ATP, the 31P Spectral Modulus, and Metabolism
Abstract
:1. Introduction
- A molecular carrier of intracellular energy for processes including ion transport, muscle contraction, nerve impulse propagation, substrate phosphorylation, and chemical synthesis;
- The ultimate metabolic source of high-energy phosphate bonds;The parent residue giving rise to vitamin dinucleotides and other cofactors; e.g., NADH, FAD, Co-A, etc.);
- A coenzyme;
- An allosteric enzyme regulator for modulating protein activities;
- A substrate for the first stage of protein synthesis;
- A modifier of the intracellular milieu;
- The principal metabolite for cellular energy transduction mechanisms;
- The transport of macromolecules, such as proteins, into and out of cells;
- A phosphorylating agent in phosphate regulation of transmembrane proteins;
- The source of the adenosine nucleoside, one of the four letters of the genetic code;
- A molecule that participates in the signaling of key bioprocesses;
- A transmitter in intercellular purinergic signaling;
- Hypothesized to be an intracellular hydrotrope, maintaining protein solubilization, preventing non-specific protein aggregation.
1.1. ATP and Interstitial Water
1.2. Signal Splitting among Phosphate Groups of ATP
1.3. ATP as a Hydrotrope
1.4. The Hydromolecular Influence of ATP’s Triphosphate
1.5. Hydrotropism
1.6. Lens Protein Organization
1.7. The Lens Model
1.8. A Fundamental and Foundational Change
1.9. ATP and Protein Aggregation
1.10. ATP and Its Relationship to PSM
1.11. The 31P Spectral Modulus
1.12. The Integral Curve
1.13. Calculation of the 31P Spectral Modulus
2. Methods
Species (Tissues or Organs) Reference | Nature of Gross Sample (2, Tissues; 3, Organs) | Preparation (1, In Vivo; 2, Ex Vivo; 3, PCA) | Physiological State (1, Normal; 2, Stressed) | High-Energy Amplitude (Relative) | Low-Energy Amplitude (Relative) | 31P Spectral Modulus (High-Energy)/(Low-Energy) | Source |
---|---|---|---|---|---|---|---|
rabbit lens (intact) [5] | 3 | 2 | 1 | 68.4 | 31.6 | 2.16 | Table 1 |
rabbit lens (freshly excised) [5] | 3 | 3 | 1 | 71.9 | 28.1 | 2.56 | Table 1 |
rabbit lens (incub 24 h) [5] | 3 | 3 | 1 | 75.8 | 24.2 | 3.13 | Table 1 |
rat lens (inact) [25] | 3 | 2 | 1 | 52.4 | 49.0 | 1.07 | Table |
rat lens [25] | 3 | 3 | 1 | 52.4 | 49.4 | 1.06 | Table |
rabbit lens (freshly excised) [12] | 3 | 3 | 1 | 71.9 | 28.1 | 2.56 | Table II |
rabbit lens (incub 24 h) [12] | 3 | 3 | 1 | 75.8 | 29.2 | 2.60 | Table II |
rabbit lens (incub fructose) [12] | 3 | 3 | 1 | 72.8 | 27.2 | 2.68 | Table II |
rabbit lens (incub 24 h) [13] | 3 | 3 | 1 | 75.1 | 24.2 | 3.10 | Table I |
rabbit cornea (intact) [29] | 2 | 2 | 1 | 55.6 | 44.2 | 1.26 | Table I |
rabbit cornea (intact) [29] | 2 | 3 | 1 | 57.8 | 42.5 | 1.36 | Table I |
human cornea (intact) [34] | 2 | 2 | 1 | 53.8 | 46.2 | 1.16 | Table |
