Environmental and Metabolic Risk Factors Linked to Gallbladder Dysplasia
Abstract
:1. Introduction
2. Materials and Methods
3. Detection Methods and Biomarkers in Gallbladder Neoplasia
3.1. Risk Factors
3.2. Environmental Risk Factor
3.3. Geographic Distribution
3.4. Age
4. Gallstones
5. Chronic Inflammation
Chronic Inflammation Due to Pancreaticobiliary Maljunction
6. Infectious Markers
7. Metabolic Risk Factors
7.1. Obesity and Insulin Resistance
7.2. Genetic Risk Factors
- the inflammatory status induced by gallstones, followed by p53 mutation and eventual carcinoma;
- K-ras point mutations play a role in the progression from atypical epithelium to carcinoma, as seen in the hyperplasia–carcinoma sequence in patients with an anomalous junction of the pancreaticobiliary duct;
- the potential emergence of neoplastic foci in gallbladder polyps due to K-ras mutations;
8. The Role of Mucins in Gallbladder Lesions
9. Novel Aspects Regarding the Involvement of Telocytes in Gallbladder Lesions
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duffy, A.; Capanu, M.; Abou-Alfa, G.K.; Huitzil, D.; Jarnagin, W.; Fong, Y.; D’Angelica, M.; DeMatteo, R.P.; Blumgart, L.H.; O’Reilly, E.M. Gallbladder cancer (GBC): 10-year experience at Memorial Sloan-Kettering Cancer Centre (MSKCC). J. Surg. Oncol. 2008, 98, 485–489. [Google Scholar] [CrossRef]
- Surveillance, Epidemiology and End-Results Program (SEER). The Four Most Common Cancers for Different Ethnic Populations 2013; National Cancer Institute: Bethesda, MD, USA, 2013.
- Gupta, P.; Agarwal, A.; Gupta, V.; Singh, P.K.; Pantola, C.; Amit, S. Expression and clinicopathological significance of estrogen and progesterone receptors in gallbladder cancer. Gastrointest. Cancer Res. 2012, 5, 41–47. [Google Scholar]
- Hundal, R.; Shaffer, E.A. Gallbladder cancer: Epidemiology and outcome. Clin. Epidemiol. 2014, 6, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Pilgrim, C.H.C.; Usatoff, V.; Evans, P. Consideration of anatomical structures relevant to the surgical strategy for managing gallbladder carcinoma. Eur. J. Surg. Oncol. 2009, 35, 1131–1136. [Google Scholar] [CrossRef]
- Bojan, A.; Foia, L.G.; Vladeanu, M.C.; Bararu Bojan, I.; Plesoianu, C.; Plesoianu, A.; Pricop, C. Understanding the mechanisms of gallbladder lesions: A systematic review. Exp. Ther. Med. 2022, 24, 604. [Google Scholar] [CrossRef]
- Vilkin, A.; Nudelman, I.; Morgenstern, S.; Geller, A.; Bar Dayan, Y.; Levi, Z.; Rodionov, G.; Hardy, B.; Konikoff, F.; Gobbic, D.; et al. Gallbladder inflammation is associated with increase in mucin expression and pigmented stone formation. Dig. Dis. Sci. 2007, 52, 1613–1620. [Google Scholar] [CrossRef]
- Mochidome, N.; Koga, Y.; Ohishi, Y.; Miyazaki, T.; Matsuda, R.; Yamada, Y.; Aishima, S.; Nakamura, M.; Oda, Y. Prognostic implications of the coexisting precursor lesion types in invasive gallbladder cancer. Hum. Pathol. 2021, 114, 44–53. [Google Scholar] [CrossRef]
- Stringer, M.D.; Fraser, S.; Gordon, K.C.; Sharples, K.; Windsor, J.A. Gallstones in New Zealand: Composition, risk factors and ethnic differences. ANZ J. Surg. 2013, 83, 575–580. [Google Scholar] [CrossRef]
- Shaffer, E.A. Epidemiology of gallbladder stone disease. Best Pract. Res. Clin. Gastroenterol. 2006, 20, 981–996. [Google Scholar] [CrossRef]
