Cultivation of Fungal Endophytes with Tissue Culture Grapevine Seedlings Reprograms Metabolism by Triggering Defence Responses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Fungal Endophytes and Tissue–Cultured Grapevine Seedlings
2.2. Fungal Endophytes Inoculation and Fungal Endophyte Isolation Rates Determination
2.3. RNA Sequencing, cDNA Library Construction and qRT–PCR
2.4. Identification of Differentially Expressed Genes (DEGs) and Analysis Enrichment Pathways
2.5. Correlation Networks Analysis for Key Gene Screening
3. Results
3.1. RNA–Seq Analysis of Tissue–Cultured Seedlings Treated with Endophyte Inoculation
3.2. Identification of DEGs
3.3. Cluster Analysis, Function Annotation, and Expression Patterns of the DEGs
3.4. DEGs Involved in Defence Responses Induced by the Endophytes Epi R2-21 and Alt XHYN2
3.5. DEGs Involved in Secondary Metabolism Induced by the Endophytes Epi R2-21 and Alt XHYN2
3.6. PPI Analysis of Key Genes Related to Secondary Metabolism against Endophyte Defence
4. Discussion
4.1. Endophytic–Induced Resistance in Grapevines, Similar to Pathogen Invasion
4.2. Fungal Endophytes Inoculation Induced the Expression of Genes Involved in Phytohormones and Secondary Metabolites in Tissue-Cultured Grapevine Seedlings
4.3. Differences in Responses between Endophyte Strains and Grapevine Cultivars
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, X.; Sun, M.; Chong, S.; Si, J.P.; Wu, L. Transcriptomic and metabolomic approaches deepen our knowledge of plant-endophyte interactions. Front. Plant Sci. 2022, 12, 700200. [Google Scholar] [CrossRef] [PubMed]
- Hardoim, P.R.; van Overbeek, L.S.; Berg, G.; Pirttilä, A.M.; Compant, S.; Campisano, A.; Döring, M.; Sessitsch, A. The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 2015, 79, 293–320. [Google Scholar] [CrossRef] [PubMed]
- Koskimäki, J.J.; Pohjanen, J.; Kvist, J.; Fester, T.; Härtig, C.; Podolich, O.; Fluch, S.; Edesi, J.; Häggman, H.; Pirttilä, A.M. The meristem-associated endosymbiont Methylorubrum extorquens DSM13060 reprograms development and stress responses of pine seedlings. Tree Physiol. 2022, 42, 391–410. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Chaturvedi, P.; Kulkarni, M.G.; Van Staden, J. A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. Biotechnol. Adv. 2020, 39, 107462. [Google Scholar] [CrossRef]
- Ahmed, A.; Munir, S.; He, P.; Li, Y.; He, P.; Wu, Y.; He, Y. Biocontrol arsenals of bacterial endophyte: An imminent triumph against clubroot disease. Microbiol. Res. 2020, 241, 126565. [Google Scholar] [CrossRef]
- Li, Z.; Wen, W.; Qin, M.; He, Y.; Xu, D.; Li, L. Biosynthetic mechanisms of secondary metabolites promoted by the interaction between endophytes and plant hosts. Front. Microbiol. 2022, 13, 928967. [Google Scholar] [CrossRef]
- Schulz, B.; Boyle, C. The endophytic continuum. Mycol. Res. 2005, 109, 661–686. [Google Scholar] [CrossRef] [PubMed]
- Schulz, B.; Rommert, A.K.; Dammann, U.; Aust, H.J.; Strack, D. The endophyte-host interaction: A balanced antagonism. Mycol. Res. 1999, 103, 1275–1283. [Google Scholar] [CrossRef]
- Arnold, A.E. Understanding the diversity of foliar endophytic fungi: Progress, challenges, and frontiers. Fungal Biol. Rev. 2007, 21, 51–66. [Google Scholar] [CrossRef]
- Khaiwa, N.; Maarouf, N.R.; Darwish, M.H.; Alhamad, D.W.M.; Sebastian, A.; Hamad, M.; Omar, H.A.; Orive, G.; Al-Tel, T.H. Camptothecin’s journey from discovery to WHO Essential Medicine: Fifty years of promise. Eur. J. Med. Chem. 2021, 223, 113639. [Google Scholar] [CrossRef]
