An Overview of Pre-Analytical Factors Impacting Metabolomics Analyses of Blood Samples
Abstract
:1. Introduction
2. Choice of Matrix
2.1. Serum vs. Plasma
2.2. Whole Blood and Dried Blood Spot Sampling
2.3. Recommendations
3. Pre-Processing Factors Impacting Metabolome Composition
3.1. Collection Tube Type
3.1.1. Sample Collection Tubes: Serum
3.1.2. Recommendations
3.1.3. Collection Tube Type: Plasma
3.1.4. Recommendations
3.2. Pre-Centrifugation Sample Handling
3.2.1. Persistent Cellular Metabolism
3.2.2. Time Delay
3.2.3. Pre-Centrifugation Temperature
3.2.4. Avoiding Hemolysis in Blood Sample Preparation
3.2.5. Recommendations
4. Centrifugation Conditions
Recommendations
5. Post-Centrifugation Processing Factors Impacting Metabolome Composition
5.1. Sample Stability over Time
5.2. Temperature
5.3. Recommendations
5.4. Freeze–Thaw Cycles
5.5. Recommendations
6. Sample Quality Control Markers
7. Recommendations for Bio-Banked Sample Labelling
8. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Author | Year | Methods | Main Findings |
---|---|---|---|
Liu et al. [22] | 2018 |
|
|
Yu et al. [23] | 2011 |
|
|
Denery et al. [24] | 2011 |
|
|
Kaluarachchi et al. [26] | 2018 |
|
|
Wedge et al. [30] | 2011 |
|
|
Kennedy et al. [34] | 2021 |
|
|
Liu et al. [27] | 2010 |
|
|
Barri et al. [25] | 2013 |
|
|
Vignoli et al. [28] | 2022 |
|
|
Bovo et al. [31] | 2023 |
|
|
Suarez-Diez et al. [29] | 2017 |
|
|
Blood Matrix | Tube Additive | Clotting Time | Impact on Metabolomics Testing |
---|---|---|---|
Serum | Thrombin | 5 min | |
Serum | Silicate | 30 min |
|
Serum | Non-additive | 60 min |
Anticoagulant | Anticoagulation Mechanism | Considerations for Metabolomics Work |
---|---|---|
Citrate | Calcium chelator | |
Ethylenediaminetetraacetic acid (EDTA) | Calcium chelator | |
Heparin | Thrombin inhibition |
|
Author | Year | Time Conditions | Temperature Conditions | Matrix | Significant Findings | Recommendations for Storage |
---|---|---|---|---|---|---|
Jobard et al. [69] | 2016 | 1 or 6 h time delay | RT or 4 °C (fridge) | Plasma and serum |
| <6 h at RT; 6 h at 4 °C acceptable |
Liu et al. [27] | 2010 | 1–4 h | 37° | Plasma and serum |
| <1 h at 37°; most changes occur during first 2 h of delay |
Nishummi et al. [73] | 2018 | RT: 0, 15, or 30 min Cold storage: 1, 4, or 8 h | RT or cold storage (Cube Cooler, Forte Grow Medical, Tochigi, Japan) | Plasma and serum |
| <30 min at RT; 1 h cold storage acceptable |
Nkuna et al. [76] | 2023 | 8, 12, 48, and 72 h | RT | Plasma and serum |
| <8 h at RT |
Ghini et al. [70] | 2022 | 30 min–72 h Protocols from multiple biobanks considered | RT or cold storage | Plasma and serum |
| <30 min time delay at RT; <72 h at 4 °C |
Wang et al. [82] | 2018 | 0, 15, 30, and 48 h | Cold storage (refrigerator) | Plasma |
| <15 h cold storage |
Breier et al. [74] | 2014 | 3 h, 6 h, and 24 h | RT and cold storage (cool pack) | Plasma and serum |
| <3 h cold storage |
Fliniaux et al. [71] | 2011 | 4 h or 24 h | RT or 4 °C | Serum |
| <4 h at RT; 24 h at 4 °C is acceptable |
Yin et al. [17] | 2013 | 2, 4, 8, and 24 h | RT and cold storage (ice water) | Plasma |
| <2 h at RT; up to 4 h cold storage is acceptable |
Trezzi et al. [79] | 2016 | 10, 30, 60 min, 3 h, or 23 h | RT or 4 °C | Plasma |
| <3 h cold storage |
Xiong et al. [93] | 2024 | 24 h | RT or 4°C | Plasma |
| Up to 24 h at 4 °C |
Killilea et al. [75] | 2024 | 1 h, 4 h, or 24 h | 4 °C, 20 °C, or 37 °C for 1 h | Plasma and serum |
| <4 h at RT or cold storage |
Liu et al. [22] | 2018 | 2 h or 4 h | RT or 4 °C (ice water) | Plasma |
| <4 h cold storage |
Seymour et al. [77] | 2011 | 0, 5, 10, 20, and 30 min | RT, cold storage 1 (ice pack), or cold storage 2 (wet ice) | Plasma |
| <5 min at RT; cold storage on wet ice preferred |
Jones et al. [78] | 2007 | 0, 3, 6, 9, 12, and 15 min | RT or cold storage (on ice) | Plasma |
| 15 min at RT or cold storage |
Clark et al. [83] | 2004 | 1, 2, 3, 4, and 7 days | RT or 4 °C | Plasma |
