Comparative Study of Lipid Profile for Mice Treated with Cyclophosphamide by HPLC-HRMS and Bioinformatics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Experimental Model of Immunodeficient State
2.3. Blood Samples Collection and Primary Preparation
2.4. Immunosuppression Model Verification
2.4.1. Hematologic Parameters
2.4.2. Flow Cytometry
2.4.3. Statistical Analysis
2.5. Biomarkers Identification
2.5.1. Lipid Extraction
2.5.2. HPLC-HRMS Analysis
2.5.3. Data Preprocessing
2.5.4. Lipid Filtering and Preliminary Annotation
2.5.5. Selection of Biomarker Candidates
2.5.6. MS/MS-Based Lipid Identification of Selected Biomarkers
3. Results and Discussion
3.1. Immunosuppression Verification
3.2. The Effect of Cyclophosphamide on Plasma Lipidomic Profile
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CPA | Cyclophosphamide |
HPLC-HRMS | High-Performance Liquid Chromatography with High Resolution |
Mass Spectrometry | |
IIP UB RAS | Institute of Immunology and Physiology of the Ural Branch of |
the Russian Academy of Sciences | |
K3-EDTA | Tripotassium ethylenediaminetetraacetic acid |
MS | Mass spectrometry |
MS/MS | Tandem Mass Spectrometry |
MTBE | Methyl Tert-Butyl Ether |
PCA | Principal Component Analysis |
ppm | Parts Per Million |
SMs | Sphingomyelins |
References
- Rezaei, N.; Aghamohammadi, A.; Notarangelo, L. Primary Immunodeficiency Diseases: Definition, Diagnosis, and Management; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1–358. [Google Scholar] [CrossRef]
- Shirani, K.; Hassani, F.V.; Razavi-Azarkhiavi, K.; Heidari, S.; Zanjani, B.R.; Karimi, G. Phytotrapy of cyclophosphamide-induced immunosuppression. Environ. Toxicol. Pharmacol. 2015, 39, 1262–1275. [Google Scholar] [CrossRef] [PubMed]
- Trifonova, O.P.; Maslov, D.L.; Balashova, E.E.; Lokhov, P.G. Current state and future perspectives on personalized metabolomics. Metabolites 2023, 13, 67. [Google Scholar] [CrossRef] [PubMed]
- Watson, A.D. Lipidomics: A global approach to lipid analysis in biological systems. J. Lipid Res. 2006, 47, 2101. [Google Scholar] [CrossRef] [PubMed]
- Fobofou, S.A.; Savidge, T. Microbial metabolites: Cause or consequence in gastrointestinal disease? Am. J. Physiol.-Gastrointest. Liver Physiol. 2022, 322, G535–G552. [Google Scholar] [CrossRef]
- Feng, L.; Huang, Q.; Huang, Z.; Li, H.; Qi, X.; Wang, Y.; Liu, Z.; Liu, X.; Lu, L. Optimized animal model of cyclophosphamide-induced bone marrow suppression. Basic Clin. Pharmacol. Toxicol. 2016, 119, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Matyash, V.; Liebisch, G.; Kurzchalia, T.V.; Shevchenko, A.; Schwudke, D. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J. Lipid Res. 2008, 49, 1137–1146. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.A.; Want, E.J.; O’Maille, G.; Abagyan, R.; Siuzdak, G. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 2006, 78, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Libiseller, G.; Dvorzak, M.; Kleb, U.; Gander, E.; Eisenberg, T.; Madeo, F.; Neumann, S.; Trausinger, G.; Sinner, F.; Pieber, T.; et al. IPO: A tool for automated optimization of XCMS parameters. BMC Bioinform. 2015, 16, 118. [Google Scholar] [CrossRef]