- Holkar, S.K.; Ghotgalkar, P.S.; Markad, H.N.; Bhanbhane, V.C.; Saha, S.; Banerjee, K. Current status and future perspectives on distribution of fungal endophytes and their utilization for plant growth promotion and management of grapevine diseases. Curr. Microbiol. 2024, 81, 116. [Google Scholar] [CrossRef] [PubMed]
- Cuadros-Inostroza, Á.; Verdugo-Alegría, C.; Willmitzer, L.; Moreno-Simunovic, Y.; Vallarino, J.G. Non-targeted metabolite profiles and sensory properties elucidate commonalities and differences of wines made with the same variety but different cultivar clones. Metabolites 2020, 10, 220. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Yan, J.; Li, X.; Xing, Q.; Chethana, K.W.T.; Zhao, W. Transcriptional response of grapevine to infection with the fungal pathogen Lasiodiplodia theobromae. Sci. Rep. 2019, 9, 5387. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wu, J.; Yin, L.; Zhang, Y.; Qu, J.; Lu, J. Comparative transcriptome analysis reveals defense-related genes and pathways against downy mildew in Vitis amurensis grapevine. Plant Physiol. Biochem. 2015, 95, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Toffolatti, S.L.; Lorenzis, G.D.; Brilli, M.; Moser, M.; Shariati, V.; Tavakol, E.; Maddalena, G.; Passera, A.; Casati, P.; Pindo, M.; et al. Novel aspects on the interaction between grapevine and Plasmopara viticola: Dual-RNA-Seq analysis highlights gene expression dynamics in the pathogen and the plant during the battle for infection. Genes 2020, 11, 261. [Google Scholar] [CrossRef] [PubMed]
- Haile, Z.M.; Malacarne, G.; Pilati, S.; Sonego, P.; Moser, C. Dual transcriptome and metabolic analysis of Vitis vinifera cv. Pinot Noir berry and Botrytis cinerea during quiescence and egressed infection. Front. Plant Sci. 2019, 10, 1704. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.X.; Liu, H.Z.; Li, Y.; Zhou, P.; Wen, Y.; Lu, C.X.; Zhu, Y.Y.; Yang, M.Z. The interactions between two fungal endophytes Epicoccum layuense R2-21 and Alternaria alternata XHYN2 and grapevines (Vitis vinifera) with de novo established symbionts under aseptic conditions. J. Fungi 2023, 9, 1154. [Google Scholar] [CrossRef] [PubMed]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Götz, M.; Nirenberg, H.; Krause, S.; Wolters, H.; Draeger, S.; Buchner, A.; Lottmann, J.; Berg, G.; Smalla, K. Fungal endophytes in potato roots studied by traditional isolation and cultivation-independent DNA-based methods. FEMS Microbiol. Ecol. 2006, 58, 404–413. [Google Scholar] [CrossRef]
- White, T.J. Amplification and direct seqencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc. 1990, 18, 315–322. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Conesa, A.; Nueda, M.J.; Ferrer, A.; Talon, M. maSigPro: A method to identify significantly differential expression profiles in time-course microarray experiments. Bioinformatics 2006, 22, 1096–1102. [Google Scholar] [CrossRef] [PubMed]
- Mei, Y.; Zhu, Y.; Huang, P.; Yang, Q.; Dai, C. Strategies for gene disruption and expression in filamentous fungi. Appl. Microbiol. Biotechnol. 2019, 103, 6041–6059. [Google Scholar] [CrossRef]
- Oukala, N.; Aissat, K.; Pastor, V. Bacterial endophytes: The hidden actor in plant immune responses against biotic stress. Plants 2021, 10, 1012. [Google Scholar] [CrossRef] [PubMed]
- Toti, L.; Viret, O.; Chapela, I.H.; Petrini, O. Differential attachment by conidia of the endophyte, Discula umbrinella (Berk. & Br.) Morelet, to host and non-host surfaces. New Phytol. 1992, 121, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Raftery, M.; Richardson, K.; Christensen, M.J.; Schmid, J. Neotyphodium lolii induces a limited host defence response by Lolium perenne. NZGA Res. Pract. Ser. 2007, 13, 199–202. [Google Scholar] [CrossRef]