| RT and/or cold storage for several days is permissible |
Kamlage et al. [80] | 2014 | 2 h or 6 h | RT or cold storage (wet ice) | Plasma |
| <2 h cold storage |
Sens et al. [81] | 2023 | 20, 60, 120, and 240 min | RT or cold storage (ice water) | Plasma |
| 1 h cold storage |
Debik et al. [72] | 2022 | 30 min or 1, 2, 4, or 8 h | RT | Plasma and serum |
| <1 h RT storage |
Analytical Phase | Recommendation |
---|---|
Choice of matrix |
|
Serum collection tube |
|
Plasma collection tube |
|
Pre-centrifugation time and temperature |
|
Centrifugation |
|
Post-centrifugation time and temperature |
|
Freeze–thaw cycles |
|
References
- González-Domínguez, R.; González-Domínguez, Á.; Sayago, A.; Fernández-Recamales, Á. Recommendations and Best Practices for Standardizing the Pre-Analytical Processing of Blood and Urine Samples in Metabolomics. Metabolites 2020, 10, 229. [Google Scholar] [CrossRef] [PubMed]
- Wörheide, M.A.; Krumsiek, J.; Kastenmüller, G.; Arnold, M. Multi-omics integration in biomedical research—A metabolomics-centric review. Anal. Chim. Acta 2021, 1141, 144–162. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Sun, H.; Wang, P.; Han, Y.; Wang, X. Recent and potential developments of biofluid analyses in metabolomics. J. Proteom. 2012, 75, 1079–1088. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, D.R.; Patel, R.; Kirsch, D.G.; Lewis, C.A.; Vander Heiden, M.G.; Locasale, J.W. Metabolomics in cancer research and emerging applications in clinical oncology. CA Cancer J. Clin. 2021, 71, 333–358. [Google Scholar] [CrossRef]
- Yang, L.; Wang, Y.; Cai, H.; Wang, S.; Shen, Y.; Ke, C. Application of metabolomics in the diagnosis of breast cancer: A systematic review. J. Cancer 2020, 11, 2540–2551. [Google Scholar] [CrossRef]
- Pereira, P.R.; Carrageta, D.F.; Oliveira, P.F.; Rodrigues, A.; Alves, M.G.; Monteiro, M.P. Metabolomics as a tool for the early diagnosis and prognosis of diabetic kidney disease. Med. Res. Rev. 2022, 42, 1518–1544. [Google Scholar] [CrossRef]
- Zhang, J.; Fuhrer, T.; Ye, H.; Kwan, B.; Montemayor, D.; Tumova, J.; Darshi, M.; Afshinnia, F.; Scialla, J.J.; Anderson, A.; et al. High-Throughput Metabolomics and Diabetic Kidney Disease Progression: Evidence from the Chronic Renal Insufficiency (CRIC) Study. Am. J. Nephrol. 2022, 53, 215–225. [Google Scholar] [CrossRef]
- Donatti, A.; Canto, A.M.; Godoi, A.B.; da Rosa, D.C.; Lopes-Cendes, I. Circulating Metabolites as Potential Biomarkers for Neurological Disorders-Metabolites in Neurological Disorders. Metabolites 2020, 10, 389. [Google Scholar] [CrossRef]
- Poupore, N.; Chosed, R.; Arce, S.; Rainer, R.; Goodwin, R.L.; Nathaniel, T.I. Metabolomic Profiles of Men and Women Ischemic Stroke Patients. Diagnostics 2021, 11, 1786. [Google Scholar] [CrossRef]
- Li, W.; Shao, C.; Li, C.; Zhou, H.; Yu, L.; Yang, J.; Wan, H.; He, Y. Metabolomics: A useful tool for ischemic stroke research. J. Pharm. Anal. 2023, 13, 968–983. [Google Scholar] [CrossRef]
- Balashova, E.E.; Maslov, D.L.; Lokhov, P.G. A Metabolomics Approach to Pharmacotherapy Personalization. J. Pers. Med. 2018, 8, 28. [Google Scholar] [CrossRef] [PubMed]
- Franiek, A.; Sharma, A.; Cockovski, V.; Wishart, D.S.; Zappitelli, M.; Blydt-Hansen, T.D. Urinary metabolomics to develop predictors for pediatric acute kidney injury. Pediatr. Nephrol. 2022, 37, 2079–2090. [Google Scholar] [CrossRef]
- Blydt-Hansen, T.D.; Sharma, A.; Gibson, I.W.; Mandal, R.; Wishart, D.S. Urinary metabolomics for noninvasive detection of borderline and acute T cell-mediated rejection in children after kidney transplantation. Am. J. Transpl. 2014, 14, 2339–2349. [Google Scholar] [CrossRef] [PubMed]
- Blydt-Hansen, T.D.; Sharma, A.; Gibson, I.W.; Wishart, D.S.; Mandal, R.; Ho, J.; Nickerson, P.; Rush, D. Urinary Metabolomics for Noninvasive Detection of Antibody-Mediated Rejection in Children after Kidney Transplantation. Transplantation 2017, 101, 2553–2561. [Google Scholar] [CrossRef] [PubMed]
