Identification of Plant Compounds with Mass Spectrometry Imaging (MSI)
Abstract
:1. Mass Spectrometry Imaging of Plants
2. Overview of Ionization Sources Used for Imaging Plant Tissues
3. Plant Compound Elucidation in Mass Spectrometry Imaging (MSI)
- Level 5—Exact mass of interest: The raw data contain defined m/z signals that can be mapped to the sampled surface. With sufficient analytical resolution, it can be assumed that the m/z features correspond to unique compounds. Of course, isobaric molecules cannot be distinguished. Features are not identified; however, quantitation and statistical analyses for finding regions of interest (ROIs) or potential biomarkers are possible.
- Level 4—Molecular formula: High-resolution mass spectrometry (HR-MS) data, fragmentation experiments, and isotopic patterns permit calculating the chemical sum formula. The results can be compared with databases to find a possible match.
- Level 3—Tentative structure: Based on HR-MS data, tandem MS directly from tissues, in-source decay spectra, isotope distribution, and databases. More than one compound can be explained by using the available data. This level requires complementary information, such as multimodal imaging techniques, fluorescence microscopy, IR spectroscopy, immunolocalization, chemical staining for functional groups, tissue extracts, and subsequent analysis using GC-MS and LC-MS.
- Level 2—Probable structure: Further refinement leads to a single structure candidate. The results obtained in level 3 are assessed by using expert knowledge, biological context, and bioinformatic analyses. For example, genome analyses and chemoinformatics can reveal theoretically possible metabolites.
- Level 1—Confirmed structure: Unequivocal three-dimensional chemical structure identification. Requiring at least two independent and orthogonal methods should provide different types of information and not be affected by the exact source of error. For example, Nuclear Magnetic Resonance (NMR) supports structural studies, and isotopic labeling techniques enable tracing the path of a molecule through a reaction or a metabolic pathway. An authentic standard is required; in MSI, it is common practice to spike it into a replicated biological tissue.
4. Experimental Steps in MSI
- Sample preparation.
- MSI analysis (data collection).
- MSI data analysis.
- Supportive techniques.
4.1. Sample Preparation
4.1.1. Sample Preservation
4.1.2. Sectioning
4.1.3. Liberation of Plant Cell Compounds
4.1.4. Matrix Application
New Matrixes
Inorganic Matrixes
Reactive Matrixes
4.2. MSI Analysis (Data Collection)
4.3. MSI Data Analysis
- Raw data import/export and conversion (if necessary).
- Spectrum preprocessing.
- Feature analysis.
- Statistics and data mining.
- Integration and interpretation.
4.4. Supportive Techniques
Chemical Class | Analyte | MSI Techn. | Orthol. Methods | Complementary Techn. | ID Level | Refs. |
---|---|---|---|---|---|---|
Phenolic compounds | Resveratrol, pterostilbene, and stilbene phytoalexins | LDI and MALDI | HPLC-DAD | Fluorescence imaging (macroscopy) and confocal fluorescence microscopy | Level 2 | [103] |
Volatiles and phenolic compounds | Gingerol and terpenoids | AP-LDI | AP LDI MS/MS | Optical microscopy | Level 2 | [15] |
Flavonoids | Kaempferol, quercetin, and isorhamnetin | LDI | AP-MALDI and CID (TOF/TOF) | - | Level 2 | [14] |
Flavanones | Baicalein, baicalin, and wogonin | MALDI | MALDI-Q-TOF-MS | Optical microscopy | Level 2 | [104] |
Phenolic compounds and carbohydrates | Jasmone, hexose sugars, salvigenin, flavonoids, and fatty acyl glycosides | DESI-MSI | FS FAAS | - | Level 2, level 3, and level 4 | [105] |
S-glucosides | Glucosinolates | MALDI, LAESI | ESI (chip-ESI) | - | Level 2 | [106] |
Phenolic compounds and carbohydrates | Salvianolic acid J | DESI | LC-MS | - | Level 3 | [54] |
Organic acids, phenolics, and oligosaccharides | Ascorbic acid, citric acid, palmitic acid, linoleic acid, linolenic acid, oleic acid, apigenin, kaempferol, ellagic acid, quercetin, apigenin, fructose, glucose, and sucrose | MALDI, GALDI | - | - | Level 2 | [67] |
Amino acids, phenolic compounds, and lipids | Indoxyl, clemastanin B, isatindigobisindoloside G, gluconapin, guanine, adenine, adenosine, sucrose, histidine, lysine, arginine, proline, citric acid, malic acid, and linolenic acid | MALDI | DESI-Q-TOF | - | Level 2 | [107] |
Hydrocarbons and flavonoids | C29 alkane, kaempferol–hexose, and quercetin–rhamnose | MALDI | DESI-MS, LAESI-MS, SIMS | - | Level 2 | [108] |
Glycoalkaloids and anthocyanins | Tomatidine, -tomatine, and dehydrotomatine | MALDI | LC-MS/GC-MS | Electron microscopy imaging | Level 1 | [101] |
