The Current Applications of Metabolomics in Understanding Endometriosis: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion Criteria
2.3. Exclusion Criteria
2.4. Data Management and Extraction
3. Results
3.1. Search Results
3.2. Biomarkers in Human Studies
3.2.1. Amino Acids
3.2.2. Lipids
3.2.3. Other Compounds
3.3. Animal Models
3.4. Correlation of the Endometriosis with External Factors
3.5. Symptoms and Treatments
4. Discussion
4.1. Biochemical Pathway Alterations and Metabolite Significance
4.2. Limitations
4.3. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zondervan, K.T.; Becker, C.M.; Missmer, S.A. Endometriosis. N. Engl. J. Med. 2020, 382, 1244–1256. [Google Scholar] [CrossRef] [PubMed]
- Parasar, P.; Ozcan, P.; Terry, K.L. Endometriosis: Epidemiology, Diagnosis and Clinical Management. Curr. Obstet. Gynecol. Rep. 2017, 6, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Dastur, A.E.; Tank, P.D. John A Sampson and the Origins of Endometriosis. J. Obstet. Gynaecol. India 2010, 60, 299–300. [Google Scholar] [CrossRef]
- Burney, R.O.; Giudice, L.C. Pathogenesis and Pathophysiology of Endometriosis. Fertil. Steril. 2012, 98, 511–519. [Google Scholar] [CrossRef]
- Ellis, K.; Munro, D.; Clarke, J. Endometriosis Is Undervalued: A Call to Action. Front. Glob. Womens Health 2022, 3, 902371. [Google Scholar] [CrossRef]
- Szypłowska, M.; Tarkowski, R.; Kułak, K. The Impact of Endometriosis on Depressive and Anxiety Symptoms and Quality of Life: A Systematic Review. Front. Public Health 2023, 11, 1230303. [Google Scholar] [CrossRef]
- Canis, M.; Donnez, J.G.; Guzick, D.S.; Halme, J.K.; Rock, J.A.; Schenken, R.S.; Vernon, M.W. American Society for Reproductive Medicine Revised American Society for Reproductive Medicine Classification of Endometriosis: 1996. Fertil. Steril. 1997, 67, 817–821. [Google Scholar] [CrossRef]
- Kennedy, S.; Bergqvist, A.; Chapron, C.; D’Hooghe, T.; Dunselman, G.; Greb, R.; Hummelshoj, L.; Prentice, A.; Saridogan, E. ESHRE Guideline Development Group ESHRE Guideline for the Diagnosis and Treatment of Endometriosis. Hum. Reprod. 2005, 20, 2698–2704. [Google Scholar] [CrossRef]
- Nnoaham, K.E.; Hummelshoj, L.; Webster, P.; d’Hooghe, T.; de Cicco Nardone, F.; de Cicco Nardone, C.; Jenkinson, C.; Kennedy, S.H.; Zondervan, K.T. Impact of Endometriosis on Quality of Life and Work Productivity: A Multicenter Study across Ten Countries. Fertil. Steril. 2011, 96, 366–373.e8. [Google Scholar] [CrossRef]
- Kiesel, L.; Sourouni, M. Diagnosis of Endometriosis in the 21st Century. Climacteric 2019, 22, 296–302. [Google Scholar] [CrossRef]
- Guo, S.-W. Recurrence of Endometriosis and Its Control. Hum. Reprod. Update 2009, 15, 441–461. [Google Scholar] [CrossRef] [PubMed]
- Plunk, E.C.; Chambers, W.S.; Richards, S.M. Chapter 1—System Biology. In Metabolomics Perspectives; Troisi, J., Ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 3–27. ISBN 978-0-323-85062-9. [Google Scholar]
- Lee, A.Y.; Troisi, J.; Symes, S.J.K. Chapter 2—Experimental Design in Metabolomics. In Metabolomics Perspectives; Troisi, J., Ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 27–61. ISBN 978-0-323-85062-9. [Google Scholar]
- Emwas, A.-H.; Roy, R.; McKay, R.T.; Tenori, L.; Saccenti, E.; Gowda, G.A.N.; Raftery, D.; Alahmari, F.; Jaremko, L.; Jaremko, M.; et al. NMR Spectroscopy for Metabolomics Research. Metabolites 2019, 9, 123. [Google Scholar] [CrossRef] [PubMed]
- Troisi, J.; Troisi, G.; Scala, G.; Richards, S.M. Chapter 9—Data Analysis in Metabolomics: From Information to Knowledge. In Metabolomics Perspectives; Troisi, J., Ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 287–374. ISBN 978-0-323-85062-9. [Google Scholar]
- Adamyan, L.; Pivazyan, L.; Zarova, E.; Avetisyan, J.; Laevskaya, A.; Sarkisova, A.; Stepanian, A. Metabolomic Biomarkers of Endometriosis: A Systematic Review. J. Endometr. Uterine Disord. 2024, 7, 100077. [Google Scholar] [CrossRef]
- Pandey, S. Metabolomics for the Identification of Biomarkers in Endometriosis. Arch. Gynecol. Obstet. 2024, 310, 2823–2827. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, Z.; Zhang, Y.; Li, J.; Ruan, X.; Wan, Q.; Yin, T.; Zou, Y.; Chen, S.; Zhang, Y. Nontargeted Metabolomics Analysis of Follicular Fluid in Patients with Endometriosis Provides a New Direction for the Study of Oocyte Quality. MedComm 2023, 4, e302. [Google Scholar] [CrossRef]
- Ghazi, N.; Arjmand, M.; Akbari, Z.; Mellati, A.O.; Saheb-Kashaf, H.; Zamani, Z. 1H NMR- Based Metabolomics Approaches as Non- Invasive Tools for Diagnosis of Endometriosis. Int. J. Reprod. Biomed. 2016, 14, 1–8. [Google Scholar] [CrossRef]