- Desai, G.; Bhardwaj, A.; Lokhande, K.; Wagle, P.K. Synchronous Multifocal Gall Bladder Cancer and Extrahepatic Cholangiocarcinoma. J. Gastrointest. Cancer 2023, 54, 989–991. [Google Scholar] [CrossRef]
- Koea, J.; Phillips, A.; Lawes, C.; Rodgers, M.; Windsor, J.; McCall, J. Gall bladder cancer, extrahepatic bile duct cancer and ampullary carcinoma in New Zealand: Demographics, pathology and survival. ANZ J. Surg. 2002, 72, 857–861. [Google Scholar] [CrossRef]
- Stinton, L.M.; Shaffer, E.A. Epidemiology of gallbladder disease: Cholelithiasis and cancer. Gut Liver. 2012, 6, 172–187. [Google Scholar] [CrossRef]
- Schnelldorfer, T. Porcelain gallbladder: A benign process or concern for malignancy? J. Gastrointest. Surg. 2013, 17, 1161–1168. [Google Scholar] [CrossRef] [PubMed]
- Razumilava, N.; Gores, G.J.; Lindor, K.D. Cancer surveillance in patients with primary sclerosing cholangitis. Hepatology 2011, 54, 1842–1852. [Google Scholar] [CrossRef]
- Huang, J.; Lucero-Prisno, D.E.; Zhang, L.; Xu, W.; Wong, S.H.; Ng, S.C.; Wong, M.C.S. Updated epidemiology of gastrointestinal cancers in East Asia. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 271–287. [Google Scholar] [CrossRef] [PubMed]
- Kamisawa, T.; Kuruma, S.; Chiba, K.; Tabata, T.; Koizumi, S.; Kikuyama, M. Biliary carcinogenesis in pancreaticobiliary maljunction. J. Gastroenterol. 2017, 52, 158–163. [Google Scholar] [CrossRef]
- Gonzalez-Escobedo, G.; Marshall, J.M. Chronic and acute infection of the gall bladder by Salmonella Typhi: Understanding the carrier state. Nat. Rev. Microbiol. 2011, 9, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Ajiki, T.; Fujimori, T.; Onoyama, H.; Yamamoto, M.; Kitazawa, S.; Maeda, S.; Saitoh, Y. K-ras gene mutation in gall bladder carcinomas and dysplasia. Gut 1996, 38, 426–429. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, B.; Qiao, L. Association between obesity and gallbladder cancer. Front. Biosci. 2012, 17, 2550–2558. [Google Scholar] [CrossRef]
- Samanic, C.; Gridley, G.; Chow, W.H.; Lubin, J.; Hoover, R.N.; Fraumeni, J.F., Jr. Obesity and cancer risk among white and black United States veterans. Cancer Causes Control 2004, 15, 35–43. [Google Scholar] [CrossRef]
- Boland, L.L.; Folsom, A.R.; Rosamond, W.D.; Atherosclerosis Risk in Communities (ARIC) Study Investigators. Hyperinsulinemia, dyslipidemia, and obesity as risk factors for hospitalized gallbladder disease. A prospective study. Ann. Epidemiol. 2002, 12, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Maury, E.; Brichard, S.M. Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol. Cell. Endocrinol. 2010, 314, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, O.; Gupta, M.; Kaushik, S.; Acharya, S.; Thakur, B.; Bhardwaj, A. Study of morphology with assessment of expression of proliferation marker Ki67 antigen and P53 protein in lesions of gall bladder. Indian J. Pathol. Microbiol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Saetta, A.A. K-ras, p53 Mutations, and Microsatellite Instability (MSI) in Gallbladder Cancer. J. Surg. Oncol. 2006, 93, 644–649. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Peng, X.; Dong, K.; Long, J.; Guo, X.; Li, H.; Bai, Y.; Yang, X.; Wang, D.; Lu, X.; et al. Genomic characterization of co-existing neoplasia and carcinoma lesions reveals distinct evolutionary paths of gallbladder cancer. Nat. Commun. 2021, 12, 4753. [Google Scholar] [CrossRef] [PubMed]