Fatty acid and amino acids | Palmitic acid, stearic acid, oleic acid, inositol, -Alanine, and tomatidine | MALDI | - | RT-qPCR | Level 2 | [109] |
Organic acids | Citrate, malate, succinate, and fumarate | MALDI | UPLC-HRMS/MS | - | Level 1 | [55] |
Anthocyanins | Choline and pelargonidin | MALDI, SIMS | MALDI-MS/MS | Optical microscopy | Level 2 | [110] |
Lipids | Cuticular lipids | MALDI | GC-MS | - | Level 5 | [111] |
Terpenoids and diterpenoids | Vitexilactone, vietrifolin D, and rotundifuran | MALDI | GC-MS | - | Level 3 | [112] |
Lipid droplet associated protein | Wax ester and triacylglycerol | MALDI | - | Confocal micrographs of LDAP | Level 4 | [113] |
Nitrogenated and phenolic compounds | Cocaine, cinnamoylocaine, benzoylecgonine, etc. | MALDI, LDI | ESI | - | Level 4 | [114] |
Organic acids, carbohydrates, flavonoids, and lipids | Nobiletin, phenylalanine, trans-Jasmonic Acid, quinic acid, ABA, etc. | DESI | LC-MS/MS | - | Level 3 | [115] |
Triacylglycerol and phosphatidylcholines | Palmitic acid, vaccenic, linoleic, and -linoleic acids | MALDI | NMR, ESI | - | Level 1 | [116] |
Phytohormones | Abscisic, auxin, cytokinin, jasmonic acid, and salicylic acid | PALDI | MALDI | - | Level 2 | [70] |
5. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ABA | abscisic acid |
AP | atmospheric pressure |
LDI | laser desorption ionization |
MALDI | matrix-assisted laser desorption ionization |
SMALDI | scanning microprobe matrix-assisted laser desorption ionization |
CW | Calcofluor White |
CLSM | confocal laser scanning microscopy |
DAD | diode array detector |
DART | direct analysis in real time |
DESI | desorption electrospray ionization |
EIC | extracted-ion chromatogram |
FAPA | flowing atmospheric-pressure afterglow |
FDR | false discovery rate |
FS-FAAS | fast sequential flame atomic-absorption spectrometry |
FT-ICR | Fourier transform ion cyclotron resonance |
FT-IR | Fourier transform infrared spectroscopy |
GALDI | graphite-assisted laser desorption ionization |
GC | gas chromatography |
GFP | green fluorescent protein |
HR | high resolution |
IR | infrared |
LA | laser ablation |
DBDI | dielectric barrier discharge ionization |
LADI | laser ablation direct analysis in real time |
LAESI | laser electrospray ionization |
LAAPI | laser ablation atmospheric-pressure photoionization |
LC | liquid chromatography |
LDAP | liquid droplet-associated protein |
LDI | laser desorption ionization |
LD-LTP | laser desorption low-temperature plasma |
LMD | laser micro-dissection |
LTP | low-temperature plasma |
MALDESI | matrix-assisted laser desorption electrospray ionization |
MALDI | matrix-assisted laser desorption ionization |
MS | mass spectrometry |
MSI | mass spectrometry imaging |
Nd:YAG | neodymium-doped yttrium aluminum garnet |
NMR | Nuclear Magnetic Resonance |
OTCD | on-tissue chemical derivatization |
PALDI | plasma-assisted laser desorption ionization |
QIT | quadrupole ion trap |
ROI | region of interest |
SAMDI | self-assembled monolayer desorption ionization |
SIMS | secondary-ion mass spectrometry |
SEM | scanning electron microscopy |
TOF | time of flight |
UHR | ultra-high resolution |
UPLC | ultra performance liquid chromatography |
UV | ultraviolet |
VIGS | virus-induced gene silencing |
References
- Jacobowitz, J.R.; Weng, J.K. Exploring Uncharted Territories of Plant Specialized Metabolism in the Postgenomic Era. Annu. Rev. Plant Biol. 2020, 71, 631–658. [Google Scholar] [CrossRef] [PubMed]
- Salem, M.A.; Perez De Souza, L.; Serag, A.; Fernie, A.R.; Farag, M.A.; Ezzat, S.M.; Alseekh, S. Metabolomics in the Context of Plant Natural Products Research: From Sample Preparation to Metabolite Analysis. Metabolites 2020, 10, 37. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Li, B.; Malitsky, S.; Rogachev, I.; Aharoni, A.; Kaftan, F.; Svatoš, A.; Franceschi, P. Sample Preparation for Mass Spectrometry Imaging of Plant Tissues: A Review. Front. Plant Sci. 2016, 7, 60. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Zhao, J.; Guan, Y.; Tang, Y.; Li, Y.; Liu, L. Mass spectrometry imaging technology in metabolomics: A systematic review. Biomed. Chromatogr. 2023, 37, e5494. [Google Scholar] [CrossRef] [PubMed]
- Horn, P.J.; Chapman, K.D. Imaging plant metabolism in situ. J. Exp. Bot. 2024, 75, 1654–1670. [Google Scholar] [CrossRef] [PubMed]
- Heyman, H.M.; Dubery, I.A. The potential of mass spectrometry imaging in plant metabolomics: A review. Phytochem. Rev. 2016, 15, 297–316. [Google Scholar] [CrossRef]
- Yin, Z.; Huang, W.; Li, K.; Fernie, A.R.; Yan, S. Advances in mass spectrometry imaging for plant metabolomics—Expanding the analytical toolbox. Plant J. 2024. Available online: https://onlinelibrary.wiley.com/doi/pdf/10.1111/tpj.16924 (accessed on 25 July 2024).
