Photosynthetic Activities, Phytohormones, and Secondary Metabolites Induction in Plants by Prevailing Compost Residue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field History
2.2. Planting and Growth Conditions
2.3. Data Collection
2.3.1. Plant Growth Parameters and Photosynthetic Activities
Chlorophyll a, Chlorophyll b, and Carotenoid Assays
Total Soluble Sugar and Protein Assays
Total Phenolics and Flavonoids Assays
Hydrogen Peroxide and Lipid Peroxidation Assays
DPPH Free Radical Scavenging Capacity Assay
2.3.2. Phytohormone Analysis
Hormone Quantification by HPLC-ESI-MS/MS
2.4. Statistical Analysis
3. Results
3.1. Plant Growth and Photosynthetic Activities
3.2. Plant Tissue Biochemical Composition
3.3. Phytohormone Composition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benková, E. Plant hormones in interactions with the environment. Plant Mol. Biol. 2016, 91, 597. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.; Fang, S.; Xin, P.; Guo, Z.; Chen, Y.; Li, J.; Li, C.; Smith, S.M. Quantitative analysis of plant hormones based on LC-MS/MS. In Hormone Metabolism and Signaling in Plants; Academic Press: London, UK, 2017; pp. 471–537. [Google Scholar]
- Su, Y.; Xia, S.; Wang, R.; Xiao, L. Phytohormonal quantification based on biological principles. In Hormone Metabolism and Signaling in Plants; Academic Press: London, UK, 2017; pp. 431–470. [Google Scholar]
- El Sabagh, A.; Islam, M.S.; Hossain, A.; Iqbal, M.A.; Mubeen, M.; Waleed, M.; Reginato, M.; Battaglia, M.; Ahmed, S.; Rehman, A. Phytohormones as growth regulators during abiotic stress tolerance in plants. Front. Agron. 2022, 4, 765068. [Google Scholar] [CrossRef]
- Bari, R.; Jones, J.D.G. Role of plant hormones in plant defence responses. Plant Mol. Biol. 2009, 69, 473–488. [Google Scholar] [CrossRef] [PubMed]
- Verma, V.; Ravindran, P.; Kumar, P.P. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 2016, 16, 86. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Manghwar, H.; Shaban, M.; Khan, A.H.; Akbar, A.; Ali, U.; Ali, E.; Fahad, S. Phytohormones enhanced drought tolerance in plants: A coping strategy. Environ. Sci. Pollut. Res. 2018, 25, 33103–33118. [Google Scholar] [CrossRef]
- Daglia, M. Polyphenols as antimicrobial agents. Curr. Opin. Biotechnol. 2012, 23, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Nurnaeimah, N.; Mat, N.; Suryati Mohd, K.; Badaluddin, N.A.; Yusoff, N.; Sajili, M.H.; Mahmud, K.; Mohd Adnan, A.F.; Khandaker, M.M. The Effects of Hydrogen Peroxide on Plant Growth, Mineral Accumulation, as Well as Biological and Chemical Properties of Ficus deltoidea. Agronomy 2020, 10, 599. [Google Scholar] [CrossRef]
- Abbey, L.; Yurgel, S.N.; Asunni, O.A.; Ofoe, R.; Ampofo, J.; Gunupuru, L.R.; Ajeethan, N. Changes in Soil Characteristics, Microbial Metabolic Pathways, TCA Cycle Metabolites and Crop Productivity following Frequent Application of Municipal Solid Waste Compost. Plants 2022, 11, 3153. [Google Scholar] [CrossRef]