- Li, D.; Zhang, X.; Gu, X.; Zhang, Q.; Zhao, L.; Zheng, X.; Zhang, H. The infection of grapes by Talaromyces rugulosus O1 and the role of cell wall-degrading enzymes and ochratoxin A in the infection. Physiol. Mol. Plant P 2019, 106, 263–269. [Google Scholar] [CrossRef]
- Solairaj, D.; Yang, Q.; Legrand, N.N.G.; Routledge, M.N.; Zhang, H. Molecular explication of grape berry-fungal infections and their potential application in recent postharvest infection control strategies. Trends Food Sci. Technol. 2021, 116, 903–917. [Google Scholar] [CrossRef]
- Apaliya, M.T.; Zhang, H.; Yang, Q.; Zheng, X.; Zhao, L.; Kwaw, E.; Mahunu, G.K. Hanseniaspora uvarum enhanced with trehalose induced defense-related enzyme activities and relative genes expression levels against Aspergillus tubingensis in table grapes. Postharvest Biol. Technol. 2017, 132, 162–170. [Google Scholar] [CrossRef]
- Jones, J.D.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Schwessinger, B.; Zipfel, C. News from the frontline: Recent insights into PAMP-triggered immunity in plants. Curr. Opin. Plant Biol. 2008, 11, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hao, X.; Lu, Q.; Wang, L.; Qian, W.; Li, N.; Ding, C.; Wang, X.; Yang, Y. Transcriptional analysis and histochemistry reveal that hypersensitive cell death and H2O2 have crucial roles in the resistance of tea plant (Camellia sinensis (L.) O. Kuntze) to anthracnose. Hortic. Res. 2018, 5, 18. [Google Scholar] [CrossRef] [PubMed]
- Thomma, B.P.; Nurnberger, T.; Joosten, M.H. Of PAMPs and effectors: The blurred PTI-ETI dichotomy. Plant Cell 2011, 23, 4–15. [Google Scholar] [CrossRef]
- Cheval, C.; Aldon, D.; Galaud, J.P.; Ranty, B. Calcium/calmodulin-mediated regulation of plant immunity. Biochim. Biophys. Acta 2013, 1833, 1766–1771. [Google Scholar] [CrossRef]
- Dodds, P.N.; Rathjen, J.P. Plant immunity: Towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 2010, 11, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Diana, P.; Rute, A.; Alexander, E.; Nuria, M.; Flávio, S.; Cecília, R.; Martínez-Zapater, J.M.; Axel, M.; Joachim, K.; Margarida, F.A. Transcriptional, hormonal, and metabolic changes in susceptible grape berries under powdery mildew infection. J. Exp. Bot. 2021, 72, 6544–6569. [Google Scholar] [CrossRef]
- Toffolatti, S.L.; Lorenzis, G.D.; Costa, A.; Maddalena, G.; Passera, A.; Bonza, M.C.; Pindo, M.; Stefani, E.; Cestaro, A.; Casati, P.; et al. Unique resistance traits against downy mildew from the center of origin of grapevine (Vitis vinifera). Sci. Rep. 2018, 8, 12523. [Google Scholar] [CrossRef] [PubMed]
- Llorente, F.; Muskett, P.; Sánchez-Vallet, A.; López, G.; Ramos, B.; Sánchez-Rodríguez, C.; Jordá, L.; Parker, J.; Molina, A. Repression of the auxin response pathway increases Arabidopsis susceptibility to necrotrophic fungi. Mol. Plant 2008, 1, 496–509. [Google Scholar] [CrossRef]
- Wink, M. Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 2003, 64, 3–19. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Fu, Y.; Wang, Q.; Liu, X.; Li, Q.; Chen, J. Transcriptome analysis reveals rapid defence responses in wheat induced by phytotoxic aphid Schizaphis graminum feeding. BMC Genom. 2020, 21, 339. [Google Scholar] [CrossRef] [PubMed]
- Dixon, R.A.; Achnine, L.; Kota, P.; Liu, C.J.; Reddy, M.S.; Wang, L.J. The phenylpropanoid pathway and plant defence—A genomics perspective. Mol. Plant Pathol. 2002, 3, 371–390. [Google Scholar] [CrossRef] [PubMed]