- Clish, C.B. Metabolomics: An emerging but powerful tool for precision medicine. Cold Spring Harb. Mol. Case Stud. 2015, 1, a000588. [Google Scholar] [CrossRef] [PubMed]
- Tuck, M.K.; Chan, D.W.; Chia, D.; Godwin, A.K.; Grizzle, W.E.; Krueger, K.E.; Rom, W.; Sanda, M.; Sorbara, L.; Stass, S.; et al. Standard operating procedures for serum and plasma collection: Early detection research network consensus statement standard operating procedure integration working group. J. Proteome Res. 2009, 8, 113–117. [Google Scholar] [CrossRef]
- Yin, P.; Peter, A.; Franken, H.; Zhao, X.; Neukamm, S.S.; Rosenbaum, L.; Lucio, M.; Zell, A.; Häring, H.-U.; Xu, G.; et al. Preanalytical Aspects and Sample Quality Assessment in Metabolomics Studies of Human Blood. Clin. Chem. 2013, 59, 833–845. [Google Scholar] [CrossRef]
- Timms, J.F.; Arslan-Low, E.; Gentry-Maharaj, A.; Luo, Z.; T’Jampens, D.; Podust, V.N.; Ford, J.; Fung, E.T.; Gammerman, A.; Jacobs, I.; et al. Preanalytic influence of sample handling on SELDI-TOF serum protein profiles. Clin. Chem. 2007, 53, 645–656. [Google Scholar] [CrossRef]
- Møller, M.F.; Søndergaard, T.R.; Kristensen, H.T.; Münster, A.B. Evaluation of a reduced centrifugation time and higher centrifugal force on various general chemistry and immunochemistry analytes in plasma and serum. Ann. Clin. Biochem. 2017, 54, 593–600. [Google Scholar] [CrossRef]
- Guder, W.G.; Narayanan, S.; Wisser, H.; Zawta, B. Collection of Specimen. In Samples: From the Patient to the Laboratory; Guder, W.G., Narayanan, S., Wisser, H., Zawta, B., Eds.; Wiley-VCH: Weinheim, Germany, 2003; pp. 14–35. [Google Scholar]
- Guder, W.G.; Narayanan, S.; Wisser, H.; Zawta, B. Wiley-VCH. Preparation of Samples for Analysis. In Samples: From the Patient to the Laboratory; Guder, W.G., Narayanan, S., Wisser, H., Zawta, B., Eds.; Wiley-VCH: Weinheim, Germany, 2003; pp. 42–49. [Google Scholar]
- Liu, X.; Hoene, M.; Wang, X.; Yin, P.; Häring, H.U.; Xu, G.; Lehmann, R. Serum or plasma, what is the difference? Investigations to facilitate the sample material selection decision making process for metabolomics studies and beyond. Anal. Chim. Acta 2018, 1037, 293–300. [Google Scholar] [CrossRef]
- Yu, Z.; Kastenmuller, G.; He, Y.; Belcredi, P.; Moller, G.; Prehn, C.; Mendes, J.; Wahl, S.; Roemisch-Margl, W.; Ceglarek, U.; et al. Differences between human plasma and serum metabolite profiles. PLoS ONE 2011, 6, e21230. [Google Scholar] [CrossRef]
- Denery, J.R.; Nunes, A.A.K.; Dickerson, T.J. Characterization of Differences between Blood Sample Matrices in Untargeted Metabolomics. Anal. Chem. 2011, 83, 1040–1047. [Google Scholar] [CrossRef]
- Barri, T.; Dragsted, L.O. UPLC-ESI-QTOF/MS and multivariate data analysis for blood plasma and serum metabolomics: Effect of experimental artefacts and anticoagulant. Anal. Chim. Acta 2013, 768, 118–128. [Google Scholar] [CrossRef]
- Kaluarachchi, M.; Boulangé, C.L.; Karaman, I.; Lindon, J.C.; Ebbels, T.M.D.; Elliott, P.; Tracy, R.P.; Olson, N.C. A comparison of human serum and plasma metabolites using untargeted 1H NMR spectroscopy and UPLC-MS. Metabolomics 2018, 14, 32. [Google Scholar] [CrossRef]
- Liu, L.; Aa, J.; Wang, G.; Yan, B.; Zhang, Y.; Wang, X.; Zhao, C.; Cao, B.; Shi, J.; Li, M.; et al. Differences in metabolite profile between blood plasma and serum. Anal. Biochem. 2010, 406, 105–112. [Google Scholar] [CrossRef]
- Vignoli, A.; Tenori, L.; Morsiani, C.; Turano, P.; Capri, M.; Luchinat, C. Serum or Plasma (and Which Plasma), That Is the Question. J. Proteome Res. 2022, 21, 1061–1072. [Google Scholar] [CrossRef]
- Suarez-Diez, M.; Adam, J.; Adamski, J.; Chasapi, S.A.; Luchinat, C.; Peters, A.; Prehn, C.; Santucci, C.; Spyridonidis, A.; Spyroulias, G.A.; et al. Plasma and Serum Metabolite Association Networks: Comparability within and between Studies Using NMR and MS Profiling. J. Proteome Res. 2017, 16, 2547–2559. [Google Scholar] [CrossRef]