- Singh, Y.P.; Arora, S.; Mishra, V.K.; Singh, A.K. Synergizing Microbial Enriched Municipal Solid Waste Compost and Mineral Gypsum for Optimizing Rice-Wheat Productivity in Sodic Soils. Sustainability 2022, 14, 7809. [Google Scholar] [CrossRef]
- Neugart, S.; Wiesner-Reinhold, M.; Frede, K.; Jander, E.; Homann, T.; Rawel, H.M.; Schreiner, M.; Baldermann, S. Effect of Solid Biological Waste Compost on the Metabolite Profile of Brassica rapa ssp. chinensis. Front. Plant Sci. 2018, 9, 305. [Google Scholar] [CrossRef]
- Waqas, M.; Hashim, S.; Humphries, U.W.; Ahmad, S.; Noor, R.; Shoaib, M.; Naseem, A.; Hlaing, P.T.; Lin, H.A. Composting Processes for Agricultural Waste Management: A Comprehensive Review. Processes 2023, 11, 731. [Google Scholar] [CrossRef]
- Ampese, L.C.; Ziero, H.D.D.; Velásquez, J.; Sganzerla, W.G.; Martins, G.; Forster-Carneiro, T. Apple pomace management by anaerobic digestion and composting: A life cycle assessment. Biofuels Bioprod. Biorefining 2023, 17, 29–45. [Google Scholar] [CrossRef]
- Wilson, K.; Sundar, R.D.V.; Arunachalam, S. A Review on the Role of Compost Microbes in the Abiotic Stress Tolerance in Plants. ECS Trans. 2022, 107, 13723. [Google Scholar] [CrossRef]
- Klimas, E.; Szymańska-Pulikowska, A.; Górka, B.M.; Wieczorek, P. Presence of plant hormones in composts made from organic fraction of municipal solid waste. J. Elem. 2016, 21, 1043–1053. [Google Scholar]
- Abbey, L.; Ijenyo, M.; Spence, B.; Asunni, A.O.; Ofoe, R.; Amo-Larbi, V. Bioaccumulation of chemical elements in vegetables as influenced by application frequency of municipal solid waste compost. Can. J. Plant Sci. 2021, 101, 967–983. [Google Scholar] [CrossRef]
- Abbey, L.; Ofoe, R.; Gunupuru, L.R.; Ijenyo, M. Variation in frequency of CQA-tested municipal solid waste compost can alter metabolites in vegetables. Food Res. Int. 2021, 143, 110225. [Google Scholar] [CrossRef]
- Chaudhary, P.; Sharma, A.; Singh, B.; Nagpal, A.K. Bioactivities of phytochemicals present in tomato. J. Food Sci. Technol. 2018, 55, 2833–2849. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1987; Volume 148, pp. 350–382. [Google Scholar]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef]
- Chang, C.-C.; Yang, M.-H.; Wen, H.-M.; Chern, J.-C. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colorimetric Methods. J. Food Drug Anal. 2002, 10, 3. [Google Scholar]
- Alexieva, V.; Sergiev, I.; Mapelli, S.; Karanov, E. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 2001, 24, 1337–1344. [Google Scholar] [CrossRef]
- Hodges, D.M.; DeLong, J.M.; Forney, C.F.; Prange, R.K.J.P. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 1999, 207, 604–611. [Google Scholar] [CrossRef]
- Dudonné, S.; Vitrac, X.; Coutière, P.; Woillez, M.; Mérillon, J.-M. Comparative Study of Antioxidant Properties and Total Phenolic Content of 30 Plant Extracts of Industrial Interest Using DPPH, ABTS, FRAP, SOD, and ORAC Assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef]
- Abrams, S.R.; Nelson, K.; Ambrose, S.J. Deuterated abscisic acid analogs for mass spectrometry and metabolism studies. J. Label. Compd. Radiopharm. 2003, 46, 273–283. [Google Scholar] [CrossRef]
