Unveiling Silent Atherosclerosis in Type 1 Diabetes: The Role of Glycoprotein and Lipoprotein Lipidomics, and Cardiac Autonomic Neuropathy
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Population
2.2. Clinical and Laboratory Assessments
2.3. Proton Nuclear Magnetic Resonance Spectroscopy Metabolomics
2.4. Carotid Ultrasound Examination
2.5. Assessment of Cardiovascular Autonomic Function: Ewing’s Score and Power Spectral Heart Rate Data
3. Statistical Analysis
4. Results
4.1. Baseline Characteristics of the Study Population
4.2. Clinical Characteristics Stratified by Subclinical Atherosclerosis Status
4.3. Lipid Profile and Glycoprotein Quantification Using 1H-NMR Spectroscopy
4.4. Predictive Performance Analysis of the Model
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Groop, P.H.; Thomas, M.C.; Moran, J.L.; Wadèn, J.; Thorn, L.M.; Mäkinen, V.-P.; Rosengård-Bärlund, M.; Saraheimo, M.; Hietala, K.; Heikkilä, O.; et al. The Presence and Severity of Chronic Kidney Disease Predicts All-Cause Mortality in Type 1 Diabetes. Diabetes 2009, 58, 1651–1658. [Google Scholar] [CrossRef]
- Retnakaran, R.; Zinman, B. Type 1 Diabetes, Hyperglycaemia, and the Heart. Lancet 2008, 371, 1790–1799. [Google Scholar] [CrossRef]
- Vergès, B. Cardiovascular Disease in Type 1 Diabetes: A Review of Epidemiological Data and Underlying Mechanisms. Diabetes Metab. 2020, 46, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Nattero-Chávez, L.; Insenser, M.; Amigó, N.; Samino, S.; Martínez-Micaelo, N.; Dorado Avendaño, B.; Quintero Tobar, A.; Escobar-Morreale, H.F.; Luque-Ramírez, M. Quantification of Lipoproteins by Proton Nuclear Magnetic Resonance Spectroscopy (1H-NMRS) Improves the Prediction of Cardiac Autonomic Dysfunction in Patients with Type 1 Diabetes. J. Endocrinol. Investig. 2024, 47, 2075–2085. [Google Scholar] [CrossRef] [PubMed]
- Mala, S.; Potockova, V.; Hoskovcova, L.; Pithova, P.; Brabec, M.; Kulhankova, J.; Keil, R.; Riedlbauchova, L.; Broz, J. Cardiac Autonomic Neuropathy May Play a Role in Pathogenesis of Atherosclerosis in Type 1 Diabetes Mellitus. Diabetes Res. Clin. Pract. 2017, 134, 139–144. [Google Scholar] [CrossRef]
- Nattero-Chávez, L.; Redondo López, S.; Alonso Díaz, S.; Garnica Ureña, M.; Fernández-Durán, E.; Escobar-Morreale, H.F.; Luque-Ramírez, M. Association of Cardiovascular Autonomic Dysfunction with Peripheral Arterial Stiffness in Patients with Type 1 Diabetes. J. Clin. Endocrinol. Metab. 2019, 104, 2675–2684. [Google Scholar] [CrossRef]
- Wishart, D.S. Metabolomics for Investigating Physiological and Pathophysiological Processes. Physiol. Rev. 2019, 99, 1819–1875. [Google Scholar] [CrossRef] [PubMed]
- Insenser, M.R.; Nattero-Chávez, L.; Luque-Ramírez, M.; Quiñones, S.D.L.; Quintero-Tobar, A.; Samino, S.; Amigó, N.; Dorado Avendaño, B.; Fiers, T.; Escobar-Morreale, H.F. Investigating the Link between Intermediate Metabolism, Sexual Dimorphism, and Cardiac Autonomic Dysfunction in Patients with Type 1 Diabetes. Metabolites 2024, 14, 436. [Google Scholar] [CrossRef] [PubMed]