- Feo, C.F.; Ginesu, G.C.; Fancellu, A.; Perra, T.; Ninniri, C.; Deiana, G.; Scanu, A.M.; Porcu, A. Current management of incidental gallbladder cancer: A review. Int. J. Surg. 2022, 98, 106234. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Chen, J.; Wei, H.; Gao, P.; Shi, J.; Zhang, J.; Zhao, F. The risk factor of gallbladder cancer: Hyperplasia of mucous epithelium caused by gallstones associates with p16/CyclinD1/CDK4 pathway. Exp. Mol. Pathol. 2011, 91, 569–577. [Google Scholar] [CrossRef]
- Vicent, S.; Lieshout, R.; Saborowski, A.; Verstegen, M.M.A.; Raggi, C.; Recalcati, S.; Invernizzi, P.; van der Laan, L.J.W.; Alvaro, D.; Calvisi, D.F.; et al. Experimental models to unravel the molecular pathogenesis, cell of origin and stem cell properties of cholangiocarcinoma. Liver Int. 2019, 39, 79–97. [Google Scholar] [CrossRef]
- Akita, M.; Fujikura, K.; Ajiki, T.; Fukumoto, T.; Otani, K.; Hirose, T.; Tominaga, M.; Itoh, T.; Zen, Y. Intracholecystic papillary neoplasms are distinct from papillary gallbladder cancers: A clinicopathologic and exome-sequencing study. Am. J. Surg. Pathol. 2019, 43, 783–791. [Google Scholar] [CrossRef]
- Alexandrov, L.B.; Jones, P.H.; Wedge, D.C.; Sale, J.E.; Campbell, P.J.; Nik-Zainal, S.; Stratton, M.R. Clock-like mutational processes in human somatic cells. Nat. Genet. 2015, 47, 1402–1407. [Google Scholar] [CrossRef]
- Bailey, M.H.; Tokheim, C.; Porta-Pardo, E.; Sengupta, S.; Bertrand, D.; Weerasinghe, A.; Colaprico, A.; Wendl, M.C.; Kim, J.; Reardon, B.; et al. Comprehensive characterization of cancer driver genes and mutations. Cell 2018, 173, 371–385.e18. [Google Scholar] [CrossRef]
- Jain, K.M.; Mohapatra, T.M.; Das, P.; Misra, M.C.; Gupta, S.D.; Ghosh, M.; Kabra, M.; Bansal, V.K.; Kumar, S.; Sreenivas, V.M.; et al. Sequential occurrence of preneoplastic lesions and accumulation of loss of heterozygosity in patients with gallbladder stones suggest causal association with gallbladder cancer. Ann. Surg. 2014, 260, 1073–1080. [Google Scholar] [CrossRef] [PubMed]
- Reiter, J.G.; Makohon-Moore, A.P.; Gerold, J.M.; Bozic, I.; Chatterjee, K.; Iacobuzio-Donahue, C.A.; Vogelstein, B.; Nowak, M.A. Reconstructing metastatic seeding patterns of human cancers. Nat. Commun. 2017, 8, 14114. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Shen, R.; Seshan, V.E. FACETS: Allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencing. Nucleic Acids Res. 2016, 44, e131. [Google Scholar] [CrossRef] [PubMed]
- Miquel, J.F.; Lazcano-Ponce, E.C.; Muñoz, N.; Herrero, R.; Ferrecio, C.; Wistuba, I.I.; de Ruiz, P.A.; Urista, G.A.; Nervi, F. Epidemiology and molecular pathology of gallbladder cancer. CA Cancer J. Clin. 2001, 51, 349–364. [Google Scholar] [CrossRef] [PubMed]