rabbit lens (control) [19] | 3 | 3 | 1 | 69.0 | 31.0 | 2.23 | Table II |
porcine cornea (intact) [35] | 2 | 2 | 1 | 47.3 | 52.7 | 0.90 | Table 1 |
bovine cornea (intact) [35] | 2 | 2 | 1 | 63.6 | 36.4 | 1.75 | Table 1 |
human cornea (intact) [35] | 2 | 2 | 1 | 53.8 | 46.2 | 1.16 | Table 1 |
human cornea (intact) [26] | 2 | 2 | 1 | n.g. | n.g. | 0.75 | Table 1 |
human cornea (intact) [26] | 2 | 2 | 1 | n.g. | n.g. | 0.85 | Table 1 |
human cornea (intact) [26] | 2 | 2 | 1 | n.g. | n.g. | 1.08 | Table 1 |
human cornea (intact) [26] | 2 | 2 | 1 | n.g. | n.g. | 1.01 | Table 1 |
human cornea (intact) [26] | 2 | 2 | 1 | n.g. | n.g. | 0.89 | Table 1 |
human cornea (intact) [26] | 2 | 2 | 1 | n.g. | n.g. | 0.94 | Table 1 |
human cornea (intact) [26] | 2 | 2 | 1 | n.g. | n.g. | 1.10 | Table 1 |
human cornea (intact) [26] | 2 | 2 | 1 | n.g. | n.g. | 1.19 | Table 1 |
human cornea (intact) [26] | 2 | 2 | 1 | n.g. | n.g. | 0.81 | Table 1 |
human cornea (intact) [26] | 2 | 2 | 1 | n.g. | n.g. | 0.85 | Table 1 |
rabbit lens (control) [14] | 3 | 2 | 1 | 68.6 | 31.4 | 2.18 | Table 1 |
chicken pectoralis [36] | 2 | 2 | 1 | 31 | 12.2 | 2.54 | Table 1 |
toad gastrocnemius [36] | 2 | 2 | 1 | 21.1 | 8.6 | 2.45 | Table 1 |
frog gastrocnemius [36] | 2 | 2 | 1 | 33 | 5.9 | 5.59 | Table 1 |
human quadriceps [37] | 2 | 2 | 1 | 20 | 12 | 1.67 | Figure 7A |
rat heart (perfused) [38] | 3 | 3 | 1 | 54.1 | 10.2 | 5.3 | Table 4 |
rat liver [39] | 2 | 2 | 1 | 25.8 | 45.2 | 0.57 | Table 4 |
human lens [40] | 3 | 3 | 1 | 521 | 472 | 1.1 | Table 1 |
rabbit lens (freshly excised) [40] | 3 | 3 | 1 | 474 | 472 | 1 | Table 1 |
guinea pig brain [41] | 2 | 3 | 1 | 65.94 | 36.93 | 1.79 | Table 1 |
human quadriceps [21] | 2 | 2 | 1 | 52.9 | 47.1 | 1.12 | Table 1 |
guinea pig brain [42] | 2 | 3 | 1 | 54.80 | 44.75 | 1.22 | Table 1 |
rat heart (perfused) [43] | 3 | 2 | 1 | 54.07 | 21.05 | 2.57 | Table 3 |
rabbit aorta [44] | 2 | 2 | 1 | 46.73 | 53.27 | 0.88 | Table 1 |
human colon [45] | 2 | 2 | 1 | 46.99 | 57.45 | 0.82 | Table 1 |
human breast [46] | 2 | 3 | 1 | 45.64 | 57.45 | 0.79 | Table 1 |
human tumor (benign) [46] | 2 | 2 | 2 | 54.27 | 51.36 | 1.06 | Table 1 |
Species (Tissues or Organs) Reference | Nature of Gross Sample: (2, Tissues; 3, Organs) | Preparation: (2, Ex Vivo; 3, PCA) | Physiological State: (2, Stressed) | High-Energy Amplitude (Relative) | Low-Energy Amplitude (Relative) | 31P Spectral Modulus (High-Energy)/(Low-Energy) | Source |
---|---|---|---|---|---|---|---|
rabbit lens (glucose-depleted) [5] | 3 | 3 | 2 | 35.3 | 64.7 | 0.546 | Table 1 |
rabbit lens (galactose 24 h) [12] | 3 | 3 | 2 | 54.6 | 45.4 | 1.20 | Table II |
rabbit lens (dexameth-asone 24 h) [13] | 3 | 3 | 2 | 25.8 | 74.3 | 0.347 | Table I |
rabbit lens (ouabain 14 h) [19] | 3 | 3 | 2 | 33.9 | 66.1 | 0.513 | Table II |