- Rafati, M.; Rahimzadeh, M.R.; Moladoust, H. Evaluation of Atherosclerosis Severity Based on Carotid Artery Intima-Media Thickness Changes: A New Diagnostic Criterion. Ultrasound Med. Biol. 2019, 45, 2950–2957. [Google Scholar] [CrossRef]
- Colombo, M.; Blackbourn, L.A.K.; Dalton, R.N.; Dunger, D.; Bell, S.; Petrie, J.R.; Green, F.; MacRury, S.; McKnight, J.A.; Chalmers, J.; et al. Comparison of Serum and Urinary Biomarker Panels with Albumin/Creatinine Ratio in the Prediction of Renal Function Decline in Type 1 Diabetes. Diabetologia 2020, 63, 788–798. [Google Scholar] [CrossRef] [PubMed]
- Pongrac Barlovic, D.; Harjutsalo, V.; Sandholm, N.; Forsblom, C.; Groop, P.-H.; on behalf of the FinnDiane Study Group. Sphingomyelin and Progression of Renal and Coronary Heart Disease in Individuals with Type 1 Diabetes. Diabetologia 2020, 63, 1847–1856. [Google Scholar] [CrossRef]
- Curovic, V.R.; Suvitaival, T.; Mattila, I.; Ahonen, L.; Trošt, K.; Theilade, S.; Hansen, T.W.; Legido-Quigley, C.; Rossing, P. Circulating Metabolites and Lipids Are Associated to Diabetic Retinopathy in Individuals with Type 1 Diabetes. Diabetes 2020, 69, 2217–2226. [Google Scholar] [CrossRef]
- Amor, A.J.; Castelblanco, E.; Hernández, M.; Gimenez, M.; Granado-Casas, M.; Blanco, J.; Soldevila, B.; Esmatjes, E.; Conget, I.; Alonso, N.; et al. Advanced Lipoprotein Profile Disturbances in Type 1 Diabetes Mellitus: A Focus on LDL Particles. Cardiovasc. Diabetol. 2020, 19, 126. [Google Scholar] [CrossRef]
- Nattero-Chávez, L.; Insenser, M.; Quintero Tobar, A.; Fernández-Durán, E.; Dorado Avendaño, B.; Fiers, T.; Kaufman, J.-M.; Luque-Ramírez, M.; Escobar-Morreale, H.F. Sex Differences and Sex Steroids Influence on the Presentation and Severity of Cardiovascular Autonomic Neuropathy of Patients with Type 1 Diabetes. Cardiovasc. Diabetol. 2023, 22, 32. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee; ElSayed, N.A.; Aleppo, G.; Bannuru, R.R.; Bruemmer, D.; Collins, B.S.; Ekhlaspour, L.; Gaglia, J.L.; Hilliard, M.E.; Johnson, E.L.; et al. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47, S20–S42. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee; ElSayed, N.A.; Aleppo, G.; Bannuru, R.R.; Bruemmer, D.; Collins, B.S.; Cusi, K.; Ekhlaspour, L.; Fleming, T.K.; Hilliard, M.E.; et al. 4. Comprehensive Medical Evaluation and Assessment of Comorbidities: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47, S52–S76. [Google Scholar] [CrossRef]
- Puig-Jové, C.; Julve, J.; Castelblanco, E.; Julián, M.T.; Amigó, N.; Andersen, H.U.; Ahluwalia, T.S.; Rossing, P.; Mauricio, D.; Jensen, M.T.; et al. The Novel Inflammatory Biomarker GlycA and Triglyceride-Rich Lipoproteins Are Associated with the Presence of Subclinical Myocardial Dysfunction in Subjects with Type 1 Diabetes Mellitus. Cardiovasc. Diabetol. 2022, 21, 257. [Google Scholar] [CrossRef] [PubMed]