- Maignien, C.; Santulli, P.; Kateb, F.; Caradeuc, C.; Marcellin, L.; Pocate-Cheriet, K.; Bourdon, M.; Chouzenoux, S.; Batteux, F.; Bertho, G.; et al. Endometriosis Phenotypes Are Associated with Specific Serum Metabolic Profiles Determined by Proton-Nuclear Magnetic Resonance. Reprod. Biomed. Online 2020, 41, 640–652. [Google Scholar] [CrossRef]
- Jana, S.K.; Dutta, M.; Joshi, M.; Srivastava, S.; Chakravarty, B.; Chaudhury, K. 1H NMR Based Targeted Metabolite Profiling for Understanding the Complex Relationship Connecting Oxidative Stress with Endometriosis. BioMed Res. Int. 2013, 2013, 329058. [Google Scholar] [CrossRef]
- Dutta, M.; Joshi, M.; Srivastava, S.; Lodh, I.; Chakravarty, B.; Chaudhury, K. A Metabonomics Approach as a Means for Identification of Potential Biomarkers for Early Diagnosis of Endometriosis. Mol. Biosyst. 2012, 8, 3281–3287. [Google Scholar] [CrossRef] [PubMed]
- Castiglione Morelli, M.A.; Iuliano, A.; Schettini, S.C.A.; Petruzzi, D.; Ferri, A.; Colucci, P.; Viggiani, L.; Cuviello, F.; Ostuni, A. NMR Metabolic Profiling of Follicular Fluid for Investigating the Different Causes of Female Infertility: A Pilot Study. Metabolomics 2019, 15, 19. [Google Scholar] [CrossRef] [PubMed]
- Tian, Q.; Ruan, J.; Wang, Y.; Xiao, Y.; Cheng, Q.; Chen, Y.; Li, M.; Chang, K.; Yi, X. Extracellular Succinate Derived from Ectopic Milieu Drives Adhesion and Implantation Growth of Ectopic Endometrial Stromal Cells via the SUCNR1 Signal in Endometriosis. Cell Commun. Signal. 2024, 22, 82. [Google Scholar] [CrossRef] [PubMed]
- Vicente-Muñoz, S.; Morcillo, I.; Puchades-Carrasco, L.; Payá, V.; Pellicer, A.; Pineda-Lucena, A. Nuclear Magnetic Resonance Metabolomic Profiling of Urine Provides a Noninvasive Alternative to the Identification of Biomarkers Associated with Endometriosis. Fertil. Steril. 2015, 104, 1202–1209. [Google Scholar] [CrossRef]
- Angioni, S.; Congiu, F.; Vitale, S.G.; D’Alterio, M.N.; Noto, A.; Monni, G.; Santoru, M.L.; Fanos, V.; Murgia, F.; Atzori, L. Gas Chromatography–Mass Spectrometry (GC–MS) Metabolites Analysis in Endometriosis Patients: A Prospective Observational Translational Study. J. Clin. Med. 2023, 12, 922. [Google Scholar] [CrossRef]
- Murgia, F.; Angioni, S.; D’Alterio, M.N.; Pirarba, S.; Noto, A.; Santoru, M.L.; Tronci, L.; Fanos, V.; Atzori, L.; Congiu, F. Metabolic Profile of Patients with Severe Endometriosis: A Prospective Experimental Study. Reprod. Sci. 2021, 28, 728–735. [Google Scholar] [CrossRef]
- Pocate-Cheriet, K.; Santulli, P.; Kateb, F.; Bourdon, M.; Maignien, C.; Batteux, F.; Chouzenoux, S.; Patrat, C.; Wolf, J.P.; Bertho, G.; et al. The Follicular Fluid Metabolome Differs According to the Endometriosis Phenotype. Reprod. Biomed. Online 2020, 41, 1023–1037. [Google Scholar] [CrossRef]
- Lazzarino, G.; Pallisco, R.; Bilotta, G.; Listorti, I.; Mangione, R.; Saab, M.W.; Caruso, G.; Amorini, A.M.; Brundo, M.V.; Lazzarino, G.; et al. Altered Follicular Fluid Metabolic Pattern Correlates with Female Infertility and Outcome Measures of In Vitro Fertilization. Int. J. Mol. Sci. 2021, 22, 8735. [Google Scholar] [CrossRef]
- Braga, D.P.A.F.; Montani, D.A.; Setti, A.S.; Lo Turco, E.G.; Oliveira-Silva, D.; Borges, E. Metabolomic Profile as a Noninvasive Adjunct Tool for the Diagnosis of Grades III and IV Endometriosis-Related Infertility. Mol. Reprod. Dev. 2019, 86, 1044–1052. [Google Scholar] [CrossRef]
- Vouk, K.; Ribič-Pucelj, M.; Adamski, J.; Rižner, T.L. Altered Levels of Acylcarnitines, Phosphatidylcholines, and Sphingomyelins in Peritoneal Fluid from Ovarian Endometriosis Patients. J. Steroid Biochem. Mol. Biol. 2016, 159, 60–69. [Google Scholar] [CrossRef]
- Li, Q.; Yuan, M.; Jiao, X.; Ji, M.; Huang, Y.; Li, J.; Li, D.; Wang, G. Metabolite Profiles in the Peritoneal Cavity of Endometriosis Patients and Mouse Models. Reprod. Biomed. Online 2021, 43, 810–819. [Google Scholar] [CrossRef] [PubMed]
- Santonastaso, M.; Pucciarelli, A.; Constantini, S.; Caprio, F.; Sorice, A.; Capone, F.; Natella, A.; Iardino, P.; Colacurci, N.; Chiosi, E. Metabolomic Profiling and Biochemical Evaluation of the Follicular Fluid of Endometriosis Patients. Mol. BioSyst. 2017, 13, 1213–1222. [Google Scholar] [CrossRef] [PubMed]
- Dutta, M.; Singh, B.; Joshi, M.; Das, D.; Subramani, E.; Maan, M.; Jana, S.K.; Sharma, U.; Das, S.; Dasgupta, S.; et al. Metabolomics Reveals Perturbations in Endometrium and Serum of Minimal and Mild Endometriosis. Sci. Rep. 2018, 8, 6466. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Guan, L.; Zhang, H.; Gao, Y.; Sun, J.; Gong, X.; Li, D.; Chen, P.; Liang, X.; Huang, M.; et al. Endometrium Metabolomic Profiling Reveals Potential Biomarkers for Diagnosis of Endometriosis at Minimal-Mild Stages. Reprod. Biol. Endocrinol. 2018, 16, 42. [Google Scholar] [CrossRef]