- Prince, J.T.; Marcotte, E.M. Chromatographic alignment of ESI-LC-MS proteomics data sets by ordered bijective interpolated warping. Anal. Chem. 2006, 78, 6140–6152. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, A.; Brasher, C.J.; Slatter, D.A.; Meckelmann, S.W.; Hawksworth, J.I.; Allen, S.M.; O’Donnell, V.B. LipidFinder: A computational workflow for discovery of lipids identifies eicosanoid-phosphoinositides in platelets. JCI Insight 2017, 2, e91634. [Google Scholar] [CrossRef] [PubMed]
- Conroy, M.J.; Andrews, R.M.; Andrews, S.; Cockayne, L.; Dennis, E.A.; Fahy, E.; Gaud, C.; Griffiths, W.J.; Jukes, G.; Kolchin, M.; et al. LIPID MAPS: Update to databases and tools for the lipidomics community. Nucleic Acids Res. 2024, 52, D1677–D1682. [Google Scholar] [CrossRef]
- Ejigu, B.A.; Valkenborg, D.; Baggerman, G.; Vanaerschot, M.; Witters, E.; Dujardin, J.C.; Burzykowski, T.; Berg, M. Evaluation of normalization methods to pave the way towards large-scale LC-MS-based metabolomics profiling experiments. Omics J. Integr. Biol. 2013, 17, 473–485. [Google Scholar] [CrossRef]
- Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; VanderGheynst, J.; Fiehn, O.; Arita, M. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 2015, 12, 523–526. [Google Scholar] [CrossRef] [PubMed]
- Lévesque, J.P.; Hendy, J.; Takamatsu, Y.; Simmons, P.J.; Bendall, L.J. Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J. Clin. Investig. 2003, 111, 187–196. [Google Scholar] [CrossRef]
- DeZern, A.E.; Zahurak, M.L.; Symons, H.J.; Cooke, K.R.; Rosner, G.L.; Gladstone, D.E.; Huff, C.A.; Swinnen, L.J.; Imus, P.; Borrello, I.; et al. Haploidentical BMT for severe aplastic anemia with intensive GVHD prophylaxis including posttransplant cyclophosphamide. Blood Adv. 2020, 4, 1770–1779. [Google Scholar] [CrossRef] [PubMed]
- Cengiz, M. Hematoprotective effect of boron on cyclophosphamide toxicity in rats. Cell. Mol. Biol. 2018, 64, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Mughal, K.S.; Ikram, M.; Uddin, Z.; Rashid, A.; Rashid, U.; Khan, M.; Zehra, N.; Mughal, U.S.; Shah, N.; Amirzada, I. Syringic acid improves cyclophosphamide-induced immunosuppression in a mouse model. Biochem. Biophys. Res. Commun. 2024, 734, 150777. [Google Scholar] [CrossRef]
- Zhou, Q.; Gao, J.; Sun, X.; Du, J.; Wu, Z.; Liang, D.; Ling, C.; Fang, B. Immunomodulatory Mechanisms of Tea Leaf Polysaccharide in Mice with Cyclophosphamide-Induced Immunosuppression Based on Gut Flora and Metabolomics. Foods 2024, 13, 2994. [Google Scholar] [CrossRef]
- You, Y.; Kim, S.H.; Kim, C.H.; Kim, I.H.; Shin, Y.; Kim, T.R.; Sohn, M.; Park, J. Immune-Stimulating Potential of Lacticaseibacillus rhamnosus LM1019 in RAW 264.7 Cells and Immunosuppressed Mice Induced by Cyclophosphamide. Microorganisms 2023, 11, 2312. [Google Scholar] [CrossRef] [PubMed]
- De Jonge, M.E.; Huitema, A.D.; Rodenhuis, S.; Beijnen, J.H. Clinical pharmacokinetics of cyclophosphamide. Clin. Pharmacokinet. 2005, 44, 1135–1164. [Google Scholar] [CrossRef] [PubMed]
- Jeelani, R.; Khan, S.N.; Shaeib, F.; Kohan-Ghadr, H.R.; Aldhaheri, S.R.; Najafi, T.; Thakur, M.; Morris, R.; Abu-Soud, H.M. Cyclophosphamide and acrolein induced oxidative stress leading to deterioration of metaphase II mouse oocyte quality. Free Radic. Biol. Med. 2017, 110, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Wang, Y.; Zhang, L.; Guo, Q. Oxidative stress and liver disease. Hepatol. Res. 2012, 42, 741–749. [Google Scholar] [CrossRef]