- Mallol, R.; Amigó, N.; Rodríguez, M.A.; Heras, M.; Vinaixa, M.; Plana, N.; Rock, E.; Ribalta, J.; Yanes, O.; Masana, L.; et al. Liposcale: A Novel Advanced Lipoprotein Test Based on 2D Diffusion-Ordered 1H NMR Spectroscopy. J. Lipid Res. 2015, 56, 737–746. [Google Scholar] [CrossRef]
- Gerhard-Herman, M.; Gardin, J.M.; Jaff, M.; Mohler, E.; Roman, M.; Naqvi, T.Z. Guidelines for Noninvasive Vascular Laboratory Testing: A Report from the American Society of Echocardiography and the Society of Vascular Medicine and Biology. J. Am. Soc. Echocardiogr. 2006, 19, 955–972. [Google Scholar] [CrossRef] [PubMed]
- Ewing, D.J.; Martyn, C.N.; Young, R.J.; Clarke, B.F. The Value of Cardiovascular Autonomic Function Tests: 10 Years Experience in Diabetes. Diabetes Care 1985, 8, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Kahn, R. Autonomic Nervous System Testing. Diabetes Care 1992, 15, 1095–1103. [Google Scholar] [PubMed]
- Sun, Y.-P.; Cai, Y.-Y.; Li, H.-M.; Deng, S.-M.; Leng, R.-X.; Pan, H.-F. Increased Carotid Intima–Media Thickness (CIMT) Levels in Patients with Type 1 Diabetes Mellitus (T1DM): A Meta-Analysis. J. Diabetes Its Complicat. 2015, 29, 724–730. [Google Scholar] [CrossRef]
- Chahal, H.; Backlund, J.-Y.C.; Cleary, P.A.; Lachin, J.M.; Polak, J.F.; Lima, J.A.C.; Bluemke, D.A. Relation Between Carotid Intima–Media Thickness and Left Ventricular Mass in Type 1 Diabetes Mellitus (from the Epidemiology of Diabetes Interventions and Complications [EDIC] Study). Am. J. Cardiol. 2012, 110, 1534–1540. [Google Scholar] [CrossRef] [PubMed]
- Nattero-Chávez, L.; Redondo López, S.; Alonso Díaz, S.; Garnica Ureña, M.; Fernández-Durán, E.; Escobar-Morreale, H.F.; Luque-Ramírez, M. The Peripheral Atherosclerotic Profile in Patients with Type 1 Diabetes Warrants a Thorough Vascular Assessment of Asymptomatic Patients. Diabetes/Metab. Res. Rev. 2019, 35, e3088. [Google Scholar] [CrossRef]
- Serés-Noriega, T.; Giménez, M.; Perea, V.; Blanco, J.; Vinagre, I.; Pané, A.; Ruiz, S.; Cofán, M.; Mesa, A.; Esmatjes, E.; et al. Quantification of Glycoproteins by Nuclear Magnetic Resonance Associated with Preclinical Carotid Atherosclerosis in Patients with Type 1 Diabetes. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 2099–2108. [Google Scholar] [CrossRef] [PubMed]
- Wiggin, T.D.; Sullivan, K.A.; Pop-Busui, R.; Amato, A.; Sima, A.A.F.; Feldman, E.L. Elevated Triglycerides Correlate with Progression of Diabetic Neuropathy. Diabetes 2009, 58, 1634–1640. [Google Scholar] [CrossRef] [PubMed]
- Serés-Noriega, T.; Ortega, E.; Perea, V.; Giménez, M.; Boswell, L.; Mariaca, K.; Font, C.; Mesa, A.; Viñals, C.; Blanco, J.; et al. Nuclear Magnetic Resonance-Based Lipidomics in the Assessment of Cardiometabolic Risk in Type 1 Diabetes: An Exploratory Analysis. Diabetes Ther. 2023, 14, 553–567. [Google Scholar] [CrossRef]
- Amor, A.J.; Vinagre, I.; Valverde, M.; Urquizu, X.; Meler, E.; López, E.; Alonso, N.; Pané, A.; Giménez, M.; Codina, L.; et al. Nuclear Magnetic Resonance-Based Metabolomic Analysis in the Assessment of Preclinical Atherosclerosis in Type 1 Diabetes and Preeclampsia. Diabetes Res. Clin. Pract. 2021, 171, 108548. [Google Scholar] [CrossRef]
- Julve, J.; Rossell, J.; Correig, E.; Rojo-Lopez, M.I.; Amigó, N.; Hernández, M.; Traveset, A.; Carbonell, M.; Alonso, N.; Mauricio, D.; et al. Predictive Value of the Advanced Lipoprotein Profile and Glycated Proteins on Diabetic Retinopathy. Nutrients 2022, 14, 3932. [Google Scholar] [CrossRef] [PubMed]
- Castelblanco, E.; Hernández, M.; Ortega, E.; Amigó, N.; Real, J.; Granado-Casas, M.; Miñambres, I.; López, C.; Lecube, A.; Bermúdez-López, M.; et al. Outstanding Improvement of the Advanced Lipoprotein Profile in Subjects with New-Onset Type 1 Diabetes Mellitus after Achieving Optimal Glycemic Control. Diabetes Res. Clin. Pract. 2021, 182, 109145. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.-H.; Yin, F.; Qiao, Y.-N.; Guo, S.-D. Triglyceride and Triglyceride-Rich Lipoproteins in Atherosclerosis. Front. Mol. Biosci. 2022, 9, 909151. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, A.J.; Grant, M.B.; Busik, J.V. Lipids, Hyperreflective Crystalline Deposits and Diabetic Retinopathy: Potential Systemic and Retinal-Specific Effect of Lipid-Lowering Therapies. Diabetologia 2022, 65, 587–603. [Google Scholar] [CrossRef] [PubMed]
- Libby, P.; Hansson, G.K. From Focal Lipid Storage to Systemic Inflammation. J. Am. Coll. Cardiol. 2019, 74, 1594–1607. [Google Scholar] [CrossRef]
- Ridker, P.M.; Hennekens, C.H.; Buring, J.E.; Rifai, N. C-Reactive Protein and Other Markers of Inflammation in the Prediction of Cardiovascular Disease in Women. N. Engl. J. Med. 2000, 342, 836–843. [Google Scholar] [CrossRef] [PubMed]
- Snell-Bergeon, J.K.; West, N.A.; Mayer-Davis, E.J.; Liese, A.D.; Marcovina, S.M.; D’Agostino, R.B.; Hamman, R.F.; Dabelea, D. Inflammatory Markers Are Increased in Youth with Type 1 Diabetes: The SEARCH Case-Control Study. J. Clin. Endocrinol. Metab. 2010, 95, 2868–2876. [Google Scholar] [CrossRef] [PubMed]
- Aulich, J.; Cho, Y.H.; Januszewski, A.S.; Craig, M.E.; Selvadurai, H.; Wiegand, S.; Jenkins, A.J.; Donaghue, K.C. Associations between Circulating Inflammatory Markers, Diabetes Type and Complications in Youth. Pediatr. Diabetes 2019, 20, 1118–1127. [Google Scholar] [CrossRef] [PubMed]
- Targher, G.; Bertolini, L.; Zoppini, G.; Zenari, L.; Falezza, G. Increased Plasma Markers of Inflammation and Endothelial Dysfunction and Their Association with Microvascular Complications in Type 1 Diabetic Patients without Clinically Manifest Macroangiopathy. Diabet. Med. 2005, 22, 999–1004. [Google Scholar] [CrossRef]