- Divekar, P.A.; Narayana, S.; Divekar, B.A.; Kumar, R.; Gadratagi, B.G.; Ray, A.; Singh, A.K.; Rani, V.; Singh, V.; Singh, A.K.; et al. Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. Int. J. Mol. Sci. 2022, 23, 2690. [Google Scholar] [CrossRef] [PubMed]
- Labois, C.; Wilhelm, K.; Laloue, H.; Tarnus, C.; Bertsch, C.; Goddard, M.L.; Chong, J. Wood metabolomic responses of wild and cultivated grapevine to infection with Neofusicoccum parvum, a trunk disease pathogen. Metabolites 2020, 10, 232. [Google Scholar] [CrossRef] [PubMed]
- Agudelo-Romero, P.; Erban, A.; Rego, C.; Carbonell-Bejerano, P.; Nascimento, T.; Sousa, L.; Martínez-Zapater, J.M.; Kopka, J.; Fortes, A.M. Transcriptome and metabolome reprogramming in Vitis vinifera cv. Trincadeira berries upon infection with Botrytis cinerea. J. Exp. Bot. 2015, 66, 1769–1785. Available online: http://jxb.oxfordjournals.org/ (accessed on 11 February 2015). [CrossRef]
- Kong, Q.; An, P.; Xu, Z.; Zhang, R.; Qi, J.; Ren, X. New insights into the alleviating role of Melaleuca alternifolia oil on metabolites pathway disorder of grapes caused by Aspergillus niger, verified by corresponding key genes expression. Food Chem. 2020, 327, 127083. [Google Scholar] [CrossRef] [PubMed]
- Bhuiyan, N.H.; Selvaraj, G.; Wei, Y.; King, J. Role of lignification in plant defense. Plant Signal Behav. 2009, 4, 158–159. [Google Scholar] [CrossRef]
- Martin, R.C.; Dombrowski, J.E. Isolation and identification of fungal endophytes from grasses along the oregon coast. Am. J. Enol. Vitic. 2015, 6, 3216–3230. [Google Scholar] [CrossRef]
Cluster name | Number of DEGs | KEGG pathway | Cluster name | Number of DEGs | KEGG pathway |
R2-21 | XHYN2 | ||||
DEGs were consistently upregulated as compared to control | DEGs were consistently upregulated as compared to control | ||||
Cluster 1 | 20 | Plant–pathogen interaction | Cluster 7 | 21 | Citrate cycle (TCA cycle) |
Cluster 7 | 13 | Amino sugar and nucleotide sugar metabolism | 45 | Protein processing in endoplasmic reticulum | |
7 | Phenylalanine metabolism | 26 | Glycolysis/Gluconeogenesis | ||
5 | Stilbenoid, diarylheptanoid, and gingerol biosynthesis | 12 | Protein export | ||
6 | Flavonoid biosynthesis | 14 | Proteasome | ||
6 | Circadian rhythm–plant | 13 | Phenylalanine, tyrosine, and tryptophan biosynthesis | ||
5 | Arginine and proline metabolism | 19 | Pyruvate metabolism | ||
3 | Ether lipid metabolism | 9 | Pantothenate and CoA biosynthesis | ||
4 | Protein export | 18 | Phagosome | ||
4 | Fatty acid degradation | 23 | Endocytosis | ||
4 | beta-Alanine metabolism | 10 | Fatty acid degradation | ||
4 | alpha-Linolenic acid metabolism | 7 | Valine, leucine and isoleucine biosynthesis | ||
Cluster 8 | 17 | Citrate cycle (TCA cycle) | 8 | N-Glycan biosynthesis | |
34 | Protein processing in endoplasmic reticulum | 13 | Peroxisome | ||
19 | Glycolysis/Gluconeogenesis | 20 | Amino sugar and nucleotide sugar metabolism | ||
22 | Endocytosis | 5 | Histidine metabolism | ||
10 | Fatty acid degradation | 15 | Cysteine and methionine metabolism | ||
9 | Protein export | Cluster 8 | 16 | Flavonoid biosynthesis | |
13 | Peroxisome | 15 | Circadian rhythm–plant | ||
10 | Phenylalanine, tyrosine, and tryptophan biosynthesis | 12 | Phenylalanine metabolism | ||
14 | Pyruvate metabolism | 7 | Stilbenoid, diarylheptanoid, and gingerol biosynthesis | ||
6 | Valine, leucine, and isoleucine biosynthesis | 12 | Amino sugar and nucleotide sugar metabolism | ||
14 | Phagosome | 7 | alpha-Linolenic acid metabolism | ||
9 | Proteasome | 7 | Valine, leucine, and isoleucine degradation | ||