- Zhu, X.; Xu, T.; Peng, C.; Wu, S. Advances in MALDI Mass Spectrometry Imaging Single Cell and Tissues. Front. Chem. 2022, 9, 782432. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.; Lee, T.G. Biological tissue sample preparation for time-of-flight secondary ion mass spectrometry (ToF–SIMS) imaging. Nano Converg. 2018, 5, 24. [Google Scholar] [CrossRef] [PubMed]
- Cornett, D.S.; Frappier, S.L.; Caprioli, R.M. MALDI-FTICR Imaging Mass Spectrometry of Drugs and Metabolites in Tissue. Anal. Chem. 2008, 80, 5648–5653. [Google Scholar] [CrossRef]
- Mullen, A.K.; Clench, M.R.; Crosland, S.; Sharples, K.R. Determination of agrochemical compounds in soya plants by imaging matrix-assisted laser desorption/ionisation mass spectrometry. Rapid Commun. Mass Spectrom. 2005, 19, 2507–2516. [Google Scholar] [CrossRef]
- Cha, S.; Yeung, E.S. Colloidal Graphite-Assisted Laser Desorption/Ionization Mass Spectrometry and MSn of Small Molecules. 1. Imaging of Cerebrosides Directly from Rat Brain Tissue. Anal. Chem. 2007, 79, 2373–2385. [Google Scholar] [CrossRef] [PubMed]
- Cha, S.; Zhang, H.; Ilarslan, H.I.; Wurtele, E.S.; Brachova, L.; Nikolau, B.J.; Yeung, E.S. Direct profiling and imaging of plant metabolites in intact tissues by using colloidal graphite-assisted laser desorption ionization mass spectrometry. Plant J. 2008, 55, 348–360. [Google Scholar] [CrossRef] [PubMed]
- Hölscher, D.; Shroff, R.; Knop, K.; Gottschaldt, M.; Crecelius, A.; Schneider, B.; Heckel, D.G.; Schubert, U.S.; Svatoš, A. Matrix-free UV-laser desorption/ionization (LDI) mass spectrometric imaging at the single-cell level: Distribution of secondary metabolites of Arabidopsis thaliana and Hypericum species. Plant J. 2009, 60, 907–918. [Google Scholar] [CrossRef] [PubMed]
- Harada, T.; Yuba-Kubo, A.; Sugiura, Y.; Zaima, N.; Hayasaka, T.; Goto-Inoue, N.; Wakui, M.; Suematsu, M.; Takeshita, K.; Ogawa, K.; et al. Visualization of Volatile Substances in Different Organelles with an Atmospheric-Pressure Mass Microscope. Anal. Chem. 2009, 81, 9153–9157. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, Z.; Jones, A.D. Chemical imaging of trichome specialized metabolites using contact printing and laser desorption/ionization mass spectrometry. Anal. Bioanal. Chem. 2014, 406, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Soltwisch, J.; Kettling, H.; Vens-Cappell, S.; Wiegelmann, M.; Müthing, J.; Dreisewerd, K. Mass spectrometry imaging with laser-induced postionization. Science 2015, 348, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Laiko, V.V.; Baldwin, M.A.; Burlingame, A.L. Atmospheric Pressure Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal. Chem. 2000, 72, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shrestha, B.; Vertes, A. Atmospheric Pressure Molecular Imaging by Infrared MALDI Mass Spectrometry. Anal. Chem. 2007, 79, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Koestler, M.; Kirsch, D.; Hester, A.; Leisner, A.; Guenther, S.; Spengler, B. A high-resolution scanning microprobe matrix-assisted laser desorption/ionization ion source for imaging analysis on an ion trap/Fourier transform ion cyclotron resonance mass spectrometer. Rapid Commun. Mass Spectrom. 2008, 22, 3275–3285. [Google Scholar] [CrossRef]
- Li, B.; Bhandari, D.R.; Janfelt, C.; Römpp, A.; Spengler, B. Natural products in Glycyrrhiza glabra (licorice) rhizome imaged at the cellular level by atmospheric pressure matrix-assisted laser desorption/ionization tandem mass spectrometry imaging. Plant J. 2014, 80, 161–171. [Google Scholar] [CrossRef]
- Martínez-Jarquín, S.; Winkler, R. Low-temperature plasma (LTP) jets for mass spectrometry (MS): Ion processes, instrumental set-ups, and application examples. TrAC Trends Anal. Chem. 2017, 89, 133–145. [Google Scholar] [CrossRef]
- Takáts, Z.; Wiseman, J.M.; Gologan, B.; Cooks, R.G. Mass Spectrometry Sampling Under Ambient Conditions with Desorption Electrospray Ionization. Science 2004, 306, 471–473. [Google Scholar] [CrossRef]
- Ifa, D.R.; Wiseman, J.M.; Song, Q.; Cooks, R.G. Development of capabilities for imaging mass spectrometry under ambient conditions with desorption electrospray ionization (DESI). Int. J. Mass Spectrom. 2007, 259, 8–15. [Google Scholar] [CrossRef]
- Perez, C.J.; Bagga, A.K.; Prova, S.S.; Yousefi Taemeh, M.; Ifa, D.R. Review and perspectives on the applications of mass spectrometry imaging under ambient conditions. Rapid Commun. Mass Spectrom. 2019, 33, 27–53. [Google Scholar] [CrossRef] [PubMed]
- Lane, A.L.; Nyadong, L.; Galhena, A.S.; Shearer, T.L.; Stout, E.P.; Parry, R.M.; Kwasnik, M.; Wang, M.D.; Hay, M.E.; Fernandez, F.M.; et al. Desorption electrospray ionization mass spectrometry reveals surface-mediated antifungal chemical defense of a tropical seaweed. Proc. Natl. Acad. Sci. USA 2009, 106, 7314–7319. [Google Scholar] [CrossRef]
- Thunig, J.; Hansen, S.H.; Janfelt, C. Analysis of Secondary Plant Metabolites by Indirect Desorption Electrospray Ionization Imaging Mass Spectrometry. Anal. Chem. 2011, 83, 3256–3259. [Google Scholar] [CrossRef] [PubMed]