- Otvos, J.D.; Guyton, J.R.; Connelly, M.A.; Akapame, S.; Bittner, V.; Kopecky, S.L.; Lacy, M.; Marcovina, S.M.; Muhlestein, J.B.; Boden, W.E. Relations of GlycA and Lipoprotein Particle Subspecies with Cardiovascular Events and Mortality: A Post Hoc Analysis of the AIM-HIGH Trial. J. Clin. Lipidol. 2018, 12, 348–355.e2. [Google Scholar] [CrossRef] [PubMed]
- Fuertes-Martín, R.; Moncayo, S.; Insenser, M.; Martínez-García, M.Á.; Luque-Ramírez, M.; Grau, N.A.; Blanchar, X.C.; Escobar-Morreale, H.F. Glycoprotein A and B Height-to-With Ratios as Obesity-Independent Novel Biomarkers of Low-Grade Chronic Inflammation in Women with Polycystic Ovary Syndrome (PCOS). J. Proteome Res. 2019, 18, 4038–4045. [Google Scholar] [CrossRef] [PubMed]
- Akinkuolie, A.O.; Buring, J.E.; Ridker, P.M.; Mora, S. A Novel Protein Glycan Biomarker and Future Cardiovascular Disease Events. J. Am. Heart Assoc. 2014, 3, e001221. [Google Scholar] [CrossRef]
- Fischer, K.; Kettunen, J.; Würtz, P.; Haller, T.; Havulinna, A.S.; Kangas, A.J.; Soininen, P.; Esko, T.; Tammesoo, M.-L.; Mägi, R.; et al. Biomarker Profiling by Nuclear Magnetic Resonance Spectroscopy for the Prediction of All-Cause Mortality: An Observational Study of 17,345 Persons. PLoS Med. 2014, 11, e1001606. [Google Scholar] [CrossRef] [PubMed]
Variable | All Patients | Presence of CAN | p | |
---|---|---|---|---|
(n = 256) | Yes (n = 75) | No (n = 181) | ||
Male/female (%) | 142 (56)/114 (44) | 42 (56)/33 (44) | 100 (55)/81 (45) | 0.912 |
Age (yrs) | 47 (21) | 56 (16) | 44 (18) | <0.001 |
Duration of T1D (yrs) | 24 (18) | 31 (18) | 21 (17) | <0.001 |
Smoking habit [N (%)] | 83 (32) | 31 (41) | 52 (29) | 0.070 |
Daily insulin dose (units/kg/day) | 0.52 (0.22) | 0.54 (0.24) | 0.51 (0.21) | 0.964 |
Antiaggregant therapy [N (%)] | 28 (11) | 20 (27) | 8 (4.4) | <0.001 |
Antihypertensive therapy [N (%)] | 52 (20) | 29 (39) | 23 (13) | <0.001 |
Microangiopathy [N (%)] | 81 (32) | 40 (53) | 41 (23) | <0.001 |
Macroangiopathy [N (%)] | 12 (4.7) | 7 (9.3) | 5 (2.8) | 0.047 |
Dyslipemia [N (%)] | 134 (52) | 53 (71) | 81 (45) | <0.001 |
Body mass index (kg/m2) | 25 (5.1) | 26 (4.9) | 25 (5.7) | 0.061 |
Fat mass (%) | 24 ± 9.5 | 26 ± 8 | 24 ± 10 | 0.031 |
Waist-to-hip ratio | 0.93 (0.12) | 0.94 (0.10) | 0.93 (0.13) | 0.139 |
Systolic BP (mmHg) | 119 (19) | 127 (19) | 117 (15) | <0.001 |
Diastolic BP (mmHg) | 74 (10) | 76 (9) | 74 (9) | 0.026 |
eGFR (mL/min/1.73 m2) | 89 ± 16 | 87 ± 17 | 90 ± 15 | 0.134 |
A1c (%) | 7.2 ± 0.9 | 7.5 ± 1.0 | 7.1 ± 0.8 | 0.001 |
Total cholesterol (mg/dL) | 170 (42) | 173 (59) | 169 (34) | 0.622 |
HDL-cholesterol (mg/dL) | 59 ± 15 | 60 ± 17 | 59 ± 14 | 0.828 |
LDL-cholesterol (mg/dL) | 99 ± 24 | 102 ± 29 | 98 ± 23 | 0.413 |
Triglycerides (mg/dL) | 58 (26) | 61 (26) | 57 (27) | 0.177 |
Microalbumin/creatinine ratio (mg/g) | 5.8 (4.6) | 5.6 (4.0) | 6 (5.4) | 0.623 |
Variable | All Patients | Presence of Carotid Plaque | p | |
---|---|---|---|---|
(n = 256) | Yes (n = 81) | No (n = 175) | ||
Male/female (%) | 142 (56)/114 (44) | 46 (57)/35 (43) | 95 (55)/79 (45) | 0.743 |