- Cordeiro, F.B.; Cataldi, T.R.; Teixeira da Costa, L.d.V.; de Souza, B.Z.; Montani, D.A.; Fraietta, R.; Labate, C.A.; Cedenho, A.P.; Lo Turco, E.G. Metabolomic Profiling in Follicular Fluid of Patients with Infertility-Related Deep Endometriosis. Metabolomics 2017, 13, 120. [Google Scholar] [CrossRef]
- Loy, S.L.; Zhou, J.; Cui, L.; Tan, T.Y.; Ee, T.X.; Chern, B.S.M.; Chan, J.K.Y.; Lee, Y.H. Discovery and Validation of Peritoneal Endometriosis Biomarkers in Peritoneal Fluid and Serum. Reprod. BioMed. Online 2021, 43, 727–737. [Google Scholar] [CrossRef]
- Vicente-Muñoz, S.; Morcillo, I.; Puchades-Carrasco, L.; Payá, V.; Pellicer, A.; Pineda-Lucena, A. Pathophysiologic Processes Have an Impact on the Plasma Metabolomic Signature of Endometriosis Patients. Fertil. Steril. 2016, 106, 1733–1741.e1. [Google Scholar] [CrossRef]
- Turathum, B.; Gao, E.-M.; Grataitong, K.; Liu, Y.-B.; Wang, L.; Dai, X.; Chian, R.-C. Dysregulated Sphingolipid Metabolism and Autophagy in Granulosa Cells of Women with Endometriosis. Front. Endocrinol. 2022, 13, 906570. [Google Scholar] [CrossRef]
- Karaer, A.; Tuncay, G.; Mumcu, A.; Dogan, B. Metabolomics Analysis of Follicular Fluid in Women with Ovarian Endometriosis Undergoing in Vitro Fertilization. Syst. Biol. Reprod. Med. 2019, 65, 39–47. [Google Scholar] [CrossRef]
- Lee, Y.H.; Tan, C.W.; Venkatratnam, A.; Tan, C.S.; Cui, L.; Loh, S.F.; Griffith, L.; Tannenbaum, S.R.; Chan, J.K.Y. Dysregulated Sphingolipid Metabolism in Endometriosis. J. Clin. Endocrinol. Metab. 2014, 99, E1913–E1921. [Google Scholar] [CrossRef]
- Kusum, K.; Raj, R.; Rai, S.; Pranjali, P.; Ashish, A.; Vicente-Muñoz, S.; Chaube, R.; Kumar, D. Elevated Circulatory Proline to Glutamine Ratio (PQR) in Endometriosis and Its Potential as a Diagnostic Biomarker. ACS Omega 2022, 7, 14856–14866. [Google Scholar] [CrossRef]
- Letsiou, S.; Peterse, D.P.; Fassbender, A.; Hendriks, M.M.; van den Broek, N.J.; Berger, R.; O, D.F.; Vanhie, A.; Vodolazkaia, A.; Langendonckt, A.V.; et al. Endometriosis Is Associated with Aberrant Metabolite Profiles in Plasma. Fertil. Steril. 2017, 107, 699–706.e6. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Song, J.; Zhang, X.; Wang, A.; Gu, Y.; Yang, Y.; Wang, X.; Xu, K.; Deng, J. Novel SWATHTM Technology for Follicular Fluid Metabolomics in Patients with Endometriosis. Pharmazie 2018, 73, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Lin, X.; Liu, N.; Shi, L.; Zhuo, F.; Huang, Q.; Gu, W.; Zhao, F.; Zhang, Y.; Zhang, Y.; et al. Integrative Analysis of Transcriptomic and Metabolomic Profiles Reveals Abnormal Phosphatidylinositol Metabolism in Follicles from Endometriosis-Associated Infertility Patients. J. Pathol. 2023, 260, 248–260. [Google Scholar] [CrossRef]
- Dabaja, M.Z.; dos Santos, A.A.; Christofolini, D.M.; Barbosa, C.P.; de Oliveira, D.N.; de Oliveira, A.N.; Melo, C.F.O.R.; Guerreiro, T.M.; Catharino, R.R. Comparative Metabolomic Profiling of Women Undergoing in Vitro Fertilization Procedures Reveals Potential Infertility-Related Biomarkers in Follicular Fluid. Sci. Rep. 2022, 12, 20531. [Google Scholar] [CrossRef]
- Li, J.; Gao, Y.; Guan, L.; Zhang, H.; Sun, J.; Gong, X.; Li, D.; Chen, P.; Ma, Z.; Liang, X.; et al. Discovery of Phosphatidic Acid, Phosphatidylcholine, and Phosphatidylserine as Biomarkers for Early Diagnosis of Endometriosis. Front. Physiol. 2018, 9, 14. [Google Scholar] [CrossRef]
- Cordeiro, F.B.; Cataldi, T.R.; Perkel, K.J.; do Vale Teixeira da Costa, L.; Rochetti, R.C.; Stevanato, J.; Eberlin, M.N.; Zylbersztejn, D.S.; Cedenho, A.P.; Turco, E.G.L. Lipidomics Analysis of Follicular Fluid by ESI-MS Reveals Potential Biomarkers for Ovarian Endometriosis. J. Assist. Reprod. Genet. 2015, 32, 1817–1825. [Google Scholar] [CrossRef]
- Domínguez, F.; Ferrando, M.; Díaz-Gimeno, P.; Quintana, F.; Fernández, G.; Castells, I.; Simón, C. Lipidomic Profiling of Endometrial Fluid in Women with Ovarian Endometriosis†. Biol. Reprod. 2017, 96, 772–779. [Google Scholar] [CrossRef]
- Vouk, K.; Hevir, N.; Ribič-Pucelj, M.; Haarpaintner, G.; Scherb, H.; Osredkar, J.; Möller, G.; Prehn, C.; Rižner, T.L.; Adamski, J. Discovery of Phosphatidylcholines and Sphingomyelins as Biomarkers for Ovarian Endometriosis. Hum. Reprod. 2012, 27, 2955–2965. [Google Scholar] [CrossRef]
- Li, J.-Y.; Chen, J.-P.; Qian, Y.-L.; Ma, J.-Y.; Ni, F.-D.; Lin, Y.-F.; Zhang, R.-J.; Ying, Y.; Zhang, Y.-Y.; Wang, S.-W.; et al. Follicular Fluid Progesterone Downregulated HPGD and COX2 in Granulosa Cells via Suppressing NF-ĸB in Endometriosis. Biol. Reprod. 2023, 108, 791–801. [Google Scholar] [CrossRef]
- Chadchan, S.B.; Naik, S.K.; Popli, P.; Talwar, C.; Putluri, S.; Ambati, C.R.; Lint, M.A.; Kau, A.L.; Stallings, C.L.; Kommagani, R. Gut Microbiota and Microbiota-Derived Metabolites Promotes Endometriosis. Cell Death Discov. 2023, 9, 28. [Google Scholar] [CrossRef] [PubMed]