- Müller, T.; Oradu, S.; Ifa, D.R.; Cooks, R.G.; Kräutler, B. Direct Plant Tissue Analysis and Imprint Imaging by Desorption Electrospray Ionization Mass Spectrometry. Anal. Chem. 2011, 83, 5754–5761. [Google Scholar] [CrossRef] [PubMed]
- Cody, R.B.; Laramée, J.A.; Durst, H.D. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal. Chem. 2005, 77, 2297–2302. [Google Scholar] [CrossRef]
- Harper, J.D.; Charipar, N.A.; Mulligan, C.C.; Zhang, X.; Cooks, R.G.; Ouyang, Z. Low-Temperature Plasma Probe for Ambient Desorption Ionization. Anal. Chem. 2008, 80, 9097–9104. [Google Scholar] [CrossRef]
- Martinez-Jarquin, S.; Winkler, R. Design of a low-temperature plasma (LTP) probe with adjustable output temperature and variable beam diameter for the direct detection of organic molecules. Rapid Commun. Mass Spectrom. 2013, 27, 629–634. [Google Scholar] [CrossRef]
- Maldonado-Torres, M.; López-Hernández, J.F.; Jiménez-Sandoval, P.; Winkler, R. ‘Plug and Play’ assembly of a low-temperature plasma ionization mass spectrometry imaging (LTP-MSI) system. J. Proteom. 2014, 102C, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Jarquín, S.; Moreno-Pedraza, A.; Guillén-Alonso, H.; Winkler, R. Template for 3D Printing a Low-Temperature Plasma Probe. Anal. Chem. 2016, 88, 6976–6980. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Jarquín, S.; Herrera-Ubaldo, H.; de Folter, S.; Winkler, R. In vivo monitoring of nicotine biosynthesis in tobacco leaves by low-temperature plasma mass spectrometry. Talanta 2018, 185, 324–327. [Google Scholar] [CrossRef] [PubMed]
- Feider, C.L.; Krieger, A.; DeHoog, R.J.; Eberlin, L.S. Ambient Ionization Mass Spectrometry: Recent Developments and Applications. Anal. Chem. 2019, 91, 4266–4290. [Google Scholar] [CrossRef] [PubMed]
- Nemes, P.; Vertes, A. Laser Ablation Electrospray Ionization for Atmospheric Pressure, in Vivo, and Imaging Mass Spectrometry. Anal. Chem. 2007, 79, 8098–8106. [Google Scholar] [CrossRef] [PubMed]
- Nemes, P.; Barton, A.A.; Li, Y.; Vertes, A. Ambient Molecular Imaging and Depth Profiling of Live Tissue by Infrared Laser Ablation Electrospray Ionization Mass Spectrometry. Anal. Chem. 2008, 80, 4575–4582. [Google Scholar] [CrossRef]
- Sampson, J.S.; Hawkridge, A.M.; Muddiman, D.C. Generation and detection of multiply-charged peptides and proteins by matrix-assisted laser desorption electrospray ionization (MALDESI) fourier transform ion cyclotron resonance mass spectrometry. J. Am. Soc. Mass Spectrom. 2006, 17, 1712–1716. [Google Scholar] [CrossRef]
- Bokhart, M.T.; Muddiman, D.C. Infrared matrix-assisted laser desorption electrospray ionization mass spectrometry imaging analysis of biospecimens. Analyst 2016, 141, 5236–5245. [Google Scholar] [CrossRef] [PubMed]
- Bagley, M.C.; Pace, C.L.; Ekelöf, M.; Muddiman, D.C. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) mass spectrometry imaging analysis of endogenous metabolites in cherry tomatoes. Analyst 2020, 145, 5516–5523. [Google Scholar] [CrossRef]
- Vaikkinen, A.; Shrestha, B.; Koivisto, J.; Kostiainen, R.; Vertes, A.; Kauppila, T.J. Laser ablation atmospheric pressure photoionization mass spectrometry imaging of phytochemicals from sage leaves. Rapid Commun. Mass Spectrom. 2014, 28, 2490–2496. [Google Scholar] [CrossRef]
- Shelley, J.T.; Ray, S.J.; Hieftje, G.M. Laser Ablation Coupled to a Flowing Atmospheric Pressure Afterglow for Ambient Mass Spectral Imaging. Anal. Chem. 2008, 80, 8308–8313. [Google Scholar] [CrossRef] [PubMed]
- Feng, B.; Zhang, J.; Chang, C.; Li, L.; Li, M.; Xiong, X.; Guo, C.; Tang, F.; Bai, Y.; Liu, H. Ambient Mass Spectrometry Imaging: Plasma Assisted Laser Desorption Ionization Mass Spectrometry Imaging and Its Applications. Anal. Chem. 2014, 86, 4164–4169. [Google Scholar] [CrossRef] [PubMed]
- Fowble, K.L.; Teramoto, K.; Cody, R.B.; Edwards, D.; Guarrera, D.; Musah, R.A. Development of “Laser Ablation Direct Analysis in Real Time Imaging” Mass Spectrometry: Application to Spatial Distribution Mapping of Metabolites Along the Biosynthetic Cascade Leading to Synthesis of Atropine and Scopolamine in Plant Tissue. Anal. Chem. 2017, 89, 3421–3429. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Pedraza, A.; Rosas-Román, I.; Garcia-Rojas, N.S.; Guillén-Alonso, H.; Ovando-Vázquez, C.; Díaz-Ramírez, D.; Cuevas-Contreras, J.; Vergara, F.; Marsch-Martínez, N.; Molina-Torres, J.; et al. Elucidating the Distribution of Plant Metabolites from Native Tissues with Laser Desorption Low-Temperature Plasma Mass Spectrometry Imaging. Anal. Chem. 2019, 91, 2734–2743. [Google Scholar] [CrossRef]
- You, X.; Lu, Q.; Guan, X.; Xu, Z.; Zenobi, R. Pesticide uptake and translocation in plants monitored in situ via laser ablation dielectric barrier discharge ionization mass spectrometry imaging. Sens. Actuators B Chem. 2024, 409, 135532. [Google Scholar] [CrossRef]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef]