Age (yrs) | 47 (21) | 58 (13) | 42 (19) | <0.001 |
Duration of T1D (yrs) | 24 (18) | 32 (18) | 21 (17) | <0.001 |
Smoking habit [N (%)] | 83 (32) | 41 (51) | 41 (24) | <0.001 |
Daily insulin dose (units/kg/day) | 0.52 (0.22) | 0.49 (0.27) | 0.52 (0.21) | 0.659 |
Antiaggregant therapy [N (%)] | 28 (11) | 21 (26) | 6 (3) | <0.001 |
Hypertension [N (%)] | 52 (20) | 33 (41) | 18 (10) | <0.001 |
Microangiopathy [N (%)] | 81 (32) | 44 (54) | 37 (21) | <0.001 |
Macroangiopathy [N (%)] | 12 (4.7) | 9 (11) | 2 (1) | 0.001 |
Dyslipemia [N (%)] | 134 (52) | 68 (84) | 65 (37) | <0.001 |
Body mass index (kg/m2) | 25 (5.1) | 26 (6.6) | 25 (4.7) | 0.022 |
Fat mass (%) | 24 ± 9.5 | 26 ± 9.1 | 23 ± 9.7 | 0.024 |
Waist-to-hip ratio | 0.93 (0.12) | 0.95 (0.13) | 0.93 (0.13) | 0.039 |
Systolic BP(mmHg) | 119 (19) | 126 (23) | 117 (16) | <0.001 |
Diastolic BP(mmHg) | 74 (10) | 76 (9) | 73 (9) | 0.003 |
eGFR (mL/min/1.73 m2) | 89 ± 16 | 83 ± 14 | 92 ± 16 | <0.001 |
A1c (%) | 7.2 ± 0.9 | 7.4 ± 0.9 | 7.1 ± 0.9 | 0.041 |
Total cholesterol (mg/dL) | 170 (42) | 177 (45) | 168 (38) | 0.159 |
HDL-cholesterol (mg/dL) | 59 ± 15 | 60 ± 18 | 59 ± 13 | 0.601 |
LDL-cholesterol (mg/dL) | 99 ± 24 | 101 ± 25 | 98 ± 24 | 0.491 |
Triglycerides (mg/dL) | 58 (26) | 64 (37) | 56 (24) | 0.001 |
Microalbumin/creatinine ratio (mg/g) | 5.8 (4.6) | 6.8 (6) | 5.4 (3.9) | 0.031 |
Variable | OR (95%IC) | p |
---|---|---|
Sex (male) | 1.51 (0.51–4.66) | 0.460 |
Age (years) | 1.13 (1.07–1.20) | <0.001 |
Duration of T1D (years) | 1.04 (1.00–1.08) | 0.028 |
Daily insulin dose (units/kg/day) | 0.75 (0.07–7.22) | 0.804 |
Presence of CAN | 0.72 (0.29–1.70) | 0.455 |
Smoking habit | 2.54 (1.15–5.75) | 0.022 |
Hypertension | 1.48 (0.59–3.69) | 0.403 |
Dyslipemia | 1.54 (0.48–5.30) | 0.474 |
Fat mass (%) | 0.98 (0.92–1.03) | 0.399 |
A1c (%) | 1.06 (0.68–1.65) | 0.792 |
eGFR (mL/min/1.73 m2) | 0.98 (0.95–1.01) | 0.243 |
All Patients (n = 256) | Presence of Atherosclerosis | |||
---|---|---|---|---|
Yes (n = 81) | No (n = 175) | p | ||
Cholesterol (C) | ||||
VLDL-C (mg/dL) * | 10 ± 7 | 11 ± 8 | 9 ± 6 | 0.041 |
IDL-C (mg/dL) *** | 9 ± 4 | 10 ± 4 | 8 ± 3 | <0.001 |
LDL-C (mg/dL)*** | 117 ± 19 | 120 ± 20 | 116 ± 18 | <0.001 |
HDL-C (mg/dL) | 64 ± 12 | 65 ± 14 | 63 ± 11 | 0.202 |
Triglycerides (TG) | ||||
VLDL-TG (mg/dL) | 46 ± 29 | 51 ± 29 | 45 ± 29 | 0.074 |
IDL-TG (mg/dL) *** | 10 ± 3 | 11 ± 3 | 9 ± 2 | <0.001 |
LDL-TG (mg/dL) *** | 13 ± 4 | 15 ± 4 | 12 ± 3 | <0.001 |
HDL-TG (mg/dL) *** | 14 ± 4 | 16 ± 5 | 13 ± 4 | <0.001 |
Lipoprotein particle number | ||||
VLDL-P (nM) * | 33.5 ± 19.7 | 36.8 ± 20.4 | 31.9 ± 19.2 | 0.021 |
Large VLDL-P (nM) | 0.9 ± 0.4 | 1.0 ± 0.4 | 0.9 ± 0.4 | 0.052 |
Medium VLDL-P (nM) | 3.4 ± 3.0 | 3.6 ± 2.9 | 3.3 ± 3.1 | 0.623 |
Small VLDL-P (nM) ** | 29.2 ± 16.5 | 32.3 ± 17.3 | 27.7 ± 16.0 | 0.008 |
LDL-P (nM) * | 1153 ± 179 | 1191 ± 203 | 1136 ± 165 | 0.030 |