- Rebouissou, S.; Franconi, A.; Calderaro, J.; Letouzé, E.; Imbeaud, S.; Pilati, C.; Nault, J.; Couchy, G.; Laurent, A.; Balabaud, C.; et al. Genotype-phenotype correlation of CTNNB1 mutations reveals different ss-catenin activity associated with liver tumor progression. Hepatology 2016, 64, 2047–2061. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhang, Z.; Li, X.; Ye, J.; Wu, X.; Tan, Z.; Liu, C.; Shen, B.; Wang, X.-A.; Wu, W.; et al. Whole-exome and targeted gene sequencing of gallbladder carcinoma identifies recurrent mutations in the ErbB pathway. Nat. Genet. 2014, 46, 872–876. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Sharma, K.L.; Gupta, A.; Yadav, A.; Kumar, A. Gallbladder cancer epidemiology, pathogenesis and molecular genetics: Recent update. World J. Gastroenterol. 2017, 23, 3978–3998. [Google Scholar] [CrossRef] [PubMed]
- Wistuba, I.I.; Tang, M.; Maitra, A.; Alvarez, H.; Troncoso, P.; Pimentel, F.; Gazdar, A.F. Genome-wide allelotyping analysis reveals multiple sites of allelic loss in gallbladder carcinoma. Cancer Res. 2001, 61, 3795–3800. [Google Scholar]
- Masuhara, S.; Kasuya, K.; Aoki, T.; Yoshimatsu, A.; Tsuchida, A.; Koyanagi, Y. Relation between K-ras codon 12 mutation and p53 protein overexpression in gallbladder cancer and biliary ductal epithelia in patients with pancreaticobiliary maljunction. J. Hepatobiliary Pancreat. Sci. 2000, 7, 198–205. [Google Scholar] [CrossRef]
- Wang, S.N.; Chung, S.C.; Tsai, K.B.; Chai, C.Y.; Chang, W.T.; Kuo, K.K.; Chen, J.S.; Lee, K.T. Aberrant p53 expression and the development of gallbladder carcinoma and adenoma. Kaohsiung J. Med. Sci. 2006, 22, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, M.; Sakhuja, P.; Singh, S.; Agarwal, A.K. p53 and beta-catenin expression in gallbladder tissues and correlation with tumor progression in gallbladder cancer. Saudi J. Gastroenterol. 2013, 19, 34–39. [Google Scholar] [PubMed]
- Kasprzak, A.; Adamek, A. Mucins: The Old, the New and the Promising Factors in Hepatobiliary Carcinogenesis. Int. J. Mol. Sci. 2019, 20, 1288. [Google Scholar] [CrossRef]
- Pelaseyed, T.; Bergström, J.H.; Gustafsson, J.K.; Ermund, A.; Birchenough, G.M.; Schütte, A.; van der Post, S.; Svensson, F.; Rodríguez-Piñeiro, A.M.; Nyström, E.E.; et al. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol. Rev. 2014, 260, 8–20. [Google Scholar] [CrossRef]
- Li, Q.; Wang, F.; Liu, G.; Yuan, H.; Chen, T.; Wang, J.; Xie, F.; Zhai, R.; Wang, F.; Guo, Y.; et al. Impact of Mucin1 knockdown on the phenotypic characteristics of the human hepatocellular carcinoma cell line SMMC-7721. Oncol. Rep. 2014, 31, 2811–2819. [Google Scholar] [CrossRef]
- Nakanuma, Y.; Kakuda, Y.; Uesaka, K. Characterization of Intraductal Papillary Neoplasm of the Bile Duct with Respect to the Histopathologic Similarities to Pancreatic Intraductal Papillary Mucinous Neoplasm. Gut Liver. 2019, 13, 617–627. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wu, T.; Lu, J.; Cao, Y.; Song, N.; Yang, T.; Dong, R.; Yang, Y.; Zang, L.; Du, X.; et al. Immunohistochemical evidence of the prognostic value of hedgehog pathway components in primary gallbladder carcinoma. Surg. Today 2012, 42, 770–775. [Google Scholar] [CrossRef]
- Nakanuma, Y.; Uesaka, K.; Kakuda, Y.; Sugino, T.; Kubota, K.; Furukawa, T.; Fukumura, Y.; Isayama, H.; Terada, T. Intraductal Papillary Neoplasm of Bile Duct: Updated Clinicopathological Characteristics and Molecular and Genetic Alterations. J. Clin. Med. 2020, 9, 3991. [Google Scholar] [CrossRef] [PubMed]