- Galka, P.W.; Ambrose, S.J.; Ross, A.R.S.; Abrams, S.R. Syntheses of deuterated jasmonates for mass spectrometry and metabolism studies. J. Label. Compd. Radiopharm. 2005, 48, 797–809. [Google Scholar] [CrossRef]
- Zaharia, L.I.; Galka, M.M.; Ambrose, S.J.; Abrams, S.R. Preparation of deuterated abscisic acid metabolites for use in mass spectrometry and feeding studies. J. Label. Compd. Radiopharm. 2005, 48, 435–445. [Google Scholar] [CrossRef]
- Lulsdorf, M.M.; Yuan, H.Y.; Slater, S.M.H.; Vandenberg, A.; Han, X.; Zaharia, L.I.; Abrams, S.R. Endogenous hormone profiles during early seed development of C. arietinum and C. anatolicum. Plant Growth Regul. 2013, 71, 191–198. [Google Scholar] [CrossRef]
- Chauvaux, N.; Van Dongen, W.; Esmans, E.L.; Van Onckelen, H.A. Quantitative analysis of 1-aminocyclopropane-1-carboxylic acid by liquid chromatography coupled to electrospray tandem mass spectrometry. J. Chromatogr. A 1997, 775, 143–150. [Google Scholar] [CrossRef]
- Murmu, J.; Wilton, M.; Allard, G.; Pandeya, R.; Desveaux, D.; Singh, J.; Subramaniam, R. Arabidopsis GOLDEN2-LIKE (GLK) transcription factors activate jasmonic acid (JA)-dependent disease susceptibility to the biotrophic pathogen Hyaloperonospora arabidopsidis, as well as JA-independent plant immunity against the necrotrophic pathogen Botrytis cinerea. Mol. Plant Pathol. 2014, 15, 174–184. [Google Scholar] [CrossRef]
- Owusu-Nketia, S.; Inukai, Y.; Ohashi, S.; Suralta, R.R.; Doi, K.; Mitsuya, S.; Kano-Nakata, M.; Niones, J.M.; Nguyen, D.T.N.; Takuya, K.; et al. Root plasticity under fluctuating soil moisture stress exhibited by backcross inbred line of a rice variety, Nipponbare carrying introgressed segments from KDML105 and detection of the associated QTLs. Plant Prod. Sci. 2018, 21, 106–122. [Google Scholar] [CrossRef]
- Qiu, Z.; Esan, E.O.; Ijenyo, M.; Gunupuru, L.R.; Asiedu, S.K.; Abbey, L. Photosynthetic activity and onion growth response to compost and Epsom salt. Int. J. Veg. Sci. 2020, 26, 535–546. [Google Scholar] [CrossRef]
- Bolhàr-Nordenkampf, H.R.; Öquist, G. Chlorophyll fluorescence as a tool in photosynthesis research. In Photosynthesis and Production in a Changing Environment: A Field and Laboratory Manual; Hall, D.O., Scurlock, J.M.O., Bolhàr-Nordenkampf, H.R., Leegood, R.C., Long, S.P., Eds.; Springer: Dordrecht, The Netherlands, 1993; pp. 193–206. [Google Scholar]
- Shin, Y.K.; Bhandari, S.R.; Lee, J.G. Monitoring of Salinity, Temperature, and Drought Stress in Grafted Watermelon Seedlings Using Chlorophyll Fluorescence. Front. Plant Sci. 2021, 12, 786309. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Cao, H.; Chen, C.; Yue, C.; Hao, X.; Yang, Y.; Wang, X. Complementary transcriptomic and proteomic analyses of a chlorophyll-deficient tea plant cultivar reveal multiple metabolic pathway changes. J. Proteom. 2016, 130, 160–169. [Google Scholar] [CrossRef]
- Hormaetxe, K.; Esteban, R.; Becerril, J.M.; García-Plazaola, J.I. Dynamics of the α-tocopherol pool as affected by external (environmental) and internal (leaf age) factors in Buxus sempervirens leaves. Physiol. Plant. 2005, 125, 333–344. [Google Scholar] [CrossRef]