Large LDL-P (nM) | 184 ± 26 | 186 ± 27 | 183 ± 26 | 0.439 |
Medium LDL-P (nM) * | 345 ± 93 | 365 ± 95 | 336 ± 90 | 0.021 |
Small LDL-P (nM) | 625 ± 95 | 641 ± 111 | 617 ± 85 | 0.083 |
HDL-P (µM) * | 31.0 ± 5.0 | 32.2 ± 5.4 | 30.5 ± 4.7 | 0.015 |
Large HDL-P (µM) *** | 0.3 ± 0.0 | 0.3 ± 0.1 | 0.3 ± 0.0 | <0.001 |
Medium HDL-P (µM) * | 11.4 ± 2.3 | 11.9 ± 2.5 | 11.1 ± 2.2 | 0.020 |
Small HDL-P (µM) | 19.3 ± 3.5 | 20.0 ± 3.7 | 19.1 ± 3.4 | 0.060 |
Lipoprotein particle size | ||||
VLDL diameter (nm) ** | 42.2 ± 0.2 | 42.1 ± 0.2 | 42.2 ± 0.2 | 0.009 |
LDL diameter (nm) | 21.1 ± 0.2 | 21.1 ± 0.2 | 21.1 ± 0.2 | 0.981 |
HDL diameter (nm) | 8.3 ± 0.1 | 8.3 ± 0.1 | 8.3 ± 0.1 | 0.581 |
Inflammation | ||||
Glyc A (µmol/L) ** | 607 ± 117 | 637 ± 125 | 593 ± 111 | 0.002 |
Glyc A H/W ** | 14.9 ± 2.4 | 15.6 ± 2.5 | 14.6 ± 2.2 | 0.001 |
Glyc B (µmol/L) ** | 316 ± 42 | 327 ± 43 | 311 ± 41 | 0.006 |
Glyc B H/W ** | 4.0 ± 0.5 | 4.1 ± 0.5 | 3.9 ± 0.5 | 0.005 |
Glyc F (µmol/L) * | 202 ± 37 | 207 ± 35 | 199 ± 38 | 0.032 |
Fibrinogen (mg/dL) *** | 299 ± 79 | 330 ± 90 | 284 ± 68 | <0.001 |
hs-CRP (mg/L) | 0.9 (1.89) | 1.09 (1.80) | 0.83 (1.84) | 0.115 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Lope Quiñones, S.; Luque-Ramírez, M.; Michael Fernández, A.C.; Quintero Tobar, A.; Quiñones-Silva, J.; Martínez García, M.Á.; Insenser Nieto, M.; Dorado Avendaño, B.; Escobar-Morreale, H.F.; Nattero-Chávez, L. Unveiling Silent Atherosclerosis in Type 1 Diabetes: The Role of Glycoprotein and Lipoprotein Lipidomics, and Cardiac Autonomic Neuropathy. Metabolites 2025, 15, 55. https://doi.org/10.3390/metabo15010055
de Lope Quiñones S, Luque-Ramírez M, Michael Fernández AC, Quintero Tobar A, Quiñones-Silva J, Martínez García MÁ, Insenser Nieto M, Dorado Avendaño B, Escobar-Morreale HF, Nattero-Chávez L. Unveiling Silent Atherosclerosis in Type 1 Diabetes: The Role of Glycoprotein and Lipoprotein Lipidomics, and Cardiac Autonomic Neuropathy. Metabolites. 2025; 15(1):55. https://doi.org/10.3390/metabo15010055
Chicago/Turabian Stylede Lope Quiñones, Sara, Manuel Luque-Ramírez, Antonio Carlos Michael Fernández, Alejandra Quintero Tobar, Jhonatan Quiñones-Silva, María Ángeles Martínez García, María Insenser Nieto, Beatriz Dorado Avendaño, Héctor F. Escobar-Morreale, and Lía Nattero-Chávez. 2025. "Unveiling Silent Atherosclerosis in Type 1 Diabetes: The Role of Glycoprotein and Lipoprotein Lipidomics, and Cardiac Autonomic Neuropathy" Metabolites 15, no. 1: 55. https://doi.org/10.3390/metabo15010055
APA Stylede Lope Quiñones, S., Luque-Ramírez, M., Michael Fernández, A. C., Quintero Tobar, A., Quiñones-Silva, J., Martínez García, M. Á., Insenser Nieto, M., Dorado Avendaño, B., Escobar-Morreale, H. F., & Nattero-Chávez, L. (2025). Unveiling Silent Atherosclerosis in Type 1 Diabetes: The Role of Glycoprotein and Lipoprotein Lipidomics, and Cardiac Autonomic Neuropathy. Metabolites, 15(1), 55. https://doi.org/10.3390/metabo15010055