- Alghetaa, H.; Mohammed, A.; Singh, N.P.; Bloomquist, R.F.; Chatzistamou, I.; Nagarkatti, M.; Nagarkatti, P. Estrobolome Dysregulation Is Associated with Altered Immunometabolism in a Mouse Model of Endometriosis. Front. Endocrinol. 2023, 14, 1261781. [Google Scholar] [CrossRef]
- Ni, Z.; Sun, S.; Bi, Y.; Ding, J.; Cheng, W.; Yu, J.; Zhou, L.; Li, M.; Yu, C. Correlation of Fecal Metabolomics and Gut Microbiota in Mice with Endometriosis. Am. J. Reprod. Immunol. 2020, 84, e13307. [Google Scholar] [CrossRef]
- Atkins, H.M.; Bharadwaj, M.S.; Cox, A.O.; Furdui, C.M.; Appt, S.E.; Caudell, D.L. Endometrium and Endometriosis Tissue Mitochondrial Energy Metabolism in a Nonhuman Primate Model. Reprod. Biol. Endocrinol. 2019, 17, 70. [Google Scholar] [CrossRef]
- Chadchan, S.B.; Popli, P.; Ambati, C.R.; Tycksen, E.; Han, S.J.; Bulun, S.E.; Putluri, N.; Biest, S.W.; Kommagani, R. Gut Microbiota-Derived Short-Chain Fatty Acids Protect against the Progression of Endometriosis. Life Sci. Alliance 2021, 4, e202101224. [Google Scholar] [CrossRef]
- Dutta, M.; Anitha, M.; Smith, P.B.; Chiaro, C.R.; Maan, M.; Chaudhury, K.; Patterson, A.D. Metabolomics Reveals Altered Lipid Metabolism in a Mouse Model of Endometriosis. J. Proteome Res. 2016, 15, 2626–2633. [Google Scholar] [CrossRef]
- Molina, N.M.; Jurado-Fasoli, L.; Sola-Leyva, A.; Sevilla-Lorente, R.; Canha-Gouveia, A.; Ruiz-Durán, S.; Fontes, J.; Aguilera, C.M.; Altmäe, S. Endometrial Whole Metabolome Profile at the Receptive Phase: Influence of Mediterranean Diet and Infertility. Front. Endocrinol. 2023, 14, 1120988. [Google Scholar] [CrossRef]
- Chen, Y.; Ye, L.; Zhu, J.; Chen, L.; Chen, H.; Sun, Y.; Rong, Y.; Zhang, J. Disrupted Tuzzerella Abundance and Impaired L-Glutamine Levels Induce Treg Accumulation in Ovarian Endometriosis: A Comprehensive Multi-Omics Analysis. Metabolomics 2024, 20, 32. [Google Scholar] [CrossRef] [PubMed]
- Matta, K.; Lefebvre, T.; Vigneau, E.; Cariou, V.; Marchand, P.; Guitton, Y.; Royer, A.-L.; Ploteau, S.; Le Bizec, B.; Antignac, J.-P.; et al. Associations between Persistent Organic Pollutants and Endometriosis: A Multiblock Approach Integrating Metabolic and Cytokine Profiling. Environ. Int. 2022, 158, 106926. [Google Scholar] [CrossRef]
- Lefebvre, T.; Campas, M.; Matta, K.; Ouzia, S.; Guitton, Y.; Duval, G.; Ploteau, S.; Marchand, P.; Le Bizec, B.; Freour, T.; et al. A Comprehensive Multiplatform Metabolomic Analysis Reveals Alterations of 2-Hydroxybutyric Acid among Women with Deep Endometriosis Related to the Pesticide Trans-Nonachlor. Sci. Total Environ. 2024, 918, 170678. [Google Scholar] [CrossRef]
- Neuditschko, B.; Leibetseder, M.; Brunmair, J.; Hagn, G.; Skos, L.; Gerner, M.C.; Meier-Menches, S.M.; Yotova, I.; Gerner, C. Epithelial Cell Line Derived from Endometriotic Lesion Mimics Macrophage Nervous Mechanism of Pain Generation on Proteome and Metabolome Levels. Biomolecules 2021, 11, 1230. [Google Scholar] [CrossRef] [PubMed]
- Sasamoto, N.; Zeleznik, O.A.; Vitonis, A.F.; Missmer, S.A.; Laufer, M.R.; Avila-Pacheco, J.; Clish, C.B.; Terry, K.L. Pre-Surgical Blood Metabolites and Risk of Post-Surgical Pelvic Pain in Young Endometriosis Patients. Fertil. Steril. 2022, 117, 1235–1245. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Zhu, Q.; Gao, H.; Lyu, Q.; Chai, W.; Wu, L.; Li, B. Metabolomics Analysis of Follicular Fluid in Ovarian Endometriosis Women Receiving Progestin-Primed Ovary Stimulation Protocol for in Vitro Fertilization. Sci. Rep. 2023, 13, 5747. [Google Scholar] [CrossRef] [PubMed]
- Warowicka, A.; Qasem, B.; Dera-Szymanowska, A.; Wolun-Cholewa, M.; Florczak, P.; Horst, N.; Napierala, M.; Szymanowski, K.; Popenda, L.; Bartkowiak, G.; et al. Effect of Protoberberine-Rich Fraction of Chelidonium majus L. on Endometriosis Regression. Pharmaceutics 2021, 13, 931. [Google Scholar] [CrossRef]
- Jiang, W.; Jiang, H.; Yuan, L.; Sa, Y.; Xiao, J.; Sun, H.; Song, J.; Sun, Z. Xiaoyi Yusi Decoction (Sic) Improves in Vitro Fertilization and Embryo Transfer Outcomes in Patients with Endometriosis. J. Tradit. Chin. Med. 2023, 43, 1026–1033. [Google Scholar] [CrossRef]
- Wu, X.; Zhao, C.; Zhang, A.; Zhang, J.; Wang, X.; Sun, X.; Sun, Z.; Wang, X. High-Throughput Metabolomics Used to Identify Potential Therapeutic Targets of Guizhi Fuling Wan against Endometriosis of Cold Coagulation and Blood Stasis. RSC Adv. 2018, 8, 19238–19250. [Google Scholar] [CrossRef]
- Wu, X.; Sun, X.; Zhao, C.; Zhang, J.; Wang, X.; Zhang, A.; Wang, X. Exploring the Pharmacological Effects and Potential Targets of Paeoniflorin on the Endometriosis of Cold Coagulation and Blood Stasis Model Rats by Ultra-Performance Liquid Chromatography Tandem Mass Spectrometry with a Pattern Recognition Approach. RSC Adv. 2019, 9, 20796–20805. [Google Scholar] [CrossRef]