- Osório, M.L.; Osório, J.; Romano, A. Photosynthesis, energy partitioning, and metabolic adjustments of the endangered Cistaceae species Tuberaria major under high temperature and drought. Photosynthetica 2013, 51, 75–84. [Google Scholar] [CrossRef]
- Lemoine, R.; La Camera, S.; Atanassova, R.; Dédaldéchamp, F.; Allario, T.; Pourtau, N.; Bonnemain, J.-L.; Laloi, M.; Coutos-Thévenot, P.; Maurousset, L.; et al. Source-to-sink transport of sugar and regulation by environmental factors. Front. Plant Sci. 2013, 4, 272. [Google Scholar] [CrossRef]
- Rosa, M.; Prado, C.; Podazza, G.; Interdonato, R.; González, J.A.; Hilal, M.; Prado, F.E. Soluble sugars--metabolism, sensing and abiotic stress: A complex network in the life of plants. Plant Signal Behav. 2009, 4, 388–393. [Google Scholar] [CrossRef]
- Häusler, R.E.; Heinrichs, L.; Schmitz, J.; Flügge, U.-I. How Sugars Might Coordinate Chloroplast and Nuclear Gene Expression during Acclimation to High Light Intensities. Mol. Plant 2014, 7, 1121–1137. [Google Scholar] [CrossRef]
- Yamauchi, Y.; Sugimoto, Y. Effect of protein modification by malondialdehyde on the interaction between the oxygen-evolving complex 33 kDa protein and photosystem II core proteins. Planta 2010, 231, 1077–1088. [Google Scholar] [CrossRef]
- Morales, M.; Munné-Bosch, S. Malondialdehyde: Facts and Artifacts. Plant Physiol. 2019, 180, 1246–1250. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.Z.; Zhou, G.S.; Shimizu, H. Effects of Soil Drought with Nocturnal Warming on Leaf Stomatal Traits and Mesophyll Cell Ultrastructure of a Perennial Grass. Crop Sci. 2009, 49, 1843–1851. [Google Scholar] [CrossRef]
- Ouni, Y.; Albacete, A.; Cantero, E.; Lakhdar, A.; Abdelly, C.; Pérez-Alfocea, F.; Barhoumi, Z. Influence of municipal solid waste (MSW) compost on hormonal status and biomass partitioning in two forage species growing under saline soil conditions. Ecol. Eng. 2014, 64, 142–150. [Google Scholar] [CrossRef]
- Erana, F.G.; Tenkegna, T.A.; Asfaw, S.L. Effect of agro industrial wastes compost on soil health and onion yields improvements: Study at field condition. Int. J. Recycl. Org. Waste Agric. 2019, 8, 161–171. [Google Scholar] [CrossRef]
- Papafilippaki, A.; Paranychianakis, N.; Nikolaidis, N.P. Effects of soil type and municipal solid waste compost as soil amendment on Cichorium spinosum (spiny chicory) growth. Sci. Hortic. 2015, 195, 195–205. [Google Scholar] [CrossRef]
- Fahad, S.; Nie, L.; Chen, Y.; Wu, C.; Xiong, D.; Saud, S.; Hongyan, L.; Cui, K.; Huang, J. Crop Plant Hormones and Environmental Stress. In Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Springer International Publishing: Cham, Switzerland, 2015; Volume 15, pp. 371–400. [Google Scholar]
- Amira Shawky, S. Plant Growth Hormones. In Cell Growth; Biba, V., Michael, F., Eds.; IntechOpen: Rijeka, Croatia, 2019; Chapter 1. [Google Scholar]
- Tsavkelova, E.A.; Klimova, S.Y.; Cherdyntseva, T.A.; Netrusov, A.I. Hormones and hormone-like substances of microorganisms: A review. Appl. Biochem. Microbiol. 2006, 42, 229–235. [Google Scholar] [CrossRef]