- Wedge, D.C.; Allwood, J.W.; Dunn, W.; Vaughan, A.A.; Simpson, K.; Brown, M.; Priest, L.; Blackhall, F.H.; Whetton, A.D.; Dive, C.; et al. Is Serum or Plasma More Appropriate for Intersubject Comparisons in Metabolomic Studies? An Assessment in Patients with Small-Cell Lung Cancer. Anal. Chem. 2011, 83, 6689–6697. [Google Scholar] [CrossRef]
- Bovo, S.; Schiavo, G.; Galimberti, G.; Fanelli, F.; Bertolini, F.; Dall’Olio, S.; Pagotto, U.; Fontanesi, L. Comparative targeted metabolomic profiles of porcine plasma and serum. Animal 2023, 17, 101029. [Google Scholar] [CrossRef]
- Gerhard, H.; Samuel, M.M.-M.; Günter, P.-W.; Gaurav, M.; Thomas, M.; Karin, P.; Andreas, S.; Doreen, S.; Christopher, G.; Gerhard, G.; et al. Yes, it matters: In contrast to blood plasma, serum metabolomics is confounded by platelets. medRxiv 2023. [CrossRef]
- Aoki, J.; Taira, A.; Takanezawa, Y.; Kishi, Y.; Hama, K.; Kishimoto, T.; Mizuno, K.; Saku, K.; Taguchi, R.; Arai, H. Serum Lysophosphatidic Acid Is Produced through Diverse Phospholipase Pathways. J. Biol. Chem. 2002, 277, 48737–48744. [Google Scholar] [CrossRef]
- Kennedy, A.D.; Ford, L.; Wittmann, B.; Conner, J.; Wulff, J.; Mitchell, M.; Evans, A.M.; Toal, D.R. Global biochemical analysis of plasma, serum and whole blood collected using various anticoagulant additives. PLoS ONE 2021, 16, e0249797. [Google Scholar] [CrossRef]
- Kang, J.G.; Park, C.Y.; Ihm, S.H.; Park, S.W. A Potential Issue with Screening Prediabetes or Diabetes Using Serum Glucose: A Delay in Diagnosis. Diabetes Metab. J. 2016, 40, 414–417. [Google Scholar] [CrossRef]
- Buss, D.H.; Cashell, A.W.; O’Connor, M.L.; Richards, F., 2nd; Case, L.D. Occurrence, etiology, and clinical significance of extreme thrombocytosis: A study of 280 cases. Am. J. Med. 1994, 96, 247–253. [Google Scholar] [CrossRef]
- Lacroix, R.; Judicone, C.; Poncelet, P.; Robert, S.; Arnaud, L.; Sampol, J.; Dignat-George, F. Impact of pre-analytical parameters on the measurement of circulating microparticles: Towards standardization of protocol. J. Thromb. Haemost. 2012, 10, 437–446. [Google Scholar] [CrossRef]
- Stringer, K.A.; Younger, J.G.; McHugh, C.; Yeomans, L.; Finkel, M.A.; Puskarich, M.A.; Jones, A.E.; Trexel, J.; Karnovsky, A. Whole Blood Reveals More Metabolic Detail of the Human Metabolome than Serum as Measured by 1H-NMR Spectroscopy: Implications for Sepsis Metabolomics. Shock 2015, 44, 200–208. [Google Scholar] [CrossRef]
- Teruya, T.; Chen, Y.-J.; Kondoh, H.; Fukuji, Y.; Yanagida, M. Whole-blood metabolomics of dementia patients reveal classes of disease-linked metabolites. Proc. Natl. Acad. Sci. USA 2021, 118, e2022857118. [Google Scholar] [CrossRef]
- Kondoh, H.; Kameda, M.; Yanagida, M. Whole Blood Metabolomics in Aging Research. Int. J. Mol. Sci. 2021, 22, 175. [Google Scholar] [CrossRef]
- Deda, O.; Gika, H.G.; Taitzoglou, I.; Raikos, Ν.; Theodoridis, G. Impact of Exercise and Aging on Rat Urine and Blood Metabolome. An LC-MS Based Metabolomics Longitudinal Study. Metabolites 2017, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- Teruya, T.; Sunagawa, S.; Mori, A.; Masuzaki, H.; Yanagida, M. Markers for obese and non-obese Type 2 diabetes identified using whole blood metabolomics. Sci. Rep. 2023, 13, 2460. [Google Scholar] [CrossRef] [PubMed]
- Vuckovic, D. Chapter 4—Sample preparation in global metabolomics of biological fluids and tissues. In Proteomic and Metabolomic Approaches to Biomarker Discovery, 2nd ed.; Issaq, H.J., Veenstra, T.D., Eds.; Academic Press: Boston, MA, USA, 2020; pp. 53–83. [Google Scholar]
- Kong, S.T.; Lin, H.-S.; Ching, J.; Ho, P.C. Evaluation of Dried Blood Spots as Sample Matrix for Gas Chromatography/Mass Spectrometry Based Metabolomic Profiling. Anal. Chem. 2011, 83, 4314–4318. [Google Scholar] [CrossRef]
- ISO 23118:2021; Molecular In Vitro Diagnostic Examinations-Specifications for Pre-Examination Processes in Metabolomics in Urine, Venous Blood Serum and Plasma. Standardization IOS: Geneva, Switzerland, 2021.