cat cornea 1 (intact) [47] | 2 | 2 | 2 | 38.3 | 61.8 | 0.620 | Table 2 |
cat cornea 2 (intact) [47] | 2 | 2 | 2 | 32.7 | 67.3 | 0.486 | Table 2 |
cat cornea 3 (intact) [47] | 2 | 2 | 2 | 43.4 | 56.5 | 0.767 | Table 2 |
cat cornea 4 (intact) [47] | 2 | 2 | 2 | 37.0 | 63.0 | 0.587 | Table 2 |
rabbit lens (verapamil) 13 h) [16] | 3 | 3 | 2 | 59.0 | 41.0 | 1.44 | Table I |
rabbit lens (verapamil) [16] | 3 | 2 | 2 | 55.1 | 44.9 | 1.23 | Table I |
cat cornea (transplanted 24 h) [26] | 2 | 2 | 2 | n.g. | n.g. | 0.62 | Table 1 |
cat cornea (transplanted 24 h) [26] | 2 | 2 | 2 | n.g. | n.g. | 0.49 | Table 1 |
cat cornea (transplanted 24 h) [26] | 2 | 2 | 2 | n.g. | n.g. | 0.77 | Table 1 |
cat cornea (transplanted 96 h) [26] | 2 | 2 | 2 | n.g. | n.g. | 0.49 | Table 1 |
cat cornea (transplanted 96 h) [26] | 2 | 2 | 2 | n.g. | n.g. | 0.61 | Table 1 |
cat cornea (transplanted 96 h) [26] | 2 | 2 | 2 | n.g. | n.g. | 0.53 | Table 1 |
cat cornea (transplanted 240 h) [26] | 2 | 2 | 2 | n.g. | n.g. | 0.12 | Table 1 |
cat cornea (transplanted 240 h) [26] | 2 | 2 | 2 | n.g. | n.g. | 0.45 | Table 1 |
cat cornea (transplanted 240 h) [26] | 2 | 2 | 2 | n.g. | n.g. | 0.27 | Table 1 |
human cornea (eye-bank) [48] | 2 | 3 | 2 | 58.75 | 42.6 | 1.38 | Table 1 |
rabbit lens (magnesium 10 mM 24 h) [14] | 3 | 3 | 2 | 59.1 | 39.1 | 1.45 | Table 1 |
rabbit lens (magnesium 20 mM 24 h) [14] | 3 | 3 | 2 | 33.3 | 66.7 | 0.50 | Table 1 |
cat cornea (Optisol) [49] | 2 | 2 | 2 | 28.5 | 71.4 | 0.40 | Table 1 |
cat cornea (Optisol + hEGF) [49] | 2 | 2 | 2 | 29.9 | 70.1 | 0.43 | Table 1 |
cat cornea (Optisol + insulin) [49] | 2 | 2 | 2 | 24.8 | 75.1 | 0.33 | Table 1 |
cat cornea (Optisol hEGF + insulin) [49] | 2 | 2 | 2 | 33.9 | 66.1 | 0.51 | Table 1 |
rat heart (perfused 5 ppm Cd) [38] | 3 | 2 | 2 | 50.7 | 10.3 | 4.92 | Table 4 |
rat heart (perfused Cd/Pb) [39] | 3 | 2 | 2 | 68.8 | 15.5 | 4.44 | Table 2 |
gerbil brain [42] | 2 | 3 | 2 | 46.61 | 53.39 | 0.87 | Table 1 |
gerbil brain (incub) [42] | 2 | 3 | 2 | 17.8 | 82.1 | 0.22 | Table 1 |
guinea pig brain incub) [42] | 2 | 3 | 2 | 28.04 | 71.96 | 0.39 | Table 1 |
Species (Tissues or Organ) Reference | Nature of Gross Sample: (1, Cells; 2, Tissues) | Preparation: (2, Ex Vivo; 3, PCA) | Physiological State: (3, Diseased) | High-Energy Amplitude (Relative) | Low-Energy Amplitude (Relative) | 31P Spectral Modulus (High-Energy)/(Low-Energy) | Source |
---|---|---|---|---|---|---|---|
chicken pectoralis (dystrophic) [36] | 2 | 2 | 3 | 19.1 | 24.2 | 0.79 | Table 1 |
human quadriceps, (nemaline rod) [37] | 2 | 2 | 3 | 17.3 | 4.0 | 4.3 | Figure 7B |
mouse neuroblastoma [cell lines C-46 (C+)] [50] | 1 | 3 | 3 | 18.5 | 43.8 | 0.42 | Table 1 |
mouse neuroblastoma [cell lines C-46 (L−)] [50] | 1 | 3 | 3 | 21.3 | 43.8 | 0.49 | Table 1 |
mouse neuroblastoma [cell linesN-18 (C+)] [50] | 1 | 3 | 3 | 12.7 | 62.8 | 0.2 | Table 1 |
mouse neuroblastoma [cell lines N-18 (L−)] [50] | 1 | 3 | 3 | 6.7 | 83.9 | 0.08 | Table 1 |
chicken pectoralis (dystrophic, 10–20 min) [4] | 2 | 2 | 3 | 1388 | 545 | 2.55 | Table 1 |
human quadriceps (Duchenne) [21] | 2 | 3 | 3 | 10.1 | 11.0 | 0.92 | Table II |
human quadriceps (Becker) [21] | 2 | 3 | 3 | 12.4 | 6.8 | 1.82 | Table II |
human shoulder (facioscapulohumeral dystrophy) [21] | 2 | 3 | 3 | 14.8 | 14.4 | 0.91 | Table II |
human vastus (congenital myotonia) [21] | 2 | 3 | 3 | 13.2 | 14.4 | 0.92 | Table II |
human quadriceps (myopathy, etiology unknown) [21] | 2 | 3 | 3 | 13.9 | 13.2 | 1.05 | Table II |
human quadriceps (Charcot–Marie–Tooth) [36] | 2 | 3 | 3 | 14.3 | 22.8 | 0.63 | Table II |
human gastrocnemius (Kugelberg–Welander) [36] | 2 | 3 | 3 | 18.0 | 23.7 | 0.76 | Table II |
human soleus (meningo-myelocele) [36] | 2 | 3 | 3 | 17.5 | 26.4 | 0.66 | Table II |
human soleus (cerebral palsy) [36] | 2 | 3 | 3 | 11.8 | 16.4 | 0.72 | Table II |
human vastus (amyotrophy after encephalitis) [36] | 2 | 3 | 3 | 10.5 | 10.7 | 0.98 | Table II |
human quadriceps (amyotrophy of unknown etiology) [36] | 2 | 3 | 3 | 11.0 | 12.2 | 0.90 | Table II |
human colon (cancer) [45] | 2 | 3 | 3 | 27.68 | 75.62 | 0.37 | Table 1 |
human tumor (malignant) [46] | 2 | 3 | 3 | 51.9 | 51.69 | 1.00 | Table 1 |
human cornea (keratoconus) [48] | 2 | 3 | 3 | 49.18 | 51.90 | 0.95 | Table 1 |
human cornea (Fuchs’ dystrophy) [51] | 2 | 3 | 3 | 43.70 | 56.30 | 0.78 | Table 1 |
human cornea (bullous keratopathy) [51] | 2 | 3 | 3 | 47.4 | 52.6 | 0.90 | Table 1 |
human cornea (failed graft) [51] | 2 | 3 | 3 | 36.7 | 63.3 | 0.58 | Table 1 |
3. Results
4. Discussion
5. Study Limitations
6. Future Studies
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoult, D.I.; Busby, S.J.; Gadian, D.G.; Radda, G.K.; Richards, R.E.; Seeley, P.J. Observation of tissue metabolites using 31P nuclear magnetic resonance. Nature 1974, 252, 285–287. [Google Scholar] [CrossRef] [PubMed]
- Bárány, M.; Bárány, K.; Burt, C.T.; Glonek, T.; Myers, T.C. Structural changes in myosin during contraction and the state of ATP in the intact frog muscle. J. Supramol. Struct. 1975, 3, 125–140. [Google Scholar] [CrossRef] [PubMed]
- Glonek, T. Applications of 31P NMR to biological system with emphasis on intact tissue determinations. In Phosphorus Chemistry Directed towards Biology: Lectures Presented at the International Symposium Phosphorus Chemistry Directed towards Biology, Burzenin, Poland, 25–28 September 1979; Stec, W.J., Ed.; Pergamon Press: Oxford, UK, 1980; pp. 157–174. [Google Scholar]
- Bárány, M.; Glonek, T. Phosphorus-31 nuclear magnetic resonance of contractile systems. Methods Enzymol. 1982, 85B, 624–676. [Google Scholar]
- Greiner, J.V.; Kopp, S.J.; Sanders, D.R.; Glonek, T. Organophosphates of the crystalline lens: A nuclear magnetic resonance spectroscopic study. Investig. Ophthalmol. Vis. Sci. 1981, 21, 700–713. [Google Scholar]