- Chen, S.; Inui, S.; Aisyah, R.; Nakashima, R.; Kawaguchi, T.; Hinomoto, M.; Nakagawa, Y.; Sakuma, T.; Sotomaru, Y.; Ohshima, N.; et al. Role of Gpcpd1 in intestinal alpha-glycerophosphocholine metabolism and trimethylamine N-oxide production. J. Biol. Chem. 2024, 300, 107965. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, A.M.; Soilman, H.A.; Abd El-Hameed, A.M.; Abdel-Reheim, E.S. Wheat germ oil attenuates cyclophosphamide-induced testicular injury in rats. World J. Pharm. Pharm. Sci. 2016, 5, 40–52. [Google Scholar]
- Ibrahim, K.M.; Darwish, S.F.; Mantawy, E.M.; El-Demerdash, E. Molecular mechanisms underlying cyclophosphamide-induced cognitive impairment and strategies for neuroprotection in preclinical models. Mol. Cell. Biochem. 2024, 479, 1873–1893. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Fang, H.; Chong, Y.; Lin, L.; Xie, T.; Ji, J.; Shen, C.; Shi, C.; Shan, J. Cyclophosphamide induces lipid and metabolite perturbation in amniotic fluid during rat embryonic development. Metabolites 2022, 12, 1105. [Google Scholar] [CrossRef]
- Wegner, M.S.; Schiffmann, S.; Parnham, M.J.; Geisslinger, G.; Grösch, S. The enigma of ceramide synthase regulation in mammalian cells. Prog. Lipid Res. 2016, 63, 93–119. [Google Scholar] [CrossRef] [PubMed]
Parameters | Description |
---|---|
WBC, 109/L | Absolute number of leukocytes |
Lym#, 109/L | Absolute number of lymphocytes |
Mon#, 109/L | Absolute number of monocytes |
Grn#, 109/L | Absolute number of granulocytes |
Lym% | Lymphocyte percentage |
Mon% | Monocyte percentage |
Grn% | Granulocyte percentage |
RBC, 1012/L | Red blood cells |
Hb g/L | Hemoglobin concentrations |
Hct, % | Hematocrit |
MCV, fL | Average volume of red blood cells |
MCH, pg | Mean corpuscular hemoglobin content |
MCHC, g/L | Mean corpuscular hemoglobin concentration |
RDW, % | Red blood cell distribution width |
Plt, 109/L | Platelet count |
MPV, fL | Mean platelet volume |
PDW, % | Platelet distribution width |
Pct, % | Thrombocrit |
№ | tR, min | Ion | Accurate Mass | Formulae | Name | Characteristic Fragment Ions | Class | p-Value | Fold Change |
---|---|---|---|---|---|---|---|---|---|
1 | 8.9 | [M-H]− | 883.5325 | C47H81O13P | PI 18:1_20:4 | 619.2884 601.2779 597.3025 579.2923 417.2407 303.2326 297.0387 281.2489 241.0127 | GPIs | 4.116 | |
2 | 10.2 | [M+OAc]− | 761.5807 | C39H79N2O6P | SM 18:1;O2/16:0 | 687.5429 449.3143 168.0430 78.9590 | SMs | 3.356 | |
3 | 14.5 | [M+OAc]− | 871.6897 | C47H93N2O6P | SM 18:1;O2/24:1 | 797.6525 449.3136 168.0430 78.9591 | SMs | 2.877 | |
4 | 17.2 | [M+Na]+ | 1021.7247 | C67H98O6 | TG 20:4_22:6_22:6 | 717.4849 693.4850 | TAGs | 5.477 | |
5 | 17.4 | [M+Na]+ | 997.7272 | C65H98O6 | TG 20:4_20:4_22:6 | 693.4850 669.4859 | TAGs | 4.527 | |
6 | 17.5 | [M+Na]+ | 973.7271 | C63H98O6 | TG 18:2_20:4_22:6 | 693.4847 669.4838 645.4853 | TAGs | 4.870 | |
7 | 3.0 | [M+H]+ | 400.3419 | C23H45NO4 | CAR 16:0 | 85.0282 | CARs | 0.318 | |
8 | 5.7 | [M+H]+ | 552.4021 | C28H58NO7P | LPC 20:0 | 534.3922 184.0726 104.1065 | GPCs | 0.321 | |
9 | 10.7 | [M+H]+ | 792.5903 | C46H82NO7P | PC O-18:2_20:4 | 506.3602 184.0727 | GPCs | 0.310 | |
10 | 11.8 | [M+H]+ | 768.5915 | C44H82NO7P | PC O-16:0_20:4 | 585.5215 482.3594 184.0730 | GPCs | 0.379 | |
11 | 12.9 | [M+H]+ | 720.5900 | C40H82NO7P | PC O-16:0_16:0 | 537.5199 482.3588 184.0729 | GPCs | 0.219 | |