- Sotelo-Orozco, J.; Chen, S.-Y.; Hertz-Picciotto, I.; Slupsky, C.M. A Comparison of Serum and Plasma Blood Collection Tubes for the Integration of Epidemiological and Metabolomics Data. Front. Mol. Biosci. 2021, 8, 682134. [Google Scholar] [CrossRef]
- Gonzalez-Covarrubias, V.; Dane, A.; Hankemeier, T.; Vreeken, R.J. The influence of citrate, EDTA, and heparin anticoagulants to human plasma LC–MS lipidomic profiling. Metabolomics 2013, 9, 337–348. [Google Scholar] [CrossRef]
- López-Bascón, M.A.; Priego-Capote, F.; Peralbo-Molina, A.; Calderón-Santiago, M.; Luque de Castro, M.D. Influence of the collection tube on metabolomic changes in serum and plasma. Talanta 2016, 150, 681–689. [Google Scholar] [CrossRef]
- Wei, Y.-h.; Zhang, C.-b.; Yang, X.-w.; Ji, M.-d. The Feasibility of Using Lithium-Heparin Plasma From a Gel Separator Tube as a Substitute for Serum in Clinical Biochemical Tests. Lab. Med. 2010, 41, 215–219. [Google Scholar] [CrossRef]
- Davenport, A.; Tolwani, A. Citrate anticoagulation for continuous renal replacement therapy (CRRT) in patients with acute kidney injury admitted to the intensive care unit. NDT Plus 2009, 2, 439–447. [Google Scholar] [CrossRef]
- Mann, K.G.; Whelihan, M.F.; Butenas, S.; Orfeo, T. Citrate anticoagulation and the dynamics of thrombin generation. J. Thromb. Haemost. 2007, 5, 2055–2061. [Google Scholar] [CrossRef]
- Zhou, Z.; Chen, Y.; He, J.; Xu, J.; Zhang, R.; Mao, Y.; Abliz, Z. Systematic evaluation of serum and plasma collection on the endogenous metabolome. Bioanalysis 2017, 9, 239–250. [Google Scholar] [CrossRef]
- Khadka, M.; Todor, A.; Maner-Smith, K.M.; Colucci, J.K.; Tran, V.; Gaul, D.A.; Anderson, E.J.; Natrajan, M.S.; Rouphael, N.; Mulligan, M.J.; et al. The Effect of Anticoagulants, Temperature, and Time on the Human Plasma Metabolome and Lipidome from Healthy Donors as Determined by Liquid Chromatography-Mass Spectrometry. Biomolecules 2019, 9, 200. [Google Scholar] [CrossRef]
- Cruickshank-Quinn, C.; Zheng, L.K.; Quinn, K.; Bowler, R.; Reisdorph, R.; Reisdorph, N. Impact of Blood Collection Tubes and Sample Handling Time on Serum and Plasma Metabolome and Lipidome. Metabolites 2018, 8, 88. [Google Scholar] [CrossRef]
- Paglia, G.; Del Greco, F.M.; Sigurdsson, B.B.; Rainer, J.; Volani, C.; Hicks, A.A.; Pramstaller, P.P.; Smarason, S.V. Influence of collection tubes during quantitative targeted metabolomics studies in human blood samples. Clin. Chim. Acta 2018, 486, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Wolrab, D.; Chocholoušková, M.; Jirásko, R.; Peterka, O.; Mužáková, V.; Študentová, H.; Melichar, B.; Holčapek, M. Determination of one year stability of lipid plasma profile and comparison of blood collection tubes using UHPSFC/MS and HILIC-UHPLC/MS. Anal. Chim. Acta 2020, 1137, 74–84. [Google Scholar] [CrossRef]
- Hahnefeld, L.; Gurke, R.; Thomas, D.; Schreiber, Y.; Schäfer, S.M.G.; Trautmann, S.; Snodgrass, I.F.; Kratz, D.; Geisslinger, G.; Ferreirós, N. Implementation of lipidomics in clinical routine: Can fluoride/citrate blood sampling tubes improve preanalytical stability? Talanta 2020, 209, 120593. [Google Scholar] [CrossRef]
- O’Rourke, M.B.; Januszewski, A.S.; Sullivan, D.R.; Lengyel, I.; Stewart, A.J.; Arya, S.; Ma, R.C.; Galande, S.; Hardikar, A.A.; Joglekar, M.V.; et al. Optimised plasma sample preparation and LC-MS analysis to support large-scale proteomic analysis of clinical trial specimens: Application to the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) trial. PROTEOMICS–Clin. Appl. 2023, 17, 2200106. [Google Scholar] [CrossRef]
- Farouk, F.; Elkady, E. LC-MS/MS determination of atropine toxicity: Pre-analytical effect of blood collection tube and analytical matrix. J. Pharm. Biomed. Anal. 2024, 243, 116029. [Google Scholar] [CrossRef]
- Smit, N.P.M.; Romijn, F.P.H.T.M.; Ham, V.J.J.v.; Reijnders, E.; Cobbaert, C.M.; Ruhaak, L.R. Quantitative protein mass-spectrometry requires a standardized pre-analytical phase. Clin. Chem. Lab. Med. 2023, 61, 55–66. [Google Scholar] [CrossRef]