- Greiner, J.V.; Glonek, T. Intracellular ATP concentrations and implication for cellular evolution. Biology 2021, 10, 1166. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.L.; Cox, M.M.; Hoskins, A.A. Lehninger Principles of Biochemistry, 8th ed.; WH Freeman & Company: New York, NY, USA, 2021; p. 26. [Google Scholar]
- Rice, A.M.; Rosen, M.K. ATP controls the crowd. Science 2017, 356, 701–702. [Google Scholar] [CrossRef] [PubMed]
- Greiner, J.V.; Glonek, T. Hydrotropic function of ATP in the crystalline lens. Exp. Eye Res. 2020, 190, 107862. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Malinovska, L.; Saha, S.; Wang, J.; Alberti, S.; Krishnan, Y.; Hyman, A.A. ATP as a biological hydrotrope. Science 2017, 356, 753–756. [Google Scholar] [CrossRef] [PubMed]
- Kuwabara, T. The maturation of the lens cell: A morphologic study. Exp. Eye Res. 1975, 20, 427–443. [Google Scholar] [CrossRef] [PubMed]
- Greiner, J.V.; Kopp, S.J.; Sanders, D.R.; Glonek, T. Dynamic changes in the organophosphate profile of the experimental galactose-induced cataract. Investig. Ophthalmol. Vis. Sci. 1982, 22, 613–624. [Google Scholar]
- Greiner, J.V.; Kopp, S.J.; Glonek, T. Dynamic change in the organophosphate profile upon treatment of the crystalline lens with dexamethasone. Investig. Ophthalmol. Vis. Sci. 1982, 23, 14–22. [Google Scholar]
- Kopp, S.J.; Glonek, T.; Greiner, J.V. Dynamic changes in intact crystalline lens metabolism modulated by alkaline earth metals: 1. Effects of magnesium. Exp. Eye Res. 1983, 36, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Glonek, T.; Kopp, S.J.; Greiner, J.V.; Sanders, D.R. Lenticular energy metabolism during exogenous calcium deprivation and during recovery: Effects of Dextran-40. Exp. Eye Res. 1985, 40, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Greiner, J.V.; Glonek, T. Effects of the slow-calcium-channel blocker verapamil on phosphatic metabolism of crystalline lens. Exp. Eye Res. 1988, 46, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.K.; Becker, E.D.; Cabral de Menezes, S.M.; Goodfellow, R.; Granger, P. NMR nomenclature. Nuclear spin properties and conventions for chemical shifts (IUPAC). Pure Appl. Chem. 2001, 73, 1795–1818. [Google Scholar] [CrossRef]
- Glonek, T.; Kopp, S.J. Ex vivo P 31 NMR of lens, cornea, heart, and brain. Mag. Reson. Imag. 1985, 3, 359–376. [Google Scholar] [CrossRef] [PubMed]
- Greiner, J.V.; Kopp, S.J.; Glonek, T. Phosphorus-31 NMR analysis of dynamic energy metabolism in intact crystalline lens treated with ouabain: Phosphorylated metabolites. Ophthalmic Res. 1985, 17, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Glonek, T.; Greiner, J.V. Intralenticular water interactions with phosphates in the intact crystalline lens. Ophthalmic Res. 1990, 22, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Bárány, M.; Glonek, T. Identification of diseased states by P-31 NMR. In Phosphorus-31 NMR: Principles and Applications; Gorenstein, D., Ed.; Academic Press: Cambridge, MA, USA, 1984; pp. 511–545. [Google Scholar]