12 | 14.5 | [M+H]+ | 787.6709 | C45H91N2O6P | SM 18:1;O2/22:0 | 184.0731 | PSPLs | 0.330 | |
13 | 18.2 | [M+NH4]+ | 822.7558 | C51H96O6 | TG 14:0_16:0_18:1 | 577.5188 549.4873 523.4716 | TAGs | 0.320 | |
14 | 18.2 | [M+NH4]+ | 848.7726 | C53H98O6 | TG 16:0_16:0_18:2 | 575.5038 551.5032 | TAGs | 0.330 | |
15 | 18.9 | [M+NH4]+ | 878.8176 | C55H104O6 | TG 16:0_18:0_18:1 | 605.5494 579.5340 577.5182 | TAGs | 0.319 |
Parameters | Control | CPA |
---|---|---|
WBC, 109/L | 5.24 ± 0.41 | 5.13 ± 0.58 |
Lym#, 109/L | 3.41 ± 0.30 | 1.37 ± 0.31 * |
Mon#, 109/L | 0.20 ± 0.02 | 0.26 ± 0.04 |
Grn#, 109/L | 1.63 ± 0.13 | 3.49 ± 0.48 * |
Lym% | 64.48 ± 1.57 | 25.85 ± 3.31 * |
Mon% | 3.89 ± 0.23 | 5.59 ± 0.35 * |
Grn% | 31.63 ± 1.45 | 68.56 ± 3.45 * |
RBC, 1012/L | 8.83 ± 0.11 | 7.06 ± 0.12 * |
Hb g/L | 144.50 ± 1.06 | 113.41 ± 2.33 * |
Hct, % | 44.20 ± 0.51 | 35.16 ± 0.60 * |
MCV, fL | 50.13 ± 0.29 | 49.87 ± 0.24 |
MCH, pg | 16.33 ± 0.17 | 16.00 ± 0.09 |
MCHC, g/L | 326.67 ± 2.68 | 321.65 ± 2.08 |
RDW, % | 12.71 ± 0.25 | 11.67 ± 0.13 * |
Plt, 109/L | 1126.33 ± 58.30 | 556.03 ± 33.94 * |
MPV, fL | 5.14 ± 0.09 | 6.28 ± 0.10 * |
PDW, % | 16.07 ± 0.07 | 16.65 ± 0.06 * |
Pct, % | 0.57 ± 0.03 | 0.34 ± 0.02 * |
Parameters | Control | CPA |
---|---|---|
T-lymphocytes (CD45+CD3+), % | 55.767 ± 2.107 | 85.583 ± 3.112 * |
T-lymphocytes (CD45+CD3+), 109/L | 1.736 ± 0.127 | 1.878 ± 0.256 |
B-lymphocytes (CD45+CD19+), % | 32.600 ± 2.248 | 3.183 ± 0.239 * |
B-lymphocytes (CD45+CD19+), 109/L | 1.055 ± 0.157 | 0.070 ± 0.011 * |
NK cells (CD45+CD49+), % | 9.950 ± 1.353 | 9.783 ± 2.897 |
NK cells (CD45+CD49+), 109/L | 0.324 ± 0.060 | 0.188 ± 0.044 |
CD8(+) T cells (CD45+CD3+CD8+), % | 14.250 ± 0.456 | 24.000 ± 0.868 * |
CD8(+) T cells (CD45+CD3+CD8+), 109/L | 0.445 ± 0.033 | 0.519 ± 0.059 |
CD4(+) T cells (CD45+CD3+CD4+), % | 41.117 ± 1.615 | 60.700 ± 2.986 * |
CD4(+) T cells (CD45+CD3+CD4+), 109/L | 1.279 ± 0.091 | 1.344 ± 0.203 |
B1-lymphocytes (CD45+CD19+CD5+CD27–), % | 0.817 ± 0.183 | 0.217 ± 0.065 * |
B1-lymphocytes (CD45+CD19+CD5+CD27–), 109/L | 0.025 ± 0.006 | 0.004 ± 0.001 * |
Memory B cells, (CD45+CD19+CD5–CD27+), % | 0.333 ± 0.084 | 0.200 ± 0.058 |
Memory B cells, (CD45+CD19+CD5–CD27+), 109/L | 0.010 ± 0.002 | 0.005 ± 0.002 |
B2-lymphocytes (CD45+CD19+CD5–CD27–), % | 31.692 ± 2.221 | 2.742 ± 0.255 * |
B2-lymphocytes (CD45+CD19+CD5–CD27–), 109/L | 1.027 ± 0.155 | 0.061 ± 0.011 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demicheva, E.; Polanco Espino, F.J.; Vedeneev, P.; Shevyrin, V.; Buhler, A.; Mukhlynina, E.; Berdiugina, O.; Mondragon, A.d.C.; Cepeda Sáez, A.; Lopez-Santamarina, A.; et al. Comparative Study of Lipid Profile for Mice Treated with Cyclophosphamide by HPLC-HRMS and Bioinformatics. Metabolites 2025, 15, 60. https://doi.org/10.3390/metabo15010060
Demicheva E, Polanco Espino FJ, Vedeneev P, Shevyrin V, Buhler A, Mukhlynina E, Berdiugina O, Mondragon AdC, Cepeda Sáez A, Lopez-Santamarina A, et al. Comparative Study of Lipid Profile for Mice Treated with Cyclophosphamide by HPLC-HRMS and Bioinformatics. Metabolites. 2025; 15(1):60. https://doi.org/10.3390/metabo15010060
Chicago/Turabian StyleDemicheva, Ekaterina, Fernando Jonathan Polanco Espino, Pavel Vedeneev, Vadim Shevyrin, Aleksey Buhler, Elena Mukhlynina, Olga Berdiugina, Alicia del Carmen Mondragon, Alberto Cepeda Sáez, Aroa Lopