT-PCR)
2.3. Immunofluorescence Staining to Visualize GLUT4 in the Lung
2.4. Photolabeling Biotinylation Assay
2.5. Western Blotting
2.6. Statistical Analyses
3. Results
3.1. Pulmonary GLUT Expression and Localization in Healthy Mice
3.2. Validation of the Diabetic Animal Model
3.3. Pulmonary GLUT Protein Expression during Diabetes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kornum, J.B.; Thomsen, R.W.; Riis, A.; Lervang, H.H.; Schonheyder, H.C.; Sorensen, H.T. Diabetes, glycemic control, and risk of hospitalization with pneumonia: A population-based case-control study. Diabetes Care 2008, 31, 1541–1545. [Google Scholar] [CrossRef]
- Leegaard, A.; Riis, A.; Kornum, J.B.; Prahl, J.B.; Thomsen, V.O.; Sorensen, H.T.; Horsburgh, C.R.; Thomsen, R.W. Diabetes, glycemic control, and risk of tuberculosis: A population-based case-control study. Diabetes Care 2011, 34, 2530–2535. [Google Scholar] [CrossRef] [PubMed]
- Casqueiro, J.; Casqueiro, J.; Alves, C. Infections in patients with diabetes mellitus: A review of pathogenesis. Indian J. Endocrinol. Metab. 2012, 16 (Suppl. 1), S27–S36. [Google Scholar] [CrossRef] [PubMed]
- Colquhoun, A.J.; Nicholson, K.G.; Botha, J.L.; Raymond, N.T. Effectiveness of influenza vaccine in reducing hospital admissions in people with diabetes. Epidemiol. Infect. 1997, 119, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Garnett, J.P.; Baker, E.H.; Baines, D.L. Sweet talk: Insights into the nature and importance of glucose transport in lung epithelium. Eur. Respir. J. 2012, 40, 1269–1276. [Google Scholar] [CrossRef] [PubMed]
- Garnett, J.P.; Braun, D.; McCarthy, A.J.; Farrant, M.R.; Baker, E.H.; Lindsay, J.A.; Baines, D.L. Fructose transport-deficient Staphylococcus aureus reveals important role of epithelial glucose transporters in limiting sugar-driven bacterial growth in airway surface liquid. Cell Mol. Life Sci. 2014, 71, 4665–4673. [Google Scholar] [CrossRef] [PubMed]
- Mueckler, M.; Kruse, M.; Strube, M.; Riggs, A.C.; Chiu, K.C.; Permutt, M.A. A mutation in the Glut2 glucose transporter gene of a diabetic patient abolishes transport activity. J. Biol. Chem. 1994, 269, 17765–17767. [Google Scholar] [CrossRef]
- Vrhovac, I.; Balen Eror, D.; Klessen, D.; Burger, C.; Breljak, D.; Kraus, O.; Radovic, N.; Jadrijevic, S.; Aleksic, I.; Walles, T.; et al. Localizations of Na(+)-D-glucose cotransporters SGLT1 and SGLT2 in human kidney and of SGLT1 in human small intestine, liver, lung, and heart. Pflug. Arch. 2015, 467, 1881–1898. [Google Scholar] [CrossRef] [PubMed]
- Molina, S.A.; Moriarty, H.K.; Infield, D.T.; Imhoff, B.R.; Vance, R.J.; Kim, A.H.; Hansen, J.M.; Hunt, W.R.; Koval, M.; McCarty, N.A. Insulin signaling via the PI3-kinase/Akt pathway regulates airway glucose uptake and barrier function in a CFTR-dependent manner. Am. J. Physiol. Lung Cell Mol. Physiol. 2017, 312, L688–L702. [Google Scholar] [CrossRef] [PubMed]
- Baines, D.L.; Baker, E.H. Chapter 3—Glucose Transport and Homeostasis in Lung Epithelia. In Lung Epithelial Biology in the Pathogenesis of Pulmonary Disease; Sidhaye, V.K., Koval, M., Eds.; Academic Press: Boston, MA, USA, 2017; pp. 33–57. [Google Scholar]
- Kraegen, E.W.; James, D.E.; Jenkins, A.B.; Chisholm, D.J. Dose-response curves for in vivo insulin sensitivity in individual tissues in rats. Am. J. Physiol. 1985, 248, E353–E362. [Google Scholar] [CrossRef] [PubMed]
- Maria, Z.; Lacombe, V.A. Quantification of Cell-Surface Glucose Transporters in the Heart Using a Biotinylated Photolabeling Assay. Methods Mol. Biol. 2018, 1713, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Maria, Z.; Campolo, A.R.; Lacombe, V.A. Diabetes Alters the Expression and Translocation of the Insulin-Sensitive Glucose Transporters 4 and 8 in the Atria. PLoS ONE 2015, 10, e0146033. [Google Scholar] [CrossRef] [PubMed]
- Waller, A.P.; George, M.; Kalyanasundaram, A.; Kang, C.; Periasamy, M.; Hu, K.; Lacombe, V.A. GLUT12 functions as a basal and insulin-independent glucose transporter in the heart. Biochim. Biophys. Acta 2013, 1832, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Waller, A.P.; Kalyanasundaram, A.; Hayes, S.; Periasamy, M.; Lacombe, V.A. Sarcoplasmic reticulum Ca2+ ATPase pump is a major regulator of glucose transport in the healthy and diabetic heart. Biochim. Biophys. Acta 2015, 1852, 873–881. [Google Scholar] [CrossRef] [PubMed]
- Waller, A.P.; Burns, T.A.; Mudge, M.C.; Belknap, J.K.; Lacombe, V.A. Insulin resistance selectively alters cell-surface glucose transporters but not their total protein expression in equine skeletal muscle. J. Vet. Intern. Med. 2011, 25, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Waller, A.P.; Kohler, K.; Burns, T.A.; Mudge, M.C.; Belknap, J.K.; Lacombe, V.A. Naturally occurring compensated insulin resistance selectively alters glucose transporters in visceral and subcutaneous adipose tissues without change in AS160 activation. Biochim. Biophys. Acta 2011, 1812, 1098–1103. [Google Scholar] [CrossRef] [PubMed]
- Maria, Z.; Campolo, A.R.; Scherlag, B.J.; Ritchey, J.W.; Lacombe, V.A. Dysregulation of insulin-sensitive glucose transporters during insulin resistance-induced atrial fibrillation. Biochim. Biophys. Acta 2018, 1864, 987–996. [Google Scholar] [CrossRef] [PubMed]
- Baines, D.L.; Vasiljevs, S.; Kalsi, K.K. Getting sweeter: New evidence for glucose transporters in specific cell types of the airway? Am. J. Physiol. Cell Physiol. 2023, 324, C153–C166. [Google Scholar] [CrossRef] [PubMed]
- Rochowski, M.T.; Jayathilake, K.; Balcerak, J.M.; Selvan, M.T.; Gunasekara, S.; Rudd, J.; Miller, C.; Lacombe, V.A. Alterations of Whole-Body Glucose Metabolism in a Feline SARS-CoV-2 Infection Model. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2024, in press. [Google Scholar] [CrossRef] [PubMed]
- Rochowski, M.T.; Jayathilake, K.; Balcerak, J.M.; Selvan, M.T.; Gunasekara, S.; Miller, C.; Rudd, J.M.; Lacombe, V.A. Impact of Delta SARS-CoV-2 Infection on Glucose Metabolism: Insights on Host Metabolism and Virus Crosstalk in a Feline Model. Viruses 2024, 16, 295. [Google Scholar] [CrossRef] [PubMed]