- Greiner, J.V.; Kopp, S.J.; Glonek, T. Phosphorus nuclear magnetic resonance and ocular metabolism. Surv. Ophthalmol. 1985, 30, 189–202. [Google Scholar] [CrossRef] [PubMed]
- Greiner, J.V.; Glonek, T. Using the 31P NMR spectral modulus to determine the metabolic health of the lens in vivo. In Proceedings of the Annual Meeting of the American Society of Cataract and Refractive Surgery, San Diego, CA, USA, 5–8 May 2023. Program #92570. [Google Scholar]
- Greiner, J.V.; Kopp, S.J.; Glonek, T. Nondestructive metabolic analysis of a cornea with the use of phosphorus nuclear magnetic resonance. Arch. Ophthalmol. 1984, 102, 770–771. [Google Scholar] [CrossRef] [PubMed]
- Kopp, S.J.; Greiner, J.V.; Glonek, T. Analysis of intact rat lens metabolites by P-31 NMR spectroscopy. Curr. Eye Res. 1981, 1, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Greiner, J.V.; Lass, J.H.; Kenyon, K.R.; Medcalf, S.K.; Collie, D.M.; Hanninen, L.; Glonek, T. Noninvasive metabolic evaluation of eye bank corneas prior to transplantation. In The Cornea: Transactions of the World Congress on the Cornea III; Cavanagh, J.D., Ed.; Raven Press Ltd.: New York, NY, USA, 1988; pp. 217–224. [Google Scholar]
- Greiner, J.V.; Lass, J.H.; Glonek, T. Noninvasive metabolic analysis of eye bank corneas: A magnetic resonance spectroscopic study. Graefes Arch. Clin. Exp. Ophthalmol. 1989, 227, 295–299. [Google Scholar] [CrossRef] [PubMed]
- Merchant, T.E.; Lass, J.H.; Meneses, P.; Greiner, J.V.; Glonek, T. The effects of age on phosphatic metabolites of the human crystalline lens. Exp. Eye Res. 1991, 52, 641–646. [Google Scholar] [CrossRef] [PubMed]
- Greiner, J.V.; Kopp, S.J.; Gillette, T.E.; Glonek, T. Phosphatic metabolites of the intact cornea by phosphorus-31 nuclear magnetic resonance. Investig. Ophthalmol. Vis. Sci. 1983, 24, 535–542. [Google Scholar]
- Schwarzkopf, T.M.; Koch, K.; Klein, J. Reduced severity of ischemic stroke and improvement of mitochondrial function after dietary treatment with the anaplerotic substance triheptanoin. Neuroscience 2015, 300, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Schwarzkopf, T.M.; Koch, K.A.; Klein, J. Neurodegenerative after transient brain ischemic in aged mice, Beneficial effects of bilobalide. Brain Res. 2013, 1529, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Kopp, S.J.; Glonek, T.; Greiner, J.V. Interspecies variations in mammalian lens metabolites as detected by P-31 NMR. Science 1982, 215, 1622–1625. [Google Scholar] [CrossRef] [PubMed]