- Zhou, J.; Ding, Z.-M.; Hardiman, P.J. Understanding the Role of Gui-Zhi-Fu-Ling-Capsules (Chinese Medicine) for Treatment of Endometriosis in the Rat Model: Using NMR Based Metabolomics. Evid.-Based Complement. Altern. Med. 2018, 2018, 9864963. [Google Scholar] [CrossRef]
- Liu, J.; Yang, D.; Piao, C.; Wang, X.; Sun, X.; Li, Y.; Zhang, S.; Wu, X. UPLC-Q-TOF/MS Based Plasma Metabolomics for Identification of Paeonol’s Metabolic Target in Endometriosis. Molecules 2023, 28, 653. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, C.; Lin, C.; Zhang, L.; Zheng, H.; Zhou, Y.; Li, X.; Li, C.; Zhang, X.; Yang, X.; et al. Lipidomic Alterations and PPARα Activation Induced by Resveratrol Lead to Reduction in Lesion Size in Endometriosis Models. Oxidative Med. Cell. Longev. 2021, 2021, 9979953. [Google Scholar] [CrossRef]
- Zheng, W.; Zhou, H.; Fu, Z.; Feng, L.; Wen, D.; Liang, X.; Cao, L. Integration of 16 S rRNA Gene Sequencing, Metabonomics and Metagenome Analysis to Investigate the Mechanism of Sparganium Stoloniferum-Curcuma Phaeocaulis in Treating of Endometriosis in Rats. J. Pharm. Biomed. Anal. 2024, 241, 115970. [Google Scholar] [CrossRef] [PubMed]
- Bourdon, M.; Santulli, P.; Kateb, F.; Pocate-Cheriet, K.; Batteux, F.; Maignien, C.; Chouzenoux, S.; Bordonne, C.; Marcellin, L.; Bertho, G.; et al. Adenomyosis Is Associated with Specific Proton Nuclear Magnetic Resonance (1H-NMR) Serum Metabolic Profiles. Fertil. Steril. 2021, 116, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Teoh, S.T.; Ensink, E.; Ogrodzinski, M.P.; Yang, C.; Vazquez, A.I.; Lunt, S.Y. Cysteine Catabolism and the Serine Biosynthesis Pathway Support Pyruvate Production during Pyruvate Kinase Knockdown in Pancreatic Cancer Cells. Cancer Metab. 2019, 7, 13. [Google Scholar] [CrossRef] [PubMed]
- Tripodi, F.; Castoldi, A.; Nicastro, R.; Reghellin, V.; Lombardi, L.; Airoldi, C.; Falletta, E.; Maffioli, E.; Scarcia, P.; Palmieri, L.; et al. Methionine Supplementation Stimulates Mitochondrial Respiration. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2018, 1865, 1901–1913. [Google Scholar] [CrossRef]
- Yang, P.; Deng, F.; Yuan, M.; Chen, M.; Zeng, L.; Ouyang, Y.; Chen, X.; Zhao, B.; Yang, Z.; Tian, Z. Metabolomics Reveals the Defense Mechanism of Histidine Supplementation on High-Salt Exposure-Induced Hepatic Oxidative Stress. Life Sci. 2023, 314, 121355. [Google Scholar] [CrossRef]
- Sataloff, R.T.; Bush, M.L.; Chandra, R.; Chepeha, D.; Rotenberg, B.; Fisher, E.W.; Goldenberg, D.; Hanna, E.Y.; Kerschner, J.E.; Kraus, D.H.; et al. Systematic and Other Reviews: Criteria and Complexities. J. Otolaryngol. Head Neck Surg. 2021, 50, 41. [Google Scholar] [CrossRef]
- Li, S.; Looby, N.; Chandran, V.; Kulasingam, V. Challenges in the Metabolomics-Based Biomarker Validation Pipeline. Metabolites 2024, 14, 200. [Google Scholar] [CrossRef]
- Bouet, P.-E.; de la Barba, J.M.C.; El Hachem, H.; Descamps, P.; Legendre, G.; Reynier, P.; May-Panloup, P. Metabolomics Shows No Impairment of the Microenvironment of the Cumulus-Oocyte Complex in Women with Isolated Endometriosis. Reprod. Biomed. Online 2019, 39, 885–892. [Google Scholar] [CrossRef]
- Tempest, N.; Hill, C.J.; Whelan, A.; De Silva, A.; Drakeley, A.J.; Phelan, M.M.; Hapangama, D.K. Symptomatology and Serum Nuclear Magnetic Resonance Metabolomics; Do They Predict Endometriosis in Fertile Women Undergoing Laparoscopic Sterilisation? A Prospective Cross-Sectional Study. Reprod. Sci. 2021, 28, 3480–3490. [Google Scholar] [CrossRef]
Metabolite | Serum | Plasma | Follicular Fluid | Endometrial Fluid | Peritoneal Fluid | Urine | Tissue Sample | Cell Samples (Cumulus Cells and Granulosa Cells) |
---|---|---|---|---|---|---|---|---|
1-methyladenosine | ↑ Wei et al. 2023 (III,IV) [20] | |||||||
2-methoxyestradiol | ↑ Ghazi et al. 2015 (II,III) [21] | |||||||
2-methoxyestrone | ↑ Ghazi et al. 2015 (II,III) [21] | |||||||
2-octenoate | ↑ Maignien et al. 2020 (I–IV) [22] | |||||||
2-hydroxybutyrate | ↑ Jana et al. 2013, ↑ Dutta et al. 2012 (I,II) [23,24] | ↓ Castiglione-Morelli et al. 2019 (III,IV) [25] | ||||||
2-hydroxyhippuric acid | ↑ Tian et al. 2024 (I–IV) [26] | |||||||
2-hydroxy-3-methylpentanoic acid | ↑ Tian et al. 2024 (I–IV) [26] | |||||||
2-hydroxyisovalerate | ↑ Vicente-Muñoz et al. 2015 (I–IV) [27] | |||||||
3-hydroxybutyrate | ↑ Maignien et al. 2020 (I–IV), ↑ Dutta et al. 2012 (I,II), ↑ Angioni et al. 2023 (IV), ↑ Murgia et al. 2021 (IV) [22,24,28,29] | ↑ Pocate-Cheriet et al. 2020 (IV) [30] | ||||||
5-hydroxyindole acetic acid | ↑ Wei et al. 2023 (III,IV) [20] | |||||||
5-hydroxymethyl-2-furancarboxylic acid | ↑ Tian et al. 2024 (I–IV) [26] | |||||||