- Baker, E.H.; Clark, N.; Brennan, A.L.; Fisher, D.A.; Gyi, K.M.; Hodson, M.E.; Philips, B.J.; Baines, D.L.; Wood, D.M. Hyperglycemia and cystic fibrosis alter respiratory fluid glucose concentrations estimated by breath condensate analysis. J. Appl. Physiol. 2007, 102, 1969–1975. [Google Scholar] [CrossRef] [PubMed]
- Damasceno, D.C.; Netto, A.O.; Iessi, I.L.; Gallego, F.Q.; Corvino, S.B.; Dallaqua, B.; Sinzato, Y.K.; Bueno, A.; Calderon, I.M.; Rudge, M.V. Streptozotocin-induced diabetes models: Pathophysiological mechanisms and fetal outcomes. Biomed. Res. Int. 2014, 2014, 819065. [Google Scholar] [CrossRef] [PubMed]
- Navale, A.M.; Paranjape, A.N. Glucose transporters: Physiological and pathological roles. Biophys. Rev. 2016, 8, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Rochowski, M.; Allen, S.M.F.; Campolo, A.; Lacombe, V. 191-LB: Influenza Replication Dependent on Host Cell Pulmonary Metabolism. Diabetes 2022, 71, 191-LB. [Google Scholar] [CrossRef]
- Campolo, A.R. Mechanisms Underlying Vascular and Respiratory Complications Associated with Diabetes (22589631). Ph.D. Thesis, Oklahoma State University, Stillwater, OK, USA, 2019. [Google Scholar]
Gene Name | Sequence (5′-3′) | Accession Number | Product Size |
---|---|---|---|
Beta Actin Forward | GAT TAC TGC TCT GGC TCC TAG | NM_007393.5 | 147 |
Beta Actin Reverse | GAC TCA TCG TAC TCC TGC TTG | ||
GLUT1 Forward | GGC TGA TTG GTG ACT TGT TGG | D10229.1 | 142 |
GLUT1 Reverse | GTG GAA CTG GTG AGT CTG GG | ||
GLUT2 Forward | CAG CTG TCC CTG TCC CAT TT | X78722.1 | 117 |
GLUT2 Reverse | AGC CTG ACC TGT GGT AAC TG | ||
GLUT3 Forward | GAC AGA CTA GGT GTG CCT GG | NM_011401.4 | 108 |
GLUT3 Reverse | GGT TTG TGA GAG GCC ATG TTT | ||
GLUT4 Forward | GTA ACT TC TTG TCG GCA TGG | NM_009204.2 | 128 |
GLUT4 Reverse | AGC TGA GAT CTG GTC AAA CG | ||
GLUT8 Forward | CTT CGT GAC TGG CTT TGC TG | NM_019488.5 | 102 |
GLUT8 Reverse | AAC ACC ATG ATC ACA CCC GA | ||
GLUT10 Forward | GGG CCT GAC CTT CGG ATA TG | NM_130451.3 | 140 |
GLUT10 Reverse | AGC GAA AGA TGG TAG AGG CG | ||
GLUT12 Forward | CCT GCC CTC AGG AAT CAC TC | NM_178934.4 | 108 |
GLUT12 Reverse | AGA CTG GGA CCA TTT GGT GG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campolo, A.; Maria, Z.; Lacombe, V.A. Diabetes Causes Significant Alterations in Pulmonary Glucose Transporter Expression. Metabolites 2024, 14, 267. https://doi.org/10.3390/metabo14050267
Campolo A, Maria Z, Lacombe VA. Diabetes Causes Significant Alterations in Pulmonary Glucose Transporter Expression. Metabolites. 2024; 14(5):267. https://doi.org/10.3390/metabo14050267
Chicago/Turabian StyleCampolo, Allison, Zahra Maria, and Véronique A. Lacombe. 2024. "Diabetes Causes Significant Alterations in Pulmonary Glucose Transporter Expression" Metabolites 14, no. 5: 267. https://doi.org/10.3390/metabo14050267
APA StyleCampolo, A., Maria, Z., & Lacombe, V. A. (2024). Diabetes Causes Significant Alterations in Pulmonary Glucose Transporter Expression. Metabolites, 14(5), 267. https://doi.org/10.3390/metabo14050267