Combining In Vitro, In Vivo, and In Silico Approaches to Explore the Effect of Ceratonia siliqua and Ocimum basilicum Rich Phenolic Formula on Lipid Metabolism and Plasma Lipoprotein Oxidation in Mice Fed a High-Fat Diet: A Follow-Up Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Drugs
2.2. Preparation of Extracts
2.2.1. Preparation of C. siliqua Pod Aqueous Extract
2.2.2. Preparation of O. basilicum Hydro-Ethanolic Extract
2.3. Determination of Total Phenolics, Flavonoids and Tannins Content
2.4. HPLC-DAD Phenolic Profile of C. siliqua and O. basilicum Extracts
2.4.1. C. siliqua HPLC-DAD Phenolic Profile
2.4.2. O. basilicum HPLC-DAD Phenolic Profile
2.5. Preparation of the CBF
2.6. Antioxidant Activity Assessment
2.6.1. DPPH-Radical Scavenging Capacity
2.6.2. Ferric Reducing Antioxidant Power Assay
2.6.3. Effect of the CBF on Plasma Lipoprotein Oxidation
2.7. Acute Oral Toxicity Study
2.8. Study Design to Investigate the Hypolipidemic Activity
2.8.1. Plasma Lipid Profile Analysis
2.8.2. Determination of the Atherogenic Index and LDL-C/HDL-C Ratio
2.8.3. Liver Lipid Extraction and Analysis
2.9. In Silico Molecular Docking Study
2.10. Statistical Analysis
3. Results
3.1. Phytochemistry
3.1.1. Total Polyphenols, Flavonoids, and Tannins
3.1.2. HPLC Phenolic Profile Analysis
3.2. Antioxidant Activity
3.2.1. DPPH Radical Scavenging Capacity and FRAP Assay
3.2.2. Effect of the CBF on LRP Oxidation
3.3. Acute Oral Toxicity Study
3.4. Effect of the CBF on Hyperlipidemia in Mice Fed HFD
3.4.1. Body Weight and Organs Weight
3.4.2. Plasma Lipid Analysis
3.4.3. Atherogenic Index and LDL-C to HDL-C Ratio
3.4.4. Plasma Glucose and Hepatic Lipid Analysis
3.5. In Silico Molecular Docking Study of Interactions Between CBF Polyphenols and Main Proteins Involved in the Regulation of Lipid Metabolism
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AA | Ascorbic acid |
ACLY | ATP-citrate lyase |
BHA | Butylated hydroxyanisole |
CBF | Carob/basil formula |
CVD | Cardiovascular diseases |
Cyp7a1 | Cytochrome P450, family 7, subfamily a, polypeptide 1 |
DPPH | 2.2-Diphenyl-1-picrylhydrazyl |
EC50 | Effective concentration |
FRAP | Ferric reducing antioxidant power |
HFD | High fat diet |
HMG-CoAR | β-Hydroxy β-methylglutaryl-CoA reductase |
HPLC | High performance liquid chromatography |
IC50 | Median inhibition concentration |
LDL-C | Low density lipoprotein-cholesterol |
LDH | Lactate dehydrogenase |
LXRα | Liver X receptor alpha |
NPC1L1 | Niemann-pick-C1-Like 1 |
PCSK9 | Proprotein convertase subtilisin/kexin type 9 |
PPAR | Peroxisome proliferator activated receptor |
TC | Total cholesterol |
TG | Triglycerides |
References
- El-Tantawy, W.H.; Temraz, A. Natural Products for Controlling Hyperlipidemia: Review. Arch. Physiol. Biochem. 2019, 125, 128–135. [Google Scholar] [CrossRef]
- Rauf, A.; Akram, M.; Anwar, H.; Daniyal, M.; Munir, N.; Bawazeer, S.; Bawazeer, S.; Rebezov, M.; Bouyahya, A.; Shariati, M.A.; et al. Therapeutic Potential of Herbal Medicine for the Management of Hyperlipidemia: Latest Updates. Environ. Sci. Pollut. Res. 2022, 29, 40281–40301. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Shi, S.; Liu, B.; Shan, M.; Tang, D.; Zhang, W.; Zhang, Y.; Zhang, L.; Zhang, H.; Lu, C.; et al. Bioactive Compounds from Herbal Medicines to Manage Dyslipidemia. Biomed. Pharmacother. 2019, 118, 109338. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Zang, X.; Cui, X.; Zhang, J. Autophagy, Hyperlipidemia, and Atherosclerosis. In Autophagy: Biology and Diseases: Clinical Science; Le, W., Ed.; Advances in Experimental Medicine and Biology; Springer: Singapore, 2020; pp. 237–264. [Google Scholar]
- Heeren, J.; Scheja, L. Metabolic-Associated Fatty Liver Disease and Lipoprotein Metabolism. Mol. Metab. 2021, 50, 101238. [Google Scholar] [CrossRef] [PubMed]
- Packard, C.; Chapman, M.J.; Sibartie, M.; Laufs, U.; Masana, L. Intensive Low-Density Lipoprotein Cholesterol Lowering in Cardiovascular Disease Prevention: Opportunities and Challenges. Heart 2021, 107, 1369–1375. [Google Scholar] [CrossRef] [PubMed]
- Soppert, J.; Lehrke, M.; Marx, N.; Jankowski, J.; Noels, H. Lipoproteins and Lipids in Cardiovascular Disease: From Mechanistic Insights to Therapeutic Targeting. Adv. Drug Deliv. Rev. 2020, 159, 4–33. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Liu, J. Association between Circulating Oxidized Low-Density Lipoprotein and Atherosclerotic Cardiovascular Disease. Chronic Dis. Transl. Med. 2017, 3, 89–94. [Google Scholar] [CrossRef]
- Khatana, C.; Saini, N.K.; Chakrabarti, S.; Saini, V.; Sharma, A.; Saini, R.V.; Saini, A.K. Mechanistic Insights into the Oxidized Low-Density Lipoprotein-Induced Atherosclerosis. Oxidative Med. Cell. Longev. 2020, 2020, 5245308. [Google Scholar] [CrossRef]
- Bechmann, L.P.; Hannivoort, R.A.; Gerken, G.; Hotamisligil, G.S.; Trauner, M.; Canbay, A. The Interaction of Hepatic Lipid and Glucose Metabolism in Liver Diseases. J. Hepatol. 2012, 56, 952–964. [Google Scholar] [CrossRef]
- Bahmani, M.; Mirhoseini, M.; Shirzad, H.; Sedighi, M.; Shahinfard, N.; Rafieian-Kopaei, M.A. Review on Promising Natural Agents Effective on Hyperlipidemia. J. Evid. Based Complement. Altern. Med. 2015, 20, 228–238. [Google Scholar] [CrossRef] [PubMed]
- Kalita, P.; Ahmed, A.B.; Sen, S.; Chakraborty, R.A. Comprehensive Review on Polysaccharides with Hypolipidemic Activity: Occurrence, Chemistry and Molecular Mechanism. Int. J. Biol. Macromol. 2022, 206, 681–698. [Google Scholar] [CrossRef]
- Talebi, S.; Bagherniya, M.; Atkin, S.L.; Askari, G.; Orafai, H.M.; Sahebkar, A. The Beneficial Effects of Nutraceuticals and Natural Products on Small Dense LDL Levels, LDL Particle Number and LDL Particle Size: A Clinical Review. Lipids Health Dis. 2020, 19, 66. [Google Scholar] [CrossRef] [PubMed]
- Abbas, M.; Saeed, F.; Anjum, F.M.; Afzaal, M.; Tufail, T.; Bashir, M.S.; Ishtiaq, A.; Hussain, S.; Suleria, H.A.R. Natural Polyphenols: An Overview. Int. J. Food Prop. 2017, 20, 1689–1699. [Google Scholar] [CrossRef]
- Zhang, H.; Tsao, R. Dietary Polyphenols, Oxidative Stress and Antioxidant and Anti-Inflammatory Effects. Curr. Opin. Food Sci. 2016, 8, 33–42. [Google Scholar] [CrossRef]
- Cheng, Y.-C.; Sheen, J.-M.; Hu, W.L.; Hung, Y.-C. Polyphenols and Oxidative Stress in Atherosclerosis-Related Ischemic Heart Disease and Stroke. Oxidative Med. Cell. Longev. 2017, 2017, 8526438. [Google Scholar] [CrossRef]
- Arrout, A.; El Ghallab, Y.; El Otmani, I.S.; Said, A.A.H. Ethnopharmacological Survey of Plants Prescribed by Herbalists for Traditional Treatment of Hypercholesterolemia in Casablanca, Morocco. J. Herb. Med. 2022, 36, 100607. [Google Scholar] [CrossRef]
- Belhaj, S.; Chaachouay, N.; Zidane, L. Ethnobotanical and Toxicology Study of Medicinal Plants Used for the Treatment of Diabetes in the High Atlas Central of Morocco. J. Pharm. Pharmacogn. Res. 2021, 9, 619–662. [Google Scholar] [CrossRef]
- Christou, A.; Martinez-Piernas, A.B.; Stavrou, I.J.; Garcia-Reyes, J.F.; Kapnissi-Christodoulou, C.P. HPLC-ESI-HRMS and Chemometric Analysis of Carobs Polyphenols—Technological and Geographical Parameters Affecting Their Phenolic Composition. J. Food Compos. Anal. 2022, 114, 104744. [Google Scholar] [CrossRef]
- Richane, A.; Rim, B.M.; Wided, M.; Riadh, K.; Khaoula, A.; Nizar, M.; Hanen, B.I. Variability of Phenolic Compounds and Antioxidant Activities of Ten Ceratonia siliqua L. Provenances. Biochem. Syst. Ecol. 2022, 104, 104486. [Google Scholar] [CrossRef]
- Benchikh, Y.; Louaileche, H.; George, B.; Merlin, A. Changes in Bioactive Phytochemical Content and in Vitro Antioxidant Activity of Carob (Ceratonia siliqua L.) as Influenced by Fruit Ripening. Ind. Crops Prod. 2014, 60, 298–303. [Google Scholar] [CrossRef]
- Farag, M.A.; El-Kersh, D.M.; Ehrlich, A.; Choucry, M.A.; El-Seedi, H.; Frolov, A.; Wessjohann, L.A. Variation in Ceratonia siliqua Pod Metabolome in Context of Its Different Geographical Origin, Ripening Stage and Roasting Process. Food Chem. 2019, 283, 675–687. [Google Scholar] [CrossRef]
- Purushothaman, B.; PrasannaSrinivasan, R.; Suganthi, P.; Ranganathan, B.; Gimbun, J.; Shanmugam, K. A Comprehensive Review on Ocimum basilicum. J. Nat. Remedies 2018, 18, 71–85. [Google Scholar] [CrossRef]
- Castronuovo, D.; Russo, D.; Libonati, R.; Faraone, I.; Candido, V.; Picuno, P.; Andrade, P.; Valentao, P.; Milella, L. Influence of Shading Treatment on Yield, Morphological Traits and Phenolic Profile of Sweet Basil (Ocimum basilicum L.). Sci. Hortic. 2019, 254, 91–98. [Google Scholar] [CrossRef]
- Harnafi, H.; Ramchoun, M.; Tits, M.; Wauters, J.-N.; Frederich, M.; Angenot, L.; Aziz, M.; Alem, C.; Amrani, S. Phenolic Acid-Rich Extract of Sweet Basil Restores Cholesterol and Triglycerides Metabolism in High Fat Diet-Fed Mice: A Comparison with Fenofibrate. Biomed. Prev. Nutr. 2013, 3, 393–397. [Google Scholar] [CrossRef]
- Prinsi, B.; Morgutti, S.; Negrini, N.; Faoro, F.; Espen, L. Insight into Composition of Bioactive Phenolic Compounds in Leaves and Flowers of Green and Purple Basil. Plants 2019, 9, 22. [Google Scholar] [CrossRef] [PubMed]
- Harnafi, H.; Aziz, M.; Amrani, S. Sweet Basil (Ocimum basilicum L.) Improves Lipid Metabolism in Hypercholesterolemic Rats. E-SPEN Eur. e-J. Clin. Nutr. Metab. 2009, 4, e181–e186. [Google Scholar] [CrossRef]
- Mokhtari, I.; Harnafi, M.; Amrani, S.; Milenkovic, D.; Harnafi, H. Caftaric Acid-Rich Extract from Ocimum basilicum L. Modulates Lipid Profile and Prevents Lipoprotein Oxidation in Hyperlipidemic Mice. Physiol. Pharmacol. 2023, 27, 116–131. [Google Scholar] [CrossRef]
- Touiss, I.; Khatib, S.; Bekkouch, O.; Amrani, S.; Harnafi, H. Phenolic Extract from Ocimum basilicum Restores Lipid Metabolism in Triton WR-1339-Induced Hyperlipidemic Mice and Prevents Lipoprotein-Rich Plasma Oxidation. Food Sci. Hum. Wellness 2017, 6, 28–33. [Google Scholar] [CrossRef]
- Moumou, M.; Mokhtari, I.; Tayebi, A.; Milenkovic, D.; Amrani, S.; Harnafi, H. Immature Carob Pods Extract and Its Fractions Prevent Lipid Metabolism Disorders and Lipoprotein-Rich Plasma Oxidation in Mice: A Phytochemical and Pharmacological Study. J. Ethnopharmacol. 2024, 322, 117557. [Google Scholar] [CrossRef] [PubMed]
- Pinzi, L.; Rastelli, G. Molecular Docking: Shifting Paradigms in Drug Discovery. Int. J. Mol. Sci. 2019, 20, 4331. [Google Scholar] [CrossRef]
- Zhang, Q.-W.; Lin, L.-G.; Ye, W.-C. Techniques for Extraction and Isolation of Natural Products: A Comprehensive Review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef] [PubMed]
- Priyanthi, C.; Sivakanesan, R. The Total Antioxidant Capacity and the Total Phenolic Content of Rice Using Water as a Solvent. Int. J. Food Sci. 2021, 2021, 5268584. [Google Scholar] [CrossRef]
- Manouze, H.; Bouchatta, O.; Gadhi, A.; Bennis, M.; Sokar, Z.; Ba-M’hamed, S. Anti-Inflammatory, Antinociceptive, and Antioxidant Activities of Methanol and Aqueous Extracts of Anacyclus pyrethrum Roots. Front. Pharmacol. 2017, 8, 598. [Google Scholar] [CrossRef] [PubMed]
- OECD. OECD Test No. 425: Acute Oral Toxicity: Up-and-Down Procedure; Organisation for Economic Co-operation and Development: Paris, France, 2008. [Google Scholar]
- EU. Directive 2010/63/EU; European Union: Maastricht, The Netherlands, 2010; Volume 276. [Google Scholar]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Christou, A.; Stavrou, I.J.; Kapnissi-Christodoulou, C.P. Combined Use of β-Cyclodextrin and Ionic Liquid as Electrolyte Additives in EKC for Separation and Determination of Carob’s Phenolics—A Study of the Synergistic Effect. Electrophoresis 2021, 42, 1945–1955. [Google Scholar] [CrossRef]
- Qasem, M.A.; Noordin, M.I.; Arya, A.; Alsalahi, A.; Jayash, S.N. Evaluation of the Glycemic Effect of Ceratonia siliqua Pods (Carob) on a Streptozotocin-Nicotinamide Induced Diabetic Rat Model. PeerJ 2018, 6, e4788. [Google Scholar] [CrossRef] [PubMed]
- Rtibi, K.; Selmi, S.; Grami, D.; Saidani, K.; Sebai, H.; Amri, M.; Eto, B.; Marzouki, L. Ceratonia siliqua L. (Immature Carob Bean) Inhibits Intestinal Glucose Absorption, Improves Glucose Tolerance and Protects against Alloxan-Induced Diabetes in Rat: Effect of ICPAE on Glucose Absorption, OGTT and Diabetes. J. Sci. Food Agric. 2017, 97, 2664–2670. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.F.; Attia, F.A.K.; Liu, Z.; Li, C.; Wei, J.; Kang, W. Antioxidant Activity and Total Phenolic Content of Essential Oils and Extracts of Sweet Basil (Ocimum basilicum L.) Plants. Food Sci. Hum. Wellness 2019, 8, 299–305. [Google Scholar] [CrossRef]
- Teofilović, B.; Tomas, A.; Martić, N.; Stilinović, N.; Popović, M.; Čapo, I.; Grujić, N.; Ilinčić, B.; Rašković, A. Antioxidant and Hepatoprotective Potential of Sweet Basil (Ocimum basilicum L.) Extract in Acetaminophen-Induced Hepatotoxicity in Rats. J. Funct. Foods 2021, 87, 104783. [Google Scholar] [CrossRef]
- Gökçe, Y.; Kanmaz, H.; Er, B.; Sahin, K.; Hayaloglu, A.A. Influence of Purple Basil (Ocimum basilicum L.) Extract and Essential Oil on Hyperlipidemia and Oxidative Stress in Rats Fed High-Cholesterol Diet. Food Biosci. 2021, 43, 101228. [Google Scholar] [CrossRef]
- Balakumar, P.; Rohilla, A.; Mahadevan, N. Pleiotropic Actions of Fenofibrate on the Heart. Pharmacol. Res. 2011, 63, 8–12. [Google Scholar] [CrossRef] [PubMed]
- van der Hoogt, C.C.; de Haan, W.; Westerterp, M.; Hoekstra, M.; Dallinga-Thie, G.M.; Romijn, J.A.; Princen, H.M.G.; Jukema, J.W.; Havekes, L.M.; Rensen, P.C.N. Fenofibrate Increases HDL-Cholesterol by Reducing Cholesteryl Ester Transfer Protein Expression. J. Lipid Res. 2007, 48, 1763–1771. [Google Scholar] [CrossRef] [PubMed]
- Laaraj, S.; Choubbane, H.; Elrherabi, A.; Tikent, A.; Farihi, A.; Laaroussi, M.; Bouhrim, M.; Shahat, A.A.; Noutfia, Y.; Herqash, R.N.; et al. Influence of Harvesting Stage on Phytochemical Composition, Antioxidant, and Antidiabetic Activity of Immature Ceratonia siliqua L. Pulp from Béni Mellal-Khénifra Region, Morocco: In Silico, In Vitro, and In Vivo Approaches. Curr. Issues Mol. Biol. 2024, 46, 10991–11020. [Google Scholar] [CrossRef]
- Chao, J.; Cheng, H.-Y.; Chang, M.-L.; Huang, S.-S.; Liao, J.-W.; Cheng, Y.-C.; Peng, W.-H.; Pao, L.-H. Gallic Acid Ameliorated Impaired Lipid Homeostasis in a Mouse Model of High-Fat Diet—And Streptozotocin-Induced NAFLD and Diabetes through Improvement of β-Oxidation and Ketogenesis. Front. Pharmacol. 2021, 11, 606759. [Google Scholar] [CrossRef] [PubMed]
- Chambers, K.F.; Day, P.E.; Aboufarrag, H.T.; Kroon, P.A. Polyphenol Effects on Cholesterol Metabolism via Bile Acid Biosynthesis, CYP7A1: A Review. Nutrients 2019, 11, 2588. [Google Scholar] [CrossRef] [PubMed]
- Fujita, K.; Norikura, T.; Matsui-Yuasa, I.; Kumazawa, S.; Honda, S.; Sonoda, T.; Kojima-Yuasa, A. Carob Pod Polyphenols Suppress the Differentiation of Adipocytes through Posttranscriptional Regulation of C/EBPβ. PLoS ONE 2021, 16, e0248073. [Google Scholar] [CrossRef]
Extract | Yield (%) | Total Polyphenols a | Tannins b | Flavonoids c |
---|---|---|---|---|
C. siliqua | 20% | 151.5 ± 2 * | 21.89 ± 0.38 * | 20.14 ± 0.16 # |
O. basilicum | 25% | 63.4 ± 5 # | 0.91 ± 0.1 # | 19.06 ± 0.07 # |
Group | BWG (g) | Adipose Tissue (g) | Liver (g) | Heart (g) | Kidneys (g) |
---|---|---|---|---|---|
NLC | 3.30 ± 0.80 | 0.37 ±0.04 | 1.6 ± 0.05 | 0.16 ± 0.01 | 0.50 ± 0.02 |
HLC | 9.01 ± 1.99 # | 1.61 ± 0.2 ## | 2.1± 0.09 # | 0.16 ± 0.01 | 0.48 ± 0.03 |
CBFG | 3.6 ± 0.88 * | 0.62 ± 0.04 ** | 2.04± 0.09 | 0.15 ± 0.01 | 0.45 ± 0.02 |
FFG | 4.79 ± 1.15 * | 0.83 ± 0.08 ** | 1.9 ± 0.3 | 0.15 ± 0.01 | 0.54 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moumou, M.; Tayebi, A.; Hadini, A.; Noman, O.M.; Alhalmi, A.; Ahmoda, H.; Amrani, S.; Harnafi, H. Combining In Vitro, In Vivo, and In Silico Approaches to Explore the Effect of Ceratonia siliqua and Ocimum basilicum Rich Phenolic Formula on Lipid Metabolism and Plasma Lipoprotein Oxidation in Mice Fed a High-Fat Diet: A Follow-Up Study. Metabolites 2025, 15, 36. https://doi.org/10.3390/metabo15010036
Moumou M, Tayebi A, Hadini A, Noman OM, Alhalmi A, Ahmoda H, Amrani S, Harnafi H. Combining In Vitro, In Vivo, and In Silico Approaches to Explore the Effect of Ceratonia siliqua and Ocimum basilicum Rich Phenolic Formula on Lipid Metabolism and Plasma Lipoprotein Oxidation in Mice Fed a High-Fat Diet: A Follow-Up Study. Metabolites. 2025; 15(1):36. https://doi.org/10.3390/metabo15010036
Chicago/Turabian StyleMoumou, Mohammadine, Amani Tayebi, Abderrahmane Hadini, Omar M. Noman, Abdulsalam Alhalmi, Hamza Ahmoda, Souliman Amrani, and Hicham Harnafi. 2025. "Combining In Vitro, In Vivo, and In Silico Approaches to Explore the Effect of Ceratonia siliqua and Ocimum basilicum Rich Phenolic Formula on Lipid Metabolism and Plasma Lipoprotein Oxidation in Mice Fed a High-Fat Diet: A Follow-Up Study" Metabolites 15, no. 1: 36. https://doi.org/10.3390/metabo15010036
APA StyleMoumou, M., Tayebi, A., Hadini, A., Noman, O. M., Alhalmi, A., Ahmoda, H., Amrani, S., & Harnafi, H. (2025). Combining In Vitro, In Vivo, and In Silico Approaches to Explore the Effect of Ceratonia siliqua and Ocimum basilicum Rich Phenolic Formula on Lipid Metabolism and Plasma Lipoprotein Oxidation in Mice Fed a High-Fat Diet: A Follow-Up Study. Metabolites, 15(1), 36. https://doi.org/10.3390/metabo15010036