- Bhoge, A.; Khandeparkar, S.G.S.; Joshi, A.R.; Gogate, B.; Kulkarni, M.M.; Bhayekar, P. Immunohistochemical Study of MUC1 and MUC5AC Expression in Gall Bladder Lesions. J. Clin. Diagn. Res. 2017, 11, EC12–EC16. [Google Scholar] [CrossRef]
- Sasaki, M.; Yamato, T.; Nakanuma, Y.; Ho, S.B.; Kim, Y.S. Expression of MUC2, MUC5AC and MUC6 apomucins in carcinoma, dysplasia and non-dysplastic epithelia of the gallbladder. Pathol. Int. 1999, 49, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-M.; Oh, S.-J.; Hur, B. Expression of MUC1 and MUC4 in gallbladder adenocarcinoma. Korean J. Pathol. 2012, 46, 429–435. [Google Scholar] [CrossRef]
- Ding, F.; Hu, Q.; Wang, Y.; Jiang, M.; Cui, Z.; Guo, R.; Liu, L.; Chen, F.; Hu, H.; Zhao, G. Smooth muscle cells, interstitial cells and neurons in the gallbladder (GB): Functional syncytium of electrical rhythmicity and GB motility (Review). Int. J. Mol. Med. 2023, 51, 33. [Google Scholar] [CrossRef] [PubMed]
- Bugajska, J.; Berska, J.; Pasternak, A.; Sztefko, K. Biliary Amino Acids and Telocytes in Gallstone Disease. Metabolites 2023, 13, 753. [Google Scholar] [CrossRef] [PubMed]
Steps | Number of Remaining Studies |
---|---|
Initial Pubmed results | 409 |
Excluded: not written in English or comprising single case reports | 347 |
Selected systematic reviews and meta-analyses plus original articles | 62 |
Excluded: studies focusing on children | 61 |
Final results | 61 |
Topic | Summary | Reference |
---|---|---|
Molecular Pathogenesis of Gallbladder Cancer |
| [24,25,26] |
| ||
Gallbladder BilIN and Gallbladder Cancer Risk |
| [27] |
(LOH) in Gallbladder Cancer |
| [31,32] |
KRAS Mutations in Gallbladder Cancer |
| [34] |
TP53 Mutations in Gallbladder Cancer |
| [36] |
c-erb-B2 (HER2/neu) Expression in Gallbladder Cancer |
| [38] |
DNA Methylation Patterns in Gallbladder Cancer |
| [41,42] |
Genetic Studies and GBC Susceptibility |
| [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bojan, A.; Pricop, C.; Ciocoiu, M.; Vladeanu, M.C.; Bararu Bojan, I.; Badulescu, O.V.; Badescu, M.C.; Plesoianu, C.E.; Halitchi, D.I.; Foia, L.G. Environmental and Metabolic Risk Factors Linked to Gallbladder Dysplasia. Metabolites 2024, 14, 273. https://doi.org/10.3390/metabo14050273
Bojan A, Pricop C, Ciocoiu M, Vladeanu MC, Bararu Bojan I, Badulescu OV, Badescu MC, Plesoianu CE, Halitchi DI, Foia LG. Environmental and Metabolic Risk Factors Linked to Gallbladder Dysplasia. Metabolites. 2024; 14(5):273. https://doi.org/10.3390/metabo14050273
Chicago/Turabian StyleBojan, Andrei, Catalin Pricop, Manuela Ciocoiu, Maria Cristina Vladeanu, Iris Bararu Bojan, Oana Viola Badulescu, Minerva Codruta Badescu, Carmen Elena Plesoianu, Dan Iliescu Halitchi, and Liliana Georgeta Foia. 2024. "Environmental and Metabolic Risk Factors Linked to Gallbladder Dysplasia" Metabolites 14, no. 5: 273. https://doi.org/10.3390/metabo14050273
APA StyleBojan, A., Pricop, C., Ciocoiu, M., Vladeanu, M. C., Bararu Bojan, I., Badulescu, O. V., Badescu, M. C., Plesoianu, C. E., Halitchi, D. I., & Foia, L. G. (2024). Environmental and Metabolic Risk Factors Linked to Gallbladder Dysplasia. Metabolites, 14(5), 273. https://doi.org/10.3390/metabo14050273