8-hydroxy-2′deoxyguanosine | ↑ Lazzarino et al. 2021 [31] | |||||||
9,12,13-trihydroxy-10-octadecenoic acid | ↑ Wei et al. 2023 (III,IV) [20] | |||||||
25-OH-cholecalciferol | ↓ Lazzarino et al. 2021 [31] | |||||||
α Amino acids (not specified) | ↑ Braga et al. 2019 (III,IV) [32] | |||||||
α-tocopherol | ↓ Lazzarino et al. 2021 [31] | |||||||
β-pseudouridine | ↑ Lazzarino et al. 2021 [31] | |||||||
β-D-glucose 6-phosphate | ↑ Wei et al. 2023 (III,IV) [20] | |||||||
Acetoacetate | ↑ Pocate-Cheriet et al. 2020 (IV) [30] | |||||||
Acetone | ↑ Maignien et al. 2020 (I–IV), ↓ Dutta et al. 2012 (I,II) [22,24] | ↑ Pocate-Cheriet et al. 2020 (IV) [30] | ||||||
Acetate | ↓ Castiglione-Morelli et al. 2019 (III,IV) [25] | |||||||
Acylcarnitines | ↓ Wei et al. 2023 (III,IV) [20] | ↓ Vouk et al. 2016 (III–IV), ↑ Li et al. 2021 [33,34] | ||||||
Alanine | ↓ Jana et al. 2013, ↑ Dutta et al. 2012 (I,II), ↓ Angioni et al. 2023 (IV) [23,24,28] | ↓ Pocate-Cheriet et al. 2020, ↓ Santonastaso et al. 2017 (I–IV) (IV) [30,35] | ↓ Dutta et al. 2018 (I,II) [36] | |||||
Aldosterone | ↑ Ghazi et al. 2015 (II,III) [21] | |||||||
Adipic Acid | ↑ Jana et al. 2013 [23] | |||||||
All-trans-retinol (Vitamin A) | ↓ Lazzarino et al. 2021 [31] | |||||||
Androstenedione | ↑ Ghazi et al. 2015 (II,III) [21] | |||||||
Arachidonic acid | ↑ Li et al. 2018 (I,II) [37] | |||||||
Ascorbic Acid | ↓ Lazzarino et al. 2021 [31] | |||||||
Aspartate | ↓ Santonastaso et al. 2017 (I–IV) [35] | |||||||
Bilirubin | ↓ Wei et al. 2023 (III,IV) [20] | |||||||
Carnitine | ↑ Cordeiro et al. 2017 (III,IV) [38] | ↓ Vouk et al. 2016 (III–IV) [33] | ||||||
Cerimadine | ↑ Loy et al. 2021 (I–IV) [39] | |||||||
Cholesterol | ↓ Ghazi et al. 2015 (II,III) [21] | |||||||
Choline | ↓ Santonastaso et al. 2017 (I–IV) [35] | |||||||
Citrate | ↓ Castiglione-Morelli et al. 2019 (III,IV), ↓ Pocate-Cheriet et al. 2020 (IV) [25,30] | |||||||
Citric Acid | ↑ Jana et al. 2013 [23] | |||||||
Creatine | ↓ Jana et al. 2013, ↑ Dutta et al. 2012 (I,II) [23,24] | ↓ Pocate-Cheriet et al. 2020 (IV) [30] | ||||||
Creatinine | ↓ Vicente-Muñoz et al. 2016 (I–IV) [40] | ↑ Vicente-Muñoz et al. 2015 (I–IV) [27] | ||||||
Cytosine | ↑ Lazzarino et al. 2021 [31] | |||||||
Cytodine | ↑ Lazzarino et al. 2021 [31] | |||||||
Dehydroepiandrosterone | ↑ Ghazi et al. 2015 (II,III) [21] | |||||||
Deoxycorticosterone | ↑ Ghazi et al. 2015 (II,III) [21] | |||||||
Deoxyuridine | ↑ Wei et al. 2023 (III,IV) [20] | |||||||
Diacylglycerols | ↑ Cordeiro et al. 2017 (III,IV) [38] | |||||||
Dihydroindole | ↑ Wei et al. 2023 (III,IV) [20] | |||||||
Docosahexaenoic acid | ↑ Turathum et al. 2022 (CC) [41] | |||||||
Fatty Acids | ↓ Jana et al. 2013 [23] | ↓ Santonastaso et al. 2017 (I–IV), ↑ Cordiero et al. 2017 (III,IV) [35,38] | ||||||
Fucose | ↑ Vicente-Muñoz et al. 2016 (I–IV) [40] | |||||||
Glucose | ↓ Jana et al. 2013, ↓ Dutta et al. 2012 (I,II) [23,24] | ↑ Castiglione-Morelli et al. 2019 (III,IV), ↓ Pocate-Cheriet et al. 2020 (IV), ↓ Lazzarino et al. 2021, ↓ Santonastaso et al. 2017 (I–IV), ↑ Karaer et al. 2019 [25,30,31,35,42] | ||||||
Glucose-1-phosphate | ↑ Wei et al. 2023 (III,IV) [20] | |||||||
Glucosylceramide | ↑ Lee et al. 2014 (III,IV) [43] | |||||||
Glutamine | ↓ Maignien et al. 2020 (I–IV), ↓ Kusum et al. 2022 (I–IV), ↑ Murgia et al. 2021 (IV) [22,29,44] | ↑ Wei et al. 2023 (III,IV) [20] | ||||||
Glutamic acid | ↓ Maignien et al. 2020 (I–IV) [22] | |||||||
Glutamyl arginine | ↑ Wei et al. 2023 (III,IV) [20] | |||||||
Glutamyl phenylalanine | ↑ Wei et al. 2023 (III,IV) [20] | |||||||
Glutathione | ↓ Lazzarino et al. 2021 [31] | |||||||
Guanosine | ↑ Li et al. 2018 (I,II) [37] | |||||||
Guanidinosuccinate | ↑ Vicente-Muñoz et al. 2015 (I–IV) [27] | |||||||
Glycerophophatidylcholine | ↑ Dutta et al. 2012 (I,II) [24] | |||||||
Glycerophosphocholine | ↑ Jana et al. 2013 [23] | |||||||
Hexadecenoylcarnitine | ↑ Letsiou et al. 2017 (III) [45] | |||||||
Histidine | ↓ Maignien et al. 2020 (I–IV), ↑ Dutta et al. 2012 (I,II) [22,24] | ↑ Wei et al. 2023 (III,IV) [20] | ||||||
Hypoxanthine | ↑ Wei et al. 2023 (III,IV), ↑ Lazzarino et al. 2021 [20,31] | ↑ Li et al. 2018 (I,II) [37] | ||||||
Indole | ↑ Wei et al. 2023 (III,IV) [20] | |||||||
Indole-3-acetamide | ↑ Wei et al. 2023 (III,IV) [20] | |||||||
Indole Lactic acid | ↑ Wei et al. 2023 (III,IV) [20] | |||||||
Inosine | ↑ Li et al. 2018 (I,II) [37] | |||||||
Ketoleucine | ↓ Wei et al. 2023 (III,IV) [20] | |||||||
Kynurenine | ↑ Li et al. 2021 [34] | |||||||
Lactate | ↑ Jana et al. 2013, ↑ Dutta et al. 2012 (I,II) [23,24] | ↑ Castiglione-Morelli et al. 2019 (III,IV), ↑ Pocate-Cheriet et al. 2020 (IV), ↑ Lazzarino et al. 2021, ↑ Santonastaso et al. 2017 (I–IV), ↑ Karaer et al. 2019 [25,30,31,35,42] | ||||||
Lauroylcarnitine | ↑ Letsiou et al. 2017 (III) [45] | |||||||
L-arginine | ↓ Jana et al. 2013, ↓ Dutta et al. 2012 (I,II) [23,24] | ↑ Vicente-Muñoz et al. 2016 (I–IV) [40] | ↓ Lazzarino et al. 2021 [31] | ↑ Li et al. 2018 (I,II) [37] | ||||
L-asparagine | ↓ Jana et al. 2013 [23] | ↑ Li et al. 2018 (I,II) [37] | ||||||
L-isoleucine | ↓ Maignien et al. 2020 (I–IV), ↓ Jana et al. 2013, ↓ Dutta et al. 2012 (I,II) [22,23,24] | ↓ Lazzarino et al. 2021 [31] | ||||||
L-leucine | ↓ Maignien et al. 2020 (I–IV), ↓ Jana et al. 2013, ↑ Dutta et al. 2012 (I,II) [22,23,24] | ↓ Lazzarino et al. 2021, ↓ Santonastaso et al. 2017 (I–IV) [31,35] | ↓ Dutta et al. 2018 (I,II), ↑ Li et al. 2018 (I,II) [36,37] | |||||
L-lysine | ↑ Jana et al. 2013, ↑ Dutta et al. 2012 (I,II) [23,24] | ↑ Vicente-Muñoz et al. 2016 (I–IV) [40] | ↓ Santonastaso et al. 2017 (I–IV) [35] | ↓ Vicente-Muñoz et al. 2015 (I–IV) [27] | ↓ Dutta et al. 2018 (I,II), ↑ Li et al. 2018 (I,II) [36,37] | |||
L-threonine | ↓ Maignien et al. 2020 (I–IV), ↑ Dutta et al. 2012 (I,II) [22,24] | ↑ Pocate-Cheriet et al. 2020 (IV), ↓ Lazzarino et al. 2021 [30,31] | ||||||
L-valine | ↓ Maignien et al. 2020 (I–IV), ↑ Dutta et al. 2012 (I,II), ↓ Angioni et al. 2023 (IV) [22,24,28] | ↑ Vicente-Muñoz et al. 2016 (I–IV) [40] | ↓ Castiglione-Morelli et al. 2019 (III,IV), ↓ Lazzarino et al. 2021, ↓ Santonastaso et al. 2017 (I–IV), ↑ Karaer et al. 2019 [25,31,35,42] | ↑ Vicente-Muñoz et al. 2015 (I–IV) [27] | ||||
Lipids (not specified) | ↑ Jana et al. 2013, ↓ Dutta et al. 2012 (I,II) [23,24] | ↑ Pocate-Cheriet et al. 2020 (IV), ↑ Santonastaso et al. 2017 (I–IV) [30,35] | ||||||
Lysophosphatidic acids | ↓ Wei et al. 2023 (III,IV), ↑ Cordeiro et al. 2017 (III,IV) [20,38] | |||||||
Lysophosphatidylcholines | ↓ Wei et al. 2023 (III,IV), ↑ Cordeiro et al. 2017 (III,IV), ↑ Sun et al. 2018 [20,38,46] | ↑ Li et al. 2021 [34] | ||||||
Lysophosphatidylethanolamine | ↑ Li et al. 2018 (I,II) [37] | |||||||
Lysophosphatidylglycerol | ↑ Cordeiro et al. 2017 (III,IV) [38] | |||||||
Lysophosphatidylinositol | ↓ Wei et al. 2023 (III,IV), ↑ Cordeiro et al. 2017 (III,IV), ↓ Dai et al. 2023 (I–IV) [20,38,47] | |||||||
Myristoylcarnitine | ↑ Letsiou et al. 2017 (III) [45] | |||||||
Malondialdehyde | ↑ Lazzarino et al. 2021 [31] | |||||||
Methionine | ↓ Lazzarino et al. 2021 [31] | |||||||
Monoacylglycerols | ↑ Cordeiro et al. 2017 (III,IV) [38] | |||||||
N1-methyl-4-pyridone-5 carboxamide | ↑ Vicente-Muñoz et al. 2015 (I–IV) [27] | |||||||
N-oleoylethanolamine | ↑ Wei et al. 2023 (III,IV) [20] | |||||||
Nitrate | ↑ Lazzarino et al. 2021 [31] | |||||||
Nitrite | ↑ Lazzarino et al. 2021 [31] | |||||||
Oleamide | ↑ Wei et al. 2023 (III,IV) [20] | |||||||
Oleylcarnitine | ↑ Letsiou et al. 2017 (III) [45] | |||||||
Ornithine | ↑ Dutta et al. 2012 (I,II) [24] | |||||||
Palmitic acid | ↑ Turathum et al. 2022 (CC) [41] | |||||||
Phosphatidic acids | ↑ Cordeiro et al. 2017 (III,IV), ↑ Dabaja et al. 2022 [38,48] | ↑ Li et al. 2018 (I,II) [49] | ||||||
Phosphocholine | ↓ Santonastaso et al. 2017 (I–IV) [35] | |||||||
Phosphatidylinositol | ↑ Dai et al. 2023 (I–IV) [47] | |||||||
Phosphatidylinositol bisphosphate | ↓ Cordeiro et al. 2015 (III,IV) [50] | |||||||
Phosphatidylcholine | ↑ Wei et al. 2023 (III,IV), ↑↓ Cordeiro et al. 2015 (III,IV) [20,50] | ↑↓ Domínguez et al. 2017 [51] | ↓ Vouk et al. 2016 (III–IV), ↑ Loy et al. 2021 (I–IV) [33,39] | ↓ Li et al. 2018 (I,II) [49] | ||||
Phosphatidylglycerol phosphate | ↓ Cordeiro et al. 2015 (III,IV) [50] | |||||||
Phosphoethanolamine | ↑ Li et al. 2021 [34] | |||||||
Phosphatidylserine | ↓ Cordeiro et al. 2017 (III,IV), ↑ Cordiero et al. 2015 (III,IV) [38,50] | ↓ Li et al. 2018 (I,II) [49] | ||||||
Phospholipids | ↑ Santonastaso et al. 2017 (I–IV) [35] | |||||||
Phenylalanine | ↑ Wei et al. 2023 (III,IV) [20] | ↓ Dutta et al. 2018 (I,II) [36] | ||||||
Phenylalanyl-isoleucine | ↑ Loy et al. 2021 (I–IV) [39] | |||||||
Plasmenylcholines | ↑ Vouk et al. 2012 (III,IV) [52] | |||||||
Phytosphingosine | ↓ Sun et al. 2018 [46] | |||||||
Primary bile acids | ↓ Ghazi et al. 2015 (II,III) [21] | |||||||
Progesterone | ↑ Li et al. 2023 [53] | ↑ Li et al. 2023 [53] | ↑ Li et al. 2023 [53] | |||||
Proline | ↑ Angioni et al. 2023 (IV), ↑ Kusum et al. 2022 (I–IV) [28,44] | ↑ Wei et al. 2023 (III,IV), ↓ Santonastaso et al. 2017 (I–IV) [20,35] | ↑ Dutta et al. 2018 (I,II) [36] | |||||
Pyruvate | ↑ Jana et al. 2013 [23] | ↑ Pocate-Cheriet et al. 2020 (IV), ↑ Karaer et al. 2019 [30,42] | ||||||
Serine | ↓ Lazzarino et al. 2021 [31] | |||||||
Succinate | ↑ Jana et al. 2013, ↑ Dutta et al. 2012 (I,II) [23,24] | ↑ Tian et al. 2024 (I–IV) [26] | ||||||
Sphingomyelins | ↑ Vouk et al. 2012 (III,IV) [52] | ↓ Domínguez et al. 2017 [51] | ↓ Vouk et al. 2016 (III–IV) [33] | ↓ Turathum et al. 2022 (CC) [41] | ||||