- Nardi, S.; Pizzeghello, D.; Ertani, A. Hormone-like activity of the soil organic matter. Appl. Soil Ecol. 2018, 123, 517–520. [Google Scholar] [CrossRef]
- Shigenaga, A.M.; Berens, M.L.; Tsuda, K.; Argueso, C.T. Towards engineering of hormonal crosstalk in plant immunity. Curr. Opin. Plant Biol. 2017, 38, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Rehman, R.S.; Ali, M.; Ali Zafar, S.; Hussain, M.; Pasha, A.; Saqib Naveed, M.; Ahmad, M.; Waseem, M. Abscisic acid mediated abiotic stress tolerance in plants. Asian J. Res. Crop Sci. 2022, 7, 1–17. [Google Scholar] [CrossRef]
- Koyama, R.; Roberto, S.R.; de Souza, R.T.; Borges, W.F.S.; Anderson, M.; Waterhouse, A.L.; Cantu, D.; Fidelibus, M.W.; Blanco-Ulate, B. Exogenous Abscisic Acid Promotes Anthocyanin Biosynthesis and Increased Expression of Flavonoid Synthesis Genes in Vitis vinifera × Vitis labrusca Table Grapes in a Subtropical Region. Front. Plant Sci. 2018, 9, 323. [Google Scholar] [CrossRef]
- Mushtaq, M.A.; Pan, Q.; Chen, D.; Zhang, Q.; Ge, X.; Li, Z. Comparative Leaves Transcriptome Analysis Emphasizing on Accumulation of Anthocyanins in Brassica: Molecular Regulation and Potential Interaction with Photosynthesis. Front. Plant Sci. 2016, 7, 311. [Google Scholar] [CrossRef] [PubMed]
- Vernieri, P.; Pardossi, A.; Serra, G.; Tognoni, F. Changes in abscisic acid and its glucose ester in Phaseolus vulgaris L. during chilling and water stress. Plant Growth Regul. 1994, 15, 157–163. [Google Scholar] [CrossRef]
- Emenecker, R.J.; Strader, L.C. Auxin-Abscisic Acid Interactions in Plant Growth and Development. Biomolecules 2020, 10, 281. [Google Scholar] [CrossRef] [PubMed]
- Fukui, K.; Arai, K.; Tanaka, Y.; Aoi, Y.; Kukshal, V.; Jez, J.M.; Kubes, M.F.; Napier, R.; Zhao, Y.; Kasahara, H.; et al. Chemical inhibition of the auxin inactivation pathway uncovers the roles of metabolic turnover in auxin homeostasis. Proc. Natl. Acad. Sci. USA 2022, 119, e2206869119. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.; Xu, N.; Wu, Q.; Yu, B.; Li, X.; Chen, R.; Huang, J. Rice transcription factor OsMADS57 regulates plant height by modulating gibberellin catabolism. Rice 2019, 12, 38. [Google Scholar] [CrossRef]
- Nascimento, F.X.; Rossi, M.J.; Glick, B.R. Ethylene and 1-Aminocyclopropane-1-carboxylate (ACC) in Plant–Bacterial Interactions. Front. Plant Sci. 2018, 9, 114. [Google Scholar] [CrossRef]
- Vanderstraeten, L.; Van Der Straeten, D. Accumulation and Transport of 1-Aminocyclopropane-1-Carboxylic Acid (ACC) in Plants: Current Status, Considerations for Future Research and Agronomic Applications. Front. Plant Sci. 2017, 8, 38. [Google Scholar] [CrossRef]
- Dubois, M.; Van den Broeck, L.; Inzé, D. The Pivotal Role of Ethylene in Plant Growth. Trends Plant Sci. 2018, 23, 311–323. [Google Scholar] [CrossRef]
- D’Maris Amick, D.; Vlot, A.C.; Mary, C.W.; Daniel, F.K. Salicylic Acid Biosynthesis and Metabolism. Arab. Book 2011, 9, e0156. [Google Scholar] [CrossRef]