8 | Propanoate metabolism | 6 | Fatty acid degradation | ||
13 | Cysteine and methionine metabolism | 13 | Phenylpropanoid biosynthesis | ||
9 | alpha-Linolenic acid metabolism | 4 | Ether lipid metabolism | ||
9 | Valine, leucine, and isoleucine degradation | 3 | Arachidonic acid metabolism | ||
6 | Sulfur metabolism | 5 | Inositol phosphate metabolism | ||
8 | Pentose phosphate pathway | 6 | Tyrosine metabolism | ||
10 | Glyoxylate and dicarboxylate metabolism | DEGs were consistently downregulated as compared to control | |||
6 | Pantothenate and CoA biosynthesis | Cluster 1 | 12 | Porphyrin and chlorophyll metabolism | |
2 | Caffeine metabolism | 38 | Ribosome | ||
9 | Glycine, serine, and threonine metabolism | 14 | Aminoacyl-tRNA biosynthesis | ||
DEGs were consistently down-egulated as compared to control | 14 | Glyoxylate and dicarboxylate metabolism | |||
Cluster 2 | 12 | Carbon fixation in photosynthetic organisms | 9 | Alanine, aspartate and glutamate metabolism | |
5 | Photosynthesis—antenna proteins | 7 | Carotenoid biosynthesis | ||
7 | Glyoxylate and dicarboxylate metabolism | 7 | Butanoate metabolism | ||
6 | Pentose phosphate pathway | 6 | One carbon pool by folate | ||
6 | Circadian rhythm–plant | Cluster 2 | 9 | Spliceosome | |
8 | mRNA surveillance pathway | Cluster 3 | 13 | Photosynthesis—antenna proteins | |
4 | Porphyrin and chlorophyll metabolism | 20 | Photosynthesis | ||
Cluster 3 | 22 | Photosynthesis | 12 | Carbon fixation in photosynthetic organisms | |
7 | Photosynthesis—antenna proteins | 7 | Porphyrin and chlorophyll metabolism | ||
Cluster 4 | 171 | Ribosome | Cluster 5 | 104 | Ribosome |
29 | Spliceosome | 20 | Ribosome biogenesis in eukaryotes | ||
17 | Ribosome biogenesis in eukaryotes | 24 | Spliceosome | ||
9 | N-Glycan biosynthesis | 12 | Proteasome | ||
5 | Lysine biosynthesis | 15 | Pyruvate metabolism | ||
9 | Protein export | 10 | Pentose phosphate pathway | ||
Cluster 5 | 13 | Spliceosome | 8 | Protein export | |
Cluster 6 | 17 | Spliceosome | DEGs were first upregulated but then downregulated as compared to control | ||
DEGs were first downregulated but then upregulated as compared to control | Cluster 4 | 13 | Plant–pathogen interaction | ||
Cluster 9 | None | DEGs were first downregulated but then upregulated as compared to control | |||
Cluster 6 | 14 | Protein processing in endoplasmic reticulum | |||
Cluster 9 | 15 | Spliceosome | |||
9 | Ubiquitin-mediated proteolysis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, X.; Liu, H.; Li, Y.; Guo, L.; Zhang, Y.; Zhu, Y.; Yang, M. Cultivation of Fungal Endophytes with Tissue Culture Grapevine Seedlings Reprograms Metabolism by Triggering Defence Responses. Metabolites 2024, 14, 402. https://doi.org/10.3390/metabo14080402
Pan X, Liu H, Li Y, Guo L, Zhang Y, Zhu Y, Yang M. Cultivation of Fungal Endophytes with Tissue Culture Grapevine Seedlings Reprograms Metabolism by Triggering Defence Responses. Metabolites. 2024; 14(8):402. https://doi.org/10.3390/metabo14080402
Chicago/Turabian StylePan, Xiaoxia, Huizhi Liu, Yiqian Li, Lirong Guo, Yunuo Zhang, Youyong Zhu, and Mingzhi Yang. 2024. "Cultivation of Fungal Endophytes with Tissue Culture Grapevine Seedlings Reprograms Metabolism by Triggering Defence Responses" Metabolites 14, no. 8: 402. https://doi.org/10.3390/metabo14080402
APA StylePan, X., Liu, H., Li, Y., Guo, L., Zhang, Y., Zhu, Y., & Yang, M. (2024). Cultivation of Fungal Endophytes with Tissue Culture Grapevine Seedlings Reprograms Metabolism by Triggering Defence Responses. Metabolites, 14(8), 402. https://doi.org/10.3390/metabo14080402