Sphingolipids | ↑ Cordeiro et al. 2015 (III,IV) [50] | |||||||
Sphingosine | ↓ Turatham et al. 2022 (MGC) [41] | |||||||
Taurine | ↑ Vicente-Muñoz et al. 2015 (I–IV) [27] | |||||||
Tetradecenoylcarnitine | ↑ Letsiou et al. 2017 (III) [45] | ↑ Loy et al. 2021 (I–IV) [39] | ||||||
Tetracosahexaenoic acid | ↑ Loy et al. 2021 (I–IV) [39] | |||||||
Threonic acid | ↑ Angioni et al. 2023 (IV) [28] | |||||||
Thymidine | ↑ Wei et al. 2023 (III,IV) [20] | |||||||
Thymine | ↑ Wei et al. 2023 (III,IV) [20] | |||||||
Trimethylamine-N-oxide | ↑ Letsiou et al. 2017 (III) [45] | |||||||
Triacylglycerols | ↑ Braga et al. 2019 (III,IV) [32] | ↓ Domínguez et al. 2017 [51] | ||||||
Tyrosine | ↓ Maignien et al. 2020 (I–IV) [22] | ↓ Pocate-Cheriet et al. 2020 (IV) [30] | ↑ Li et al. 2018 (I,II) [37] | |||||
Tryptophan | ↓ Murgia et al. 2021 (IV) [29] | ↑ Wei et al. 2023 (III,IV), ↓ Lazzarino et al. 2021 [20,31] | ||||||
Unsaturated lipids | ↑ Castiglione-Morelli et al. 2019 (III,IV) [25] | |||||||
Uracil | ↑ Lazzarino et al. 2021 [31] | |||||||
Uric acid | ↓ Li et al. 2018 (I,II) [37] | |||||||
Xanthosine | ↑ Li et al. 2018 (I,II) [37] | |||||||
Xanthine | ↑ Wei et al. 2023 (III,IV), ↑ Lazzarino et al. 2021 [20,31] |
Metabolite | Serum | Tissue Sample | Peritoneal Lavage Fluid | Colonic Flushes | Feces |
---|---|---|---|---|---|
2-aminoheptanoic acid | ↑ Chadchan et al. 2023 (Mouse) [54] | ||||
2-Phosphoglycerate | ↑ Alghetaa et al. 2023 (Mouse) [55] | ||||
3-Phosphoglycerate | ↑ Alghetaa et al. 2023 (Mouse) [55] | ||||
12,13s-epoxy-9z,11,15z-octadecatrienoic acid | ↓ Ni et al. 2020 (Mouse) [56] | ||||
Acetic Acid | ↓ Alghetaa et al. 2023 (Mouse) [55] | ||||
Alpha-linolenic acid | ↓ Ni et al. 2020 (Mouse) [56] | ||||
Butyric acid | ↓ Alghetaa et al. 2023 (Mouse) [55] | ||||
Carnitine | ↓ Atkins et al. 2019 (NHP- II,IV) [57] | ||||
Chenodeoxycholic acid | ↑ Ni et al. 2020 (Mouse) [56] | ||||
Creatine Phosphate | ↓ Atkins et al. 2019 (NHP- II,IV) [57] | ||||
FAD | ↓ Atkins et al. 2019 (NHP- II,IV) [57] | ||||
Fumarate | ↑ Alghetaa et al. 2023 (Mouse) [55] | ||||
Fructose-6-phosphate | ↑ Alghetaa et al. 2023 (Mouse) [55] | ||||
Glucose-6-phosphate | ↑ Alghetaa et al. 2023 (Mouse) [55] | ||||
Glutamate | ↑ Alghetaa et al. 2023 (Mouse) [55] | ||||
iso-butyrate | ↓ Chadchan et al. 2021 (Mouse) [58] | ||||
Lactic Acid | ↑ Chadchan et al. 2023 (Mouse) [54] | ||||
Lysophosphatidylcholines | ↑ Dutta et al. 2016 (Mouse) [59] | ↑ Li et al. 2021 (Mouse) [34] | |||
Lysophosphatidylethanolamine | ↑ Dutta et al. 2016 (Mouse) [59] | ||||
Malic acid | ↓ Atkins et al. 2019 (NHP- II,IV) [57] | ||||
Malate | ↑ Alghetaa et al. 2023 (Mouse) [55] | ||||
Maltose | ↑ Chadchan et al. 2023 (Mouse) [54] | ||||
n-Acetyl aspartic acid | ↑ Chadchan et al. 2023 (Mouse) [54] | ||||
n-butyrate | ↓ Chadchan et al. 2021 (Mouse) [58] | ||||
NADH | ↓ Atkins et al. 2019 (NHP- II,IV) [57] | ||||
Phosphatidylcholines | ↑ Dutta et al. 2016 (Mouse) [59] | ||||
Phosphatidylethanolamine | ↓ Dutta et al. 2016 (Mouse) [59] | ||||
Phosphoenolpyruvate | ↑ Alghetaa et al. 2023 (Mouse) [55] | ||||
Phosphoethanolamine | ↑ Li et al. 2021 (Mouse) [34] | ||||
Plasmeny-phosphatidylethanolamine | ↑ Dutta et al. 2016 (Mouse) [59] | ||||
Propionic acid | ↓ Alghetaa et al. 2023 (Mouse) [55] | ||||
Quinic acid | ↑ Chadchan et al. 2023 (Mouse) [54] | ||||
Sphingomyelins | ↑ Dutta et al. 2016 (Mouse) [59] | ||||
Succinate | ↑ Alghetaa et al. 2023 (Mouse) [55] | ||||
Triacylglycerols | ↓ Dutta et al. 2016 (Mouse) [59] | ||||
Tryptophan | ↓ Atkins et al. 2019 (NHP- II,IV) [57] | ||||
Ursodeoxycholic acid | ↑ Ni et al. 2020 (Mouse) [56] | ||||
Valeric acid | ↓ Alghetaa et al. 2023 (Mouse) [55] | ||||
Valerate | ↓ Chadchan et al. 2021 (Mouse) [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Collie, B.; Troisi, J.; Lombardi, M.; Symes, S.; Richards, S. The Current Applications of Metabolomics in Understanding Endometriosis: A Systematic Review. Metabolites 2025, 15, 50. https://doi.org/10.3390/metabo15010050
Collie B, Troisi J, Lombardi M, Symes S, Richards S. The Current Applications of Metabolomics in Understanding Endometriosis: A Systematic Review. Metabolites. 2025; 15(1):50. https://doi.org/10.3390/metabo15010050
Chicago/Turabian StyleCollie, Blake, Jacopo Troisi, Martina Lombardi, Steven Symes, and Sean Richards. 2025. "The Current Applications of Metabolomics in Understanding Endometriosis: A Systematic Review" Metabolites 15, no. 1: 50. https://doi.org/10.3390/metabo15010050
APA StyleCollie, B., Troisi, J., Lombardi, M., Symes, S., & Richards, S. (2025). The Current Applications of Metabolomics in Understanding Endometriosis: A Systematic Review. Metabolites, 15(1), 50. https://doi.org/10.3390/metabo15010050