- Greiner, J.V.; Lass, J.H.; Glonek, T. Interspecies analysis of corneal phosphate metabolites. Exp. Eye Res. 1989, 49, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Greiner, J.V.; Lass, J.H.; Glonek, T. Ex vivo metabolic analysis of eye bank corneas using phosphorus nuclear magnetic resonance. Arch. Ophthalmol. 1984, 102, 1171–1173. [Google Scholar] [CrossRef] [PubMed]
- Greiner, J.V.; Kopp, S.J.; Lass, J.H.; Gold, J.B.; Glonek, T. Metabolic compatibility of abattoir and human corneas: An ex vivo P-31 nuclear magnetic resonance spectroscopic study of intact tissues. Cornea 1993, 12, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Burt, C.T.; Glonek, T.; Bárány, M. Analysis of phosphate metabolites, the intracellular pH, and the state of adenosine triphosphate in intact muscle by phosphorus nuclear magnetic resonance. J. Biol. Chem. 1976, 251, 2584–2591. [Google Scholar] [CrossRef] [PubMed]
- Glonek, T.; Burt, C.T.; Bárány, M. NMR analysis of intact tissues including several examples of normal and diseased human muscle determinations. In NMR, Basic Principles and Progress; NMR in Medicine; Diehl, P., Fluck, E., Kosfeld, R., Eds.; Springer: Berlin/Heidelberg, Germany, 1981; Volume 19, pp. 120–159. [Google Scholar]
- Kopp, S.J.; Glonek, T.; Erlanger, M.; Perry, E.F.; Bárány, M.; Perry, H.M., Jr. Cadmium and lead effects on myocardial function and metabolism. J. Environ. Pathol. Toxicol. 1980, 4, 205–227. [Google Scholar] [PubMed]
- Kopp, S.J.; Glonek, T.; Erlanger, M.; Perry, E.F.; Bárány, M.; Perry, H.M., Jr. Altered metabolism and function of rat heart following chronic low level Cd/Pb feeding. J. Mol. Cell Cardiol. 1980, 12, 1407–1425. [Google Scholar] [CrossRef] [PubMed]
- Greiner, J.V.; Kopp, S.J.; Mercola, J.M.; Glonek, T. Organophosphate metabolites of the human and rabbit crystalline lens: A phosphorus-31 nuclear magnetic resonance spectroscopic analysis. Exp. Eye Res. 1982, 34, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Glonek, T.; Kopp, S.J.; Kot, E.; Pettegrew, J.W.; Harrison, W.H.; Cohen, M.M. P-31 nuclear magnetic resonance analysis of brain. The perchloric acid extract spectrum. J. Neurochem. 1982, 39, 1210–1219. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.M.; Pettegrew, J.W.; Kopp, S.J.; Minshew, N.; Glonek, T. P-31 nuclear magnetic resonance analysis of brain: Normoxic and anoxic brain slices. Neurochem. Res. 1984, 9, 785–801. [Google Scholar] [CrossRef]
- Prentice, R.C.; Hawley, P.L.; Glonek, T.; Kopp, S.J. Calcium-dependent effects of cadmium on energy metabolism and function of perfused rat heart. Toxicol. Appl. Pharmacol. 1984, 75, 198–210. [Google Scholar] [CrossRef] [PubMed]
- Barron, J.T.; Glonek, T.; Messer, J.V. 31P-nuclear magnetic resonance analysis of extracts of vascular smooth muscle. Atherosclerosis 1986, 59, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Kasimos, J.N.; Merchant, T.E.; Gierke, L.W.; Glonek, T. P-31 magnetic resonance spectroscopy of human colon cancer. Cancer Res. 1990, 50, 527–532. [Google Scholar] [PubMed]