- Barton, R.H.; Waterman, D.; Bonner, F.W.; Holmes, E.; Clarke, R.; Nicholson, J.K.; Lindon, J.C. The influence of EDTA and citrate anticoagulant addition to human plasma on information recovery from NMR-based metabolic profiling studies. Mol. Biosyst. 2010, 6, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Recommendations of the International Council for Standardization in Haematology for Ethylenediaminetetraacetic Acid Anticoagulation of Blood for Blood Cell Counting and Sizing: International Council for Standardization in Haematology: Expert Panel on Cytometry. Am. J. Clin. Pathol. 1993, 100, 371–372. [CrossRef]
- Bayot, M.L.; Tadi, P. Laboratory Tube Collection; StatPearls: Treasure Island, FL, USA, 2024. [Google Scholar]
- Dunn, W.B.; Broadhurst, D.; Begley, P.; Zelena, E.; Francis-McIntyre, S.; Anderson, N.; Brown, M.; Knowles, J.D.; Halsall, A.; Haselden, J.N.; et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 2011, 6, 1060–1083. [Google Scholar] [CrossRef]
- Mei, H.; Hsieh, Y.; Nardo, C.; Xu, X.; Wang, S.; Ng, K.; Korfmacher, W.A. Investigation of matrix effects in bioanalytical high-performance liquid chromatography/tandem mass spectrometric assays: Application to drug discovery. Rapid Commun. Mass Spectrom. 2003, 17, 97–103. [Google Scholar] [CrossRef]
- Melkonian, E.A.; Schury, M.P. Biochemistry, Anaerobic Glycolysis. In StatPearls [Internet]; StatPearls Publishing: Treasure Island FL, USA, 2023. [Google Scholar]
- Chandel, N.S. Lipid Metabolism. Cold Spring Harb. Perspect. Biol. 2021, 13, a040576. [Google Scholar] [CrossRef]
- Chandel, N.S. Amino Acid Metabolism. Cold Spring Harb. Perspect. Biol. 2021, 13, a040584. [Google Scholar] [CrossRef] [PubMed]
- Jobard, E.; Trédan, O.; Postoly, D.; André, F.; Martin, A.-L.; Elena-Herrmann, B.; Boyault, S. A Systematic Evaluation of Blood Serum and Plasma Pre-Analytics for Metabolomics Cohort Studies. Int. J. Mol. Sci. 2016, 17, 2035. [Google Scholar] [CrossRef] [PubMed]
- Ghini, V.; Abuja, P.M.; Polasek, O.; Kozera, L.; Laiho, P.; Anton, G.; Zins, M.; Klovins, J.; Metspalu, A.; Wichmann, H.E.; et al. Impact of the pre-examination phase on multicenter metabolomic studies. New Biotechnol. 2022, 68, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Fliniaux, O.; Gaillard, G.; Lion, A.; Cailleu, D.; Mesnard, F.; Betsou, F. Influence of common preanalytical variations on the metabolic profile of serum samples in biobanks. J. Biomol. NMR 2011, 51, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Debik, J.; Isaksen, S.H.; Strømmen, M.; Spraul, M.; Schäfer, H.; Bathen, T.F.; Giskeødegård, G.F. Effect of Delayed Centrifugation on the Levels of NMR-Measured Lipoproteins and Metabolites in Plasma and Serum Samples. Anal. Chem. 2022, 94, 17003–17010. [Google Scholar] [CrossRef]
- Nishiumi, S.; Suzuki, M.; Kobayashi, T.; Yoshida, M. Differences in metabolite profiles caused by pre-analytical blood processing procedures. J. Biosci. Bioeng. 2018, 125, 613–618. [Google Scholar] [CrossRef]
- Breier, M.; Wahl, S.; Prehn, C.; Fugmann, M.; Ferrari, U.; Weise, M.; Banning, F.; Seissler, J.; Grallert, H.; Adamski, J.; et al. Targeted Metabolomics Identifies Reliable and Stable Metabolites in Human Serum and Plasma Samples. PLoS ONE 2014, 9, e89728. [Google Scholar] [CrossRef]
- Killilea, D.W.; Schultz, K. Pre-analytical variables influence zinc measurement in blood samples. PLoS ONE 2023, 18, e0286073. [Google Scholar] [CrossRef]
- Nkuna, D.X.; Khoza, S.P.; George, J.A.; Maphayi, M.R. The stability of C-peptide and insulin in plasma and serum samples under different storage conditions. Clin. Chem. Lab. Med. 2023, 61, 2150–2158. [Google Scholar] [CrossRef]
- Seymour, C.W.; Carlbom, D.; Cooke, C.R.; Watkins, T.R.; Bulger, E.M.; Rea, T.D.; Baird, G.S. Temperature and time stability of whole blood lactate: Implications for feasibility of pre-hospital measurement. BMC Res. Notes 2011, 4, 169. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.E.; Leonard, M.M.; Hernandez-Nino, J.; Kline, J.A. Determination of the effect of in vitro time, temperature, and tourniquet use on whole blood venous point-of-care lactate concentrations. Acad. Emerg. Med. 2007, 14, 587–591. [Google Scholar] [CrossRef] [PubMed]
- Trezzi, J.P.; Bulla, A.; Bellora, C.; Rose, M.; Lescuyer, P.; Kiehntopf, M.; Hiller, K.; Betsou, F. LacaScore: A novel plasma sample quality control tool based on ascorbic acid and lactic acid levels. Metabolomics 2016, 12, 96. [Google Scholar] [CrossRef]