- Wishart, D.S.; Godzien, J.; Gil-de-la Fuente, A.; Mandal, R.; Rajabzadeh, R.; Pirimoghadam, H.; Ladner-Keay, C.; Otero, A.; Barbas, C. CHAPTER 3:Metabolomics. In Processing Metabolomics and Proteomics Data with Open Software; Royal Society of Chemistry: London, UK, 2020; pp. 41–95. [Google Scholar] [CrossRef]
- Schymanski, E.L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H.P.; Hollender, J. Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environ. Sci. Technol. 2014, 48, 2097–2098. [Google Scholar] [CrossRef]
- Schrimpe-Rutledge, A.C.; Codreanu, S.G.; Sherrod, S.D.; McLean, J.A. Untargeted Metabolomics Strategies—Challenges and Emerging Directions. J. Am. Soc. Mass Spectrom. 2016, 27, 1897–1905. [Google Scholar] [CrossRef]
- Baquer, G.; Sementé, L.; Mahamdi, T.; Correig, X.; Ràfols, P.; García-Altares, M. What are we imaging? Software tools and experimental strategies for annotation and identification of small molecules in mass spectrometry imaging. Mass Spectrom. Rev. 2023, 42, 1927–1964. [Google Scholar] [CrossRef]
- Bjarnholt, N.; Li, B.; D’Alvise, J.; Janfelt, C. Mass spectrometry imaging of plant metabolites—Principles and possibilities. Nat. Prod. Rep. 2014, 31, 818–837. [Google Scholar] [CrossRef]
- Korte, A.R.; Yandeau-Nelson, M.D.; Nikolau, B.J.; Lee, Y.J. Subcellular-level resolution MALDI-MS imaging of maize leaf metabolites by MALDI-linear ion trap-Orbitrap mass spectrometer. Anal. Bioanal. Chem. 2015, 407, 2301–2309. [Google Scholar] [CrossRef] [PubMed]
- Tong, Q.; Zhang, C.; Tu, Y.; Chen, J.; Li, Q.; Zeng, Z.; Wang, F.; Sun, L.; Huang, D.; Li, M.; et al. Biosynthesis-based spatial metabolome of Salvia miltiorrhiza Bunge by combining metabolomics approaches with mass spectrometry-imaging. Talanta 2022, 238, 123045. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Zepeda, D.; Frausto, M.; Nájera-González, H.; Herrera-Estrella, L.; Ordaz-Ortiz, J. Mass spectrometry-based quantification and spatial localization of small organic acid exudates in plant roots under phosphorus deficiency and aluminum toxicity. Plant J. 2021, 106, 1791–1806. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, D.R.; Wang, Q.; Friedt, W.; Spengler, B.; Gottwald, S.; Römpp, A. High resolution mass spectrometry imaging of plant tissues: Towards a plant metabolite atlas. Analyst 2015, 140, 7696–7709. [Google Scholar] [CrossRef] [PubMed]
- Cabral, E.C.; Mirabelli, M.F.; Perez, C.J.; Ifa, D.R. Blotting Assisted by Heating and Solvent Extraction for DESI-MS Imaging. J. Am. Soc. Mass Spectrom. 2013, 24, 956–965. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.T.; Yagnik, G.B.; Hohenstein, J.D.; Ji, Z.; Zi, J.; Reichert, M.D.; MacIntosh, G.C.; Yang, B.; Peters, R.J.; Vela, J.; et al. Investigation of the Chemical Interface in the Soybean–Aphid and Rice–Bacteria Interactions Using MALDI-Mass Spectrometry Imaging. Anal. Chem. 2015, 87, 5294–5301. [Google Scholar] [CrossRef] [PubMed]
- Susniak, K.; Krysa, M.; Gieroba, B.; Komaniecka, I.; Sroka-Bartnicka, A. Recent developments of MALDI MSI application in plant tissues analysis. Acta Biochim. Pol. 2020, 67, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Gemperline, E.; Rawson, S.; Li, L. Optimization and Comparison of Multiple MALDI Matrix Application Methods for Small Molecule Mass Spectrometric Imaging. Anal. Chem. 2014, 86, 10030–10035. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Han, Y.; Sheng, Y.; Wang, Y.; Pan, Q.; Nie, H. Mass spectrometry imaging for direct visualization of components in plants tissues. J. Sep. Sci. 2021, 44, 3462–3476. [Google Scholar] [CrossRef]
- Calvano, C.D.; Monopoli, A.; Cataldi, T.R.I.; Palmisano, F. MALDI matrices for low molecular weight compounds: An endless story? Anal. Bioanal. Chem. 2018, 410, 4015–4038. [Google Scholar] [CrossRef]
- Napagoda, M.; Rulíšek, L.; Jančařík, A.; Klívar, J.; Šámal, M.; Stará, I.G.; Starý, I.; Šolínová, V.; Kašička, V.; Svatoš, A. Azahelicene Superbases as MAILD Matrices for Acidic Analytes. ChemPlusChem 2013, 78, 937–942. [Google Scholar] [CrossRef] [PubMed]
- Shroff, R.; Svatoš, A. Proton Sponge: A Novel and Versatile MALDI Matrix for the Analysis of Metabolites Using Mass Spectrometry. Anal. Chem. 2009, 81, 7954–7959. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Gemperline, E.; Venkateshwaran, M.; Chen, R.; Delaux, P.; Howes-Podoll, M.; Ané, J.; Li, L. MALDI mass spectrometry-assisted molecular imaging of metabolites during nitrogen fixation in the Medicago truncatula–Sinorhizobium meliloti symbiosis. Plant J. 2013, 75, 130–145. [Google Scholar] [CrossRef] [PubMed]
- Korte, A.R.; Lee, Y.J. MALDI-MS analysis and imaging of small molecule metabolites with 1,5-diaminonaphthalene (DAN). J. Mass Spectrom. 2014, 49, 737–741. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Cha, S.; Yeung, E.S. Colloidal Graphite-Assisted Laser Desorption/Ionization MS and MSn of Small Molecules. 2. Direct Profiling and MS Imaging of Small Metabolites from Fruits. Anal. Chem. 2007, 79, 6575–6584. [Google Scholar] [CrossRef] [PubMed]
- Feenstra, A.D.; O’Neill, K.C.; Yagnik, G.B.; Lee, Y.J. Organic–inorganic binary mixture matrix for comprehensive laser-desorption ionization mass spectrometric analysis and imaging of medium-size molecules including phospholipids, glycerolipids, and oligosaccharides. RSC Adv. 2016, 6, 99260–99268. [Google Scholar] [CrossRef]
- Ozawa, T.; Osaka, I.; Hamada, S.; Murakami, T.; Miyazato, A.; Kawasaki, H.; Arakawa, R. Direct Imaging Mass Spectrometry of Plant Leaves Using Surface-assisted Laser Desorption/Ionization with Sputterdeposited Platinum Film. Anal. Sci. 2016, 32, 587–591. [Google Scholar] [CrossRef] [PubMed]
- Shiono, K.; Taira, S. Imaging of Multiple Plant Hormones in Roots of Rice (Oryza sativa) Using Nanoparticle-Assisted Laser Desorption/Ionization Mass Spectrometry. J. Agric. Food Chem. 2020, 68, 6770–6775. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.K.; Gross, M.L. Location of abasic sites in oligodeoxynucleotides by tandem mass spectrometry and by a chemical cleavage initiated by an unusual reaction of the ODN with MALDI matrix. J. Am. Soc. Mass Spectrom. 2002, 13, 1418–1426. [Google Scholar] [CrossRef]
- Zemaitis, K.J.; Lin, V.S.; Ahkami, A.H.; Winkler, T.E.; Anderton, C.R.; Veličković, D. Expanded Coverage of Phytocompounds by Mass Spectrometry Imaging Using On-Tissue Chemical Derivatization by 4-APEBA. Anal. Chem. 2023, 95, 12701–12709. [Google Scholar] [CrossRef]
- Merdas, M.; Lagarrigue, M.; Vanbellingen, Q.; Umbdenstock, T.; Da Violante, G.; Pineau, C. On-tissue chemical derivatization reagents for matrix-assisted laser desorption/ionization mass spectrometry imaging. J. Mass Spectrom. 2021, 56, e4731. [Google Scholar] [CrossRef] [PubMed]
- Sgobba, E.; Daguerre, Y.; Giampà, M. Unravel the Local Complexity of Biological Environments by MALDI Mass Spectrometry Imaging. Int. J. Mol. Sci. 2021, 22, 12393. [Google Scholar] [CrossRef] [PubMed]
- Borisov, R.S.; Matveeva, M.D.; Zaikin, V.G. Reactive Matrices for Analytical Matrix-Assisted Laser Desorption/Ionization (MALDI) Mass Spectrometry. Crit. Rev. Anal. Chem. 2023, 53, 1027–1043. [Google Scholar] [CrossRef] [PubMed]
- Ajith, A.; Milnes, P.J.; Johnson, G.N.; Lockyer, N.P. Mass Spectrometry Imaging for Spatial Chemical Profiling of Vegetative Parts of Plants. Plants 2022, 11, 1234. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Hansen, S.H.; Janfelt, C. Direct imaging of plant metabolites in leaves and petals by desorption electrospray ionization mass spectrometry. Int. J. Mass Spectrom. 2013, 348, 15–22. [Google Scholar] [CrossRef]
- Maia, M.; Figueiredo, A.; Cordeiro, C.; Sousa Silva, M. FT-ICR-MS-based metabolomics: A deep dive into plant metabolism. Mass Spectrom. Rev. 2023, 42, 1535–1556. [Google Scholar] [CrossRef] [PubMed]
- Jurić, I.; González-Pérez, V.; Hibberd, J.M.; Edwards, G.; Burroughs, N.J. Size matters for single-cell C4 photosynthesis in Bienertia. J. Exp. Bot. 2017, 68, 255–267. [Google Scholar] [CrossRef]
- Li, H.; Smith, B.K.; Márk, L.; Nemes, P.; Nazarian, J.; Vertes, A. Ambient molecular imaging by laser ablation electrospray ionization mass spectrometry with ion mobility separation. Int. J. Mass Spectrom. 2015, 377, 681–689. [Google Scholar] [CrossRef]
- Zhang, C.; Bieleszová, K.; Žukauskaitė, A.; Hladík, P.; Grúz, J.; Novák, O.; Doležal, K. In situ separation and visualization of isomeric auxin derivatives in Arabidopsis by ion mobility mass spectrometry imaging. Anal. Bioanal. Chem. 2024, 416, 125–139. [Google Scholar] [CrossRef]
- Winkler, R. An evolving computational platform for biological mass spectrometry: Workflows, statistics and data mining with MASSyPup64. PeerJ 2015, 3, e1401. [Google Scholar] [CrossRef]
- Rosas-Román, I.; Ovando-Vázquez, C.; Moreno-Pedraza, A.; Guillén-Alonso, H.; Winkler, R. Open LabBot and RmsiGUI: Community development kit for sampling automation and ambient imaging. Microchem. J. 2020, 152, 104343. [Google Scholar] [CrossRef]
- Schramm, T.; Hester, Z.; Klinkert, I.; Both, J.P.; Heeren, R.M.; Brunelle, A.; Laprévote, O.; Desbenoit, N.; Robbe, M.F.; Stoeckli, M.; et al. imzML—A common data format for the flexible exchange and processing of mass spectrometry imaging data. J. Proteom. 2012, 75, 5106–5110. [Google Scholar] [CrossRef] [PubMed]
- Kessner, D.; Chambers, M.; Burke, R.; Agus, D.; Mallick, P. ProteoWizard: Open source software for rapid proteomics tools development. Bioinformatics 2008, 24, 2534–2536. [Google Scholar] [CrossRef] [PubMed]
- Bemis, K.D.; Harry, A.; Eberlin, L.S.; Ferreira, C.; van de Ven, S.M.; Mallick, P.; Stolowitz, M.; Vitek, O. Cardinal: An R package for statistical analysis of mass spectrometry-based imaging experiments. Bioinformatics 2015, 31, 2418–2420. [Google Scholar] [CrossRef] [PubMed]
- Bokhart, M.T.; Nazari, M.; Garrard, K.P.; Muddiman, D.C. MSiReader v1.0: Evolving Open-Source Mass Spectrometry Imaging Software for Targeted and Untargeted Analyses. J. Am. Soc. Mass Spectrom. 2018, 29, 8–16. [Google Scholar] [CrossRef]
- Gibb, S.; Franceschi, P. R Package Version 0.14.1. MALDIquantForeign: Import/Export Routines for ‘MALDIquant’. 2024. Available online: https://CRAN.R-project.org/package=MALDIquantForeign (accessed on 25 July 2024).
- Weiskirchen, R.; Weiskirchen, S.; Kim, P.; Winkler, R. Software solutions for evaluation and visualization of laser ablation inductively coupled plasma mass spectrometry imaging (LA-ICP-MSI) data: A short overview. J. Cheminformatics 2019, 11, 16. [Google Scholar] [CrossRef] [PubMed]
- Rosas-Román, I.; Winkler, R. Contrast optimization of mass spectrometry imaging (MSI) data visualization by threshold intensity quantization (TrIQ). PeerJ Comput. Sci. 2021, 7, e585. [Google Scholar] [CrossRef] [PubMed]
- Schmid, R.; Heuckeroth, S.; Korf, A.; Smirnov, A.; Myers, O.; Dyrlund, T.S.; Bushuiev, R.; Murray, K.J.; Hoffmann, N.; Lu, M.; et al. Integrative analysis of multimodal mass spectrometry data in MZmine 3. Nat. Biotechnol. 2023, 41, 447–449. [Google Scholar] [CrossRef]
- Källback, P.; Nilsson, A.; Shariatgorji, M.; Andrén, P.E. msIQuant—Quantitation Software for Mass Spectrometry Imaging Enabling Fast Access, Visualization, and Analysis of Large Data Sets. Anal. Chem. 2016, 88, 4346–4353. [Google Scholar] [CrossRef]
- Baquer, G.; Sementé, L.; Ràfols, P.; Martín-Saiz, L.; Bookmeyer, C.; Fernández, J.A.; Correig, X.; García-Altares, M. rMSIfragment: Improving MALDI-MSI lipidomics through automated in-source fragment annotation. J. Cheminform. 2023, 15, 80. [Google Scholar] [CrossRef]
- Wadie, B.; Stuart, L.; Rath, C.M.; Drotleff, B.; Mamedov, S.; Alexandrov, T. METASPACE-ML: Metabolite annotation for imaging mass spectrometry using machine learning. bioRxiv 2023. [Google Scholar] [CrossRef]
- Rosas-Román, I.; Guillén-Alonso, H.; Moreno-Pedraza, A.; Winkler, R. Technical Note: mzML and imzML Libraries for Processing Mass Spectrometry Data with the High-Performance Programming Language Julia. Anal. Chem. 2024, 96, 3999–4004. [Google Scholar] [CrossRef] [PubMed]
- Tortorella, S.; Tiberi, P.; Bowman, A.P.; Claes, B.S.R.; Ščupáková, K.; Heeren, R.M.A.; Ellis, S.R.; Cruciani, G. LipostarMSI: Comprehensive, Vendor-Neutral Software for Visualization, Data Analysis, and Automated Molecular Identification in Mass Spectrometry Imaging. J. Am. Soc. Mass Spectrom. 2020, 31, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Bemis, K.A.; Föll, M.C.; Guo, D.; Lakkimsetty, S.S.; Vitek, O. Cardinal v.3: A versatile open-source software for mass spectrometry imaging analysis. Nat. Methods 2023, 20, 1883–1886. [Google Scholar] [CrossRef]
- Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T.; et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34, 828–837. [Google Scholar] [CrossRef] [PubMed]
- Perez-Riverol, Y.; Bai, J.; Bandla, C.; García-Seisdedos, D.; Hewapathirana, S.; Kamatchinathan, S.; Kundu, D.; Prakash, A.; Frericks-Zipper, A.; Eisenacher, M.; et al. The PRIDE database resources in 2022: A hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022, 50, D543–D552. [Google Scholar] [CrossRef] [PubMed]
- Winkler, R. SpiderMass: Semantic database creation and tripartite metabolite identification strategy. J. Mass Spectrom. 2015, 50, 538–541. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Sonawane, P.; Cohen, H.; Polturak, G.; Feldberg, L.; Avivi, S.H.; Rogachev, I.; Aharoni, A. High mass resolution, spatial metabolite mapping enhances the current plant gene and pathway discovery toolbox. New Phytol. 2020, 228, 1986–2002. [Google Scholar] [CrossRef] [PubMed]
- Etalo, D.W.; De Vos, R.C.; Joosten, M.H.; Hall, R.D. Spatially Resolved Plant Metabolomics: Some Potentials and Limitations of Laser-Ablation Electrospray Ionization Mass Spectrometry Metabolite Imaging. Plant Physiol. 2015, 169, 1424–1435. [Google Scholar] [CrossRef]
- Becker, L.; Bellow, S.; Carré, V.; Latouche, G.; Poutaraud, A.; Merdinoglu, D.; Brown, S.C.; Cerovic, Z.G.; Chaimbault, P. Correlative Analysis of Fluorescent Phytoalexins by Mass Spectrometry Imaging and Fluorescence Microscopy in Grapevine Leaves. Anal. Chem. 2017, 89, 7099–7106. [Google Scholar] [CrossRef]
- Huang, L.; Nie, L.; Dong, J.; Yao, L.; Kang, S.; Dai, Z.; Wei, F.; Ma, S. Differential distribution of phytochemicals in Scutellariae Radix and Scutellariae Amoenae Radix using microscopic mass spectrometry imaging. Arab. J. Chem. 2023, 16, 104590. [Google Scholar] [CrossRef]
- Teles, V.D.L.G.; Sousa, G.V.; Vendramini, P.H.; Augusti, R.; Costa, L.M. Identification of Metabolites in Basil Leaves by Desorption Electrospray Ionization Mass Spectrometry Imaging after Cd Contamination. ACS Agric. Sci. Technol. 2021, 1, 21–28. [Google Scholar] [CrossRef]
- Shroff, R.; Schramm, K.; Jeschke, V.; Nemes, P.; Vertes, A.; Gershenzon, J.; Svatoš, A. Quantification of plant surface metabolites by matrix-assisted laser desorption–ionization mass spectrometry imaging: Glucosinolates on Arabidopsis thaliana leaves. Plant J. 2015, 81, 961–972. [Google Scholar] [CrossRef] [PubMed]
- Nie, L.X.; Huang, L.Y.; Wang, X.P.; Lv, L.F.; Yang, X.X.; Jia, X.F.; Kang, S.; Yao, L.W.; Dai, Z.; Ma, S.C. Desorption Electrospray Ionization Mass Spectrometry Imaging Illustrates the Quality Characters of Isatidis Radix. Front. Plant Sci. 2022, 13, 897528. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Perdian, D.C.; Song, Z.; Yeung, E.S.; Nikolau, B.J. Use of mass spectrometry for imaging metabolites in plants. Plant J. 2012, 70, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Asakura, H.; Taira, S.; Funaki, J.; Yamakawa, T.; Abe, K.; Asakura, T. Mass Spectrometry Imaging Analysis of Metabolic Changes in Green and Red Tomato Fruits Exposed to Drought Stress. Appl. Sci. 2021, 12, 216. [Google Scholar] [CrossRef]