- Wasternack, C. Jasmonates: An Update on Biosynthesis, Signal Transduction and Action in Plant Stress Response, Growth and Development. Ann. Bot. 2007, 100, 681–697. [Google Scholar] [CrossRef]
- Chen, H.; Wilkerson, C.G.; Kuchar, J.A.; Phinney, B.S.; Howe, G.A. Jasmonate-inducible plant enzymes degrade essential amino acids in the herbivore midgut. Proc. Natl. Acad. Sci. USA 2005, 102, 19237–19242. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Xu, M.; Cai, X.; Han, Z.; Si, J.; Chen, D. Jasmonate Signaling Pathway Modulates Plant Defense, Growth, and Their Trade-Offs. Int. J. Mol. Sci. 2022, 23, 3945. [Google Scholar] [CrossRef]
- Ali, M.S.; Baek, K.H. Jasmonic Acid Signaling Pathway in Response to Abiotic Stresses in Plants. Int. J. Mol. Sci. 2020, 21, 621. [Google Scholar] [CrossRef] [PubMed]
- Koornneef, A.; Pieterse, C.M.J. Cross Talk in Defense Signaling. Plant Physiol. 2008, 146, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Zhou, S.; Yang, D.; Fan, Z. Revealing Shared and Distinct Genes Responding to JA and SA Signaling in Arabidopsis by Meta-Analysis. Front. Plant Sci. 2020, 11, 908. [Google Scholar]
Treatments | Number of Leaves | Stem Diameter (mm) | Fo | Fm |
---|---|---|---|---|
MSWC-soil | 8.5a | 7.1a | 213.5a | 1112.9a |
AN-soil | 7.8a | 6.6a | 204.3a | 1092.9a |
BI-soil | 5.0b | 5.5b | 203.8a | 986.3b |
C-soil | 5.0b | 4.8b | 224.6a | 984.9b |
p-value | 0.00 | 0.001 | 0.09 | 0.00 |
Treatments | Fv | Fv/Fm | Fv/Fo | Stomatal Conductance (mmol m−2 s−1) |
MSWC-soil | 899.4a | 0.808a | 4.215ab | 229.6b |
AN-soil | 888.6a | 0.813a | 4.353a | 326.7a |
BI-soil | 777.4b | 0.793b | 3.837bc | 240.0b |
C-soil | 761.6b | 0.769b | 3.534c | 212.9c |
p-value | 0.00 | 0.04 | 0.004 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbey, L.; Asiedu, S.K.; Chada, S.; Ofoe, R.; Amoako, P.O.; Owusu-Nketia, S.; Ajeethan, N.; Kumar, A.P.; Nutsukpo, E.B. Photosynthetic Activities, Phytohormones, and Secondary Metabolites Induction in Plants by Prevailing Compost Residue. Metabolites 2024, 14, 400. https://doi.org/10.3390/metabo14080400
Abbey L, Asiedu SK, Chada S, Ofoe R, Amoako PO, Owusu-Nketia S, Ajeethan N, Kumar AP, Nutsukpo EB. Photosynthetic Activities, Phytohormones, and Secondary Metabolites Induction in Plants by Prevailing Compost Residue. Metabolites. 2024; 14(8):400. https://doi.org/10.3390/metabo14080400
Chicago/Turabian StyleAbbey, Lord, Samuel Kwaku Asiedu, Sparsha Chada, Raphael Ofoe, Peter Ofori Amoako, Stella Owusu-Nketia, Nivethika Ajeethan, Anagha Pradeep Kumar, and Efoo Bawa Nutsukpo. 2024. "Photosynthetic Activities, Phytohormones, and Secondary Metabolites Induction in Plants by Prevailing Compost Residue" Metabolites 14, no. 8: 400. https://doi.org/10.3390/metabo14080400
APA StyleAbbey, L., Asiedu, S. K., Chada, S., Ofoe, R., Amoako, P. O., Owusu-Nketia, S., Ajeethan, N., Kumar, A. P., & Nutsukpo, E. B. (2024). Photosynthetic Activities, Phytohormones, and Secondary Metabolites Induction in Plants by Prevailing Compost Residue. Metabolites, 14(8), 400. https://doi.org/10.3390/metabo14080400