- Kamlage, B.; Maldonado, S.G.; Bethan, B.; Peter, E.; Schmitz, O.; Liebenberg, V.; Schatz, P. Quality markers addressing preanalytical variations of blood and plasma processing identified by broad and targeted metabolite profiling. Clin. Chem. 2014, 60, 399–412. [Google Scholar] [CrossRef]
- Sens, A.; Rischke, S.; Hahnefeld, L.; Dorochow, E.; Schäfer, S.M.G.; Thomas, D.; Köhm, M.; Geisslinger, G.; Behrens, F.; Gurke, R. Pre-analytical sample handling standardization for reliable measurement of metabolites and lipids in LC-MS-based clinical research. J. Mass. Spectrom. Adv. Clin. Lab. 2023, 28, 35–46. [Google Scholar] [CrossRef]
- Wang, Y.; Carter, B.D.; Gapstur, S.M.; McCullough, M.L.; Gaudet, M.M.; Stevens, V.L. Reproducibility of non-fasting plasma metabolomics measurements across processing delays. Metabolomics 2018, 14, 129. [Google Scholar] [CrossRef]
- Clark, S.; Youngman, L.D.; Chukwurah, B.; Palmer, A.; Parish, S.; Peto, R.; Collins, R. Effect of temperature and light on the stability of fat-soluble vitamins in whole blood over several days: Implications for epidemiological studies. Int. J. Epidemiol. 2004, 33, 518–525. [Google Scholar] [CrossRef]
- Lippi, G.; Blanckaert, N.; Bonini, P.; Green, S.; Kitchen, S.; Palicka, V.; Vassault, A.J.; Plebani, M. Haemolysis: An overview of the leading cause of unsuitable specimens in clinical laboratories. Clin. Chem. Lab. Med. 2008, 46, 764–772. [Google Scholar] [CrossRef]
- Wan Azman, W.N.; Omar, J.; Koon, T.S.; Tuan Ismail, T.S. Hemolyzed Specimens: Major Challenge for Identifying and Rejecting Specimens in Clinical Laboratories. Oman Med. J. 2019, 34, 94–98. [Google Scholar] [CrossRef]
- Goyal, T.; Schmotzer, C.L. Validation of hemolysis index thresholds optimizes detection of clinically significant hemolysis. Am. J. Clin. Pathol. 2015, 143, 579–583. [Google Scholar] [CrossRef]
- Plebani, M. Errors in clinical laboratories or errors in laboratory medicine? Clin. Chem. Lab. Med. 2006, 44, 750–759. [Google Scholar] [CrossRef] [PubMed]
- Guder, W.G. Haemolysis as an influence and interference factor in clinical chemistry. J. Clin. Chem. Clin. Biochem. 1986, 24, 125–126. [Google Scholar] [PubMed]
- Hernandes, V.V.; Barbas, C.; Dudzik, D. A review of blood sample handling and pre-processing for metabolomics studies. Electrophoresis 2017, 38, 2232–2241. [Google Scholar] [CrossRef] [PubMed]
- Tolan, N.V.; Kaleta, E.J.; Fang, J.L.; Colby, C.E.; Carey, W.A.; Karon, B.S.; Baumann, N.A. Neonatal Intensive Care Unit Quality Initiative: Identifying Preanalytical Variables Contributing to Specimen Hemolysis and Measuring the Impact of Evidence-Based Practice Interventions. Am. J. Clin. Pathol. 2016, 146, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Bush, V.; Mangan, L. The hemolyzed specimen: Causes, effects, and reduction. BD Vacutainer Syst. Preanalytical Solut. 2003, 2003, 1–8. [Google Scholar]
- Streichert, T.; Otto, B.; Schnabel, C.; Nordholt, G.; Haddad, M.; Maric, M.; Petersmann, A.; Jung, R.; Wagener, C. Determination of hemolysis thresholds by the use of data loggers in pneumatic tube systems. Clin. Chem. 2011, 57, 1390–1397. [Google Scholar] [CrossRef]
- Xiong, W.; Anthony, D.C.; Anthony, S.; Ho, T.B.T.; Louis, E.; Satsangi, J.; Radford-Smith, D.E. Sodium fluoride preserves blood metabolite integrity for biomarker discovery in large-scale, multi-site metabolomics investigations. Analyst 2024, 149, 1238–1249. [Google Scholar] [CrossRef]
- Lippi, G.; Guidi, G.C.; Mattiuzzi, C.; Plebani, M. Preanalytical variability: The dark side of the moon in laboratory testing. Clin. Chem. Lab. Med. 2006, 44, 358–365. [Google Scholar] [CrossRef]
- Denihan, N.M.; Walsh, B.H.; Reinke, S.N.; Sykes, B.D.; Mandal, R.; Wishart, D.S.; Broadhurst, D.I.; Boylan, G.B.; Murray, D.M. The effect of haemolysis on the metabolomic profile of umbilical cord blood. Clin. Biochem. 2015, 48, 534–537. [Google Scholar] [CrossRef]
- Ammerlaan, W.; Trezzi, J.-P.; Lescuyer, P.; Mathay, C.; Hiller, K.; Betsou, F. Method Validation for Preparing Serum and Plasma Samples from Human Blood for Downstream Proteomic, Metabolomic, and Circulating Nucleic Acid-Based Applications. Biopreserv. Biobank. 2014, 12, 269–280. [Google Scholar] [CrossRef]