- Seaman, C.; Flinders, B.; Eijkel, G.; Heeren, R.M.A.; Bricklebank, N.; Clench, M.R. “Afterlife Experiment”: Use of MALDI-MS and SIMS Imaging for the Study of the Nitrogen Cycle within Plants. Anal. Chem. 2014, 86, 10071–10077. [Google Scholar] [CrossRef]
- Alexander, L.E.; Gilbertson, J.S.; Xie, B.; Song, Z.; Nikolau, B.J. High spatial resolution imaging of the dynamics of cuticular lipid deposition during Arabidopsis flower development. Plant Direct 2021, 5, e00322. [Google Scholar] [CrossRef] [PubMed]
- Heskes, A.M.; Sundram, T.C.; Boughton, B.A.; Jensen, N.B.; Hansen, N.L.; Crocoll, C.; Cozzi, F.; Rasmussen, S.; Hamberger, B.; Hamberger, B.; et al. Biosynthesis of bioactive diterpenoids in the medicinal plant Vitex agnus-castus. Plant J. 2018, 93, 943–958. [Google Scholar] [CrossRef]
- Sturtevant, D.; Lu, S.; Zhou, Z.W.; Shen, Y.; Wang, S.; Song, J.M.; Zhong, J.; Burks, D.J.; Yang, Z.Q.; Yang, Q.Y.; et al. The genome of jojoba ( Simmondsia chinensis): A taxonomically isolated species that directs wax ester accumulation in its seeds. Sci. Adv. 2020, 6, eaay3240. [Google Scholar] [CrossRef]
- Dos Santos, N.A.; De Almeida, C.M.; Gonçalves, F.F.; Ortiz, R.S.; Kuster, R.M.; Saquetto, D.; Romão, W. Analysis of Erythroxylum coca Leaves by Imaging Mass Spectrometry (MALDI–FT–ICR IMS). J. Am. Soc. Mass Spectrom. 2021, 32, 946–955. [Google Scholar] [CrossRef] [PubMed]
- De Moraes Pontes, J.G.; Vendramini, P.H.; Fernandes, L.S.; De Souza, F.H.; Pilau, E.J.; Eberlin, M.N.; Magnani, R.F.; Wulff, N.A.; Fill, T.P. Mass spectrometry imaging as a potential technique for diagnostic of Huanglongbing disease using fast and simple sample preparation. Sci. Rep. 2020, 10, 13457. [Google Scholar] [CrossRef] [PubMed]
- Woodfield, H.K.; Sturtevant, D.; Borisjuk, L.; Munz, E.; Guschina, I.A.; Chapman, K.; Harwood, J.L. Spatial and Temporal Mapping of Key Lipid Species in Brassica napus Seeds. Plant Physiol. 2017, 173, 1998–2009. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.; McCully, M.E. The Use of an Optical Brightener in the Study of Plant Structure. Stain Technol. 1975, 50, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Man, Y.; Wen, J.; Guo, Y.; Lin, J. Advances in Imaging Plant Cell Walls. Trends Plant Sci. 2019, 24, 867–878. [Google Scholar] [CrossRef]
- Analytical Methods, C.A.N. A ‘Periodic Table’ of mass spectrometry instrumentation and acronyms. Anal. Methods 2017, 9, 5086–5090. [Google Scholar] [CrossRef]
ID Level | Requirement | Mass Spectrometry Imaging |
---|---|---|
1—Confirmed structure | Unambiguous (3D) structure from at least two independent and orthogonal methods, which refer to methods that provide different types of information and are not affected by the same sources of error and comparison to an authentic reference sample. | Recovery of material from regions of interest (ROIs), which are specific areas selected for detailed analysis; structural studies with orthogonal methods (e.g., NMR and HR-MSn); isotopic label studies, which involve the use of isotopes to trace the path of a molecule through a reaction or a metabolic pathway. |
2—Probable structure (single candidate) | Like Level 3, but with only one candidate left. | Filtering results with expert knowledge and bioinformatic analyses (e.g., theoretically possible metabolites from genome analyses and chemoinformatics). |
3—Tentative structure (multiple candidates) | HR-MS(n) data match with databases and are congruent with additional experiments and the biological context. Still, more than one compound can be explained with the available data. | High-resolution m/z data, direct fragmentation from tissues, in-source decay spectra, and isotope distribution data. Matching with databases and comparison with theoretical spectra. Multimodal imaging (e.g., fluorescence and infrared spectroscopy microscopy; immunolocalization); complementary studies with excisions from regions of interest (ROIs) or complete extractions, using GC-MS and LC-MS; chemical staining for functional groups. |
4—Molecular formula | HR-MS(n) and isotopic distribution data of m/z features that support the elemental composition of compounds | Calculation of theoretical mass spectra and comparison with experimental data; database matches. |
5—Exact mass of interest | m/z features are not identified but are unique. | Quantitation and statistical evaluation of m/z bins according to their signal intensity. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Rojas, N.S.; Sierra-Álvarez, C.D.; Ramos-Aboites, H.E.; Moreno-Pedraza, A.; Winkler, R. Identification of Plant Compounds with Mass Spectrometry Imaging (MSI). Metabolites 2024, 14, 419. https://doi.org/10.3390/metabo14080419
García-Rojas NS, Sierra-Álvarez CD, Ramos-Aboites HE, Moreno-Pedraza A, Winkler R. Identification of Plant Compounds with Mass Spectrometry Imaging (MSI). Metabolites. 2024; 14(8):419. https://doi.org/10.3390/metabo14080419
Chicago/Turabian StyleGarcía-Rojas, Nancy Shyrley, Carlos Daniel Sierra-Álvarez, Hilda E. Ramos-Aboites, Abigail Moreno-Pedraza, and Robert Winkler. 2024. "Identification of Plant Compounds with Mass Spectrometry Imaging (MSI)" Metabolites 14, no. 8: 419. https://doi.org/10.3390/metabo14080419
APA StyleGarcía-Rojas, N. S., Sierra-Álvarez, C. D., Ramos-Aboites, H. E., Moreno-Pedraza, A., & Winkler, R. (2024). Identification of Plant Compounds with Mass Spectrometry Imaging (MSI). Metabolites, 14(8), 419. https://doi.org/10.3390/metabo14080419