- Merchant, T.E.; Thelissen, G.R.P.; de Graaf, P.W.; Otter, W.D.; Glonek, T. Clinical magnetic resonance spectroscopy of human breast disease. Investig. Radiol. 1992, 26, 1053–1059. [Google Scholar] [CrossRef] [PubMed]
- Lass, J.H.; Medcalf, K.; Greiner, J.V.; Glonek, T. Preoperative metabolic analysis of donor corneas using magnetic resonance spectroscopy. Cornea 1987, 6, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Greiner, J.V.; Lass, J.H.; Reinhart, W.J.; Medcalf, S.K.; Glonek, T. Phosphatic metabolites in keratoconus. Exp. Eye Res. 1989, 49, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Lass, J.H.; Putman, S.C.; Bruner, W.E.; Cano, D.B.; Greiner, J.V.; Glonek, T. The effect of hEGF and insulin on corneal metabolism during Optisol storage. Cornea 1994, 13, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Pettegrew, J.W.; Glonek, T.; Baskin, F.; Rosenberg, R.N. Phosphorus-31 NMR of neuroblastoma clonal lines. Effect of cell confluency state and dibutyryl cyclic AMP. Neurochem. Res. 1979, 4, 795–802. [Google Scholar] [CrossRef] [PubMed]
- Lass, J.H.; Greiner, J.V.; Reinhart, W.J.; Medcalf, S.K.; Glonek, T. Phosphatic metabolism and corneal edema. Cornea 1991, 10, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Kopp, S.J.; Glonek, T.; Erlanger, M.; Perry, E.F.; Bárány, M.; Perry, H.M., Jr. Altered myocardial function and metabolism induced by chronic, low level cadmium feeding in the rat. Trace Subst. Environ. Health 1979, 13, 446–452. [Google Scholar]
- Kopp, S.J.; Perry, H.M., Jr.; Glonek, T.; Erlanger, M.; Perry, E.F.; Bárány, M.; D’Agrosa, L.S. Cardiac physiologic-metabolic changes following chronic low-level heavy metal feeding. Am. J. Physiol. 1980, 8, H22–H30. [Google Scholar]
Table | N | Mean | Std. Dev. | Probability (Tables) | ||
---|---|---|---|---|---|---|
1 with 2 | 1 with 3 | 2 with 3 | ||||
1, normal | 43 | 1.694 | 1.109 | 0.003 * | ||
2, stressed | 31 | 0.901 | 1.070 | 0.005 * | ||
3, diseased | 24 | 0.987 | 0.863 | 0.743 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greiner, J.V.; Glonek, T. ATP, the 31P Spectral Modulus, and Metabolism. Metabolites 2024, 14, 456. https://doi.org/10.3390/metabo14080456
Greiner JV, Glonek T. ATP, the 31P Spectral Modulus, and Metabolism. Metabolites. 2024; 14(8):456. https://doi.org/10.3390/metabo14080456
Chicago/Turabian StyleGreiner, Jack V., and Thomas Glonek. 2024. "ATP, the 31P Spectral Modulus, and Metabolism" Metabolites 14, no. 8: 456. https://doi.org/10.3390/metabo14080456
APA StyleGreiner, J. V., & Glonek, T. (2024). ATP, the 31P Spectral Modulus, and Metabolism. Metabolites, 14(8), 456. https://doi.org/10.3390/metabo14080456