- Kirwan, J.A.; Brennan, L.; Broadhurst, D.; Fiehn, O.; Cascante, M.; Dunn, W.B.; Schmidt, M.A.; Velagapudi, V. Preanalytical Processing and Biobanking Procedures of Biological Samples for Metabolomics Research: A White Paper, Community Perspective (for “Precision Medicine and Pharmacometabolomics Task Group”—The Metabolomics Society Initiative). Clin. Chem. 2018, 64, 1158–1182. [Google Scholar] [CrossRef] [PubMed]
- Lesche, D.; Geyer, R.; Lienhard, D.; Nakas, C.T.; Diserens, G.; Vermathen, P.; Leichtle, A.B. Does centrifugation matter? Centrifugal force and spinning time alter the plasma metabolome. Metabolomics 2016, 12, 159. [Google Scholar] [CrossRef]
- Vasta, V.; Meacci, E.; Farnararo, M.; Bruni, P. Glutamine transport and enzymatic activities involved in glutaminolysis in human platelets. Biochimica Biophysica Acta (BBA)—Gen. Subj. 1995, 1243, 43–48. [Google Scholar] [CrossRef]
- Bervoets, L.; Louis, E.; Reekmans, G.; Mesotten, L.; Thomeer, M.; Adriaensens, P.; Linsen, L. Influence of preanalytical sampling conditions on the 1H NMR metabolic profile of human blood plasma and introduction of the Standard PREanalytical Code used in biobanking. Metabolomics 2015, 11, 1197–1207. [Google Scholar] [CrossRef]
- Bernini, P.; Bertini, I.; Luchinat, C.; Nincheri, P.; Staderini, S.; Turano, P. Standard operating procedures for pre-analytical handling of blood and urine for metabolomic studies and biobanks. J. Biomol. NMR 2011, 49, 231–243. [Google Scholar] [CrossRef]
- Anton, G.; Wilson, R.; Yu, Z.H.; Prehn, C.; Zukunft, S.; Adamski, J.; Heier, M.; Meisinger, C.; Römisch-Margl, W.; Wang-Sattler, R.; et al. Pre-analytical sample quality: Metabolite ratios as an intrinsic marker for prolonged room temperature exposure of serum samples. PLoS ONE 2015, 10, e0121495. [Google Scholar] [CrossRef]
- Barton, R.H.; Nicholson, J.K.; Elliott, P.; Holmes, E. High-throughput 1H NMR-based metabolic analysis of human serum and urine for large-scale epidemiological studies: Validation study. Int. J. Epidemiol. 2008, 37, i31–i40. [Google Scholar] [CrossRef]
- Chen, D.; Han, W.; Huan, T.; Li, L.; Li, L. Effects of Freeze-Thaw Cycles of Blood Samples on High-Coverage Quantitative Metabolomics. Anal. Chem. 2020, 92, 9265–9272. [Google Scholar] [CrossRef]
- Mitchell, B.L.; Yasui, Y.; Li, C.I.; Fitzpatrick, A.L.; Lampe, P.D. Impact of Freeze-thaw Cycles and Storage Time on Plasma Samples Used in Mass Spectrometry Based Biomarker Discovery Projects. Cancer Inform. 2005, 1, 117693510500100110. [Google Scholar] [CrossRef]
- Jain, M.; Kennedy, A.D.; Elsea, S.H.; Miller, M.J. Analytes related to erythrocyte metabolism are reliable biomarkers for preanalytical error due to delayed plasma processing in metabolomics studies. Clin. Chim. Acta 2017, 466, 105–111. [Google Scholar] [CrossRef]
- Wilson, D.M.; Liedtke, R.R. Modified enzyme-based colorimetric assay of urinary and plasma oxalate with improved sensitivity and no ascorbate interference: Reference values and sample handling procedures. Clin. Chem. 1991, 37, 1229–1235. [Google Scholar] [CrossRef] [PubMed]
- Betsou, F.; Lehmann, S.; Ashton, G.; Barnes, M.; Benson, E.E.; Coppola, D.; DeSouza, Y.; Eliason, J.; Glazer, B.; Guadagni, F.; et al. Standard preanalytical coding for biospecimens: Defining the sample PREanalytical code. Cancer Epidemiol. Biomark. Prev. 2010, 19, 1004–1011. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thachil, A.; Wang, L.; Mandal, R.; Wishart, D.; Blydt-Hansen, T. An Overview of Pre-Analytical Factors Impacting Metabolomics Analyses of Blood Samples. Metabolites 2024, 14, 474. https://doi.org/10.3390/metabo14090474
Thachil A, Wang L, Mandal R, Wishart D, Blydt-Hansen T. An Overview of Pre-Analytical Factors Impacting Metabolomics Analyses of Blood Samples. Metabolites. 2024; 14(9):474. https://doi.org/10.3390/metabo14090474
Chicago/Turabian StyleThachil, Amy, Li Wang, Rupasri Mandal, David Wishart, and Tom Blydt-Hansen. 2024. "An Overview of Pre-Analytical Factors Impacting Metabolomics Analyses of Blood Samples" Metabolites 14, no. 9: 474. https://doi.org/10.3390/metabo14090474
APA StyleThachil, A., Wang, L., Mandal, R., Wishart, D., & Blydt-Hansen, T. (2024). An Overview of Pre-Analytical Factors Impacting Metabolomics Analyses of Blood Samples. Metabolites, 14(9), 474. https://doi.org/10.3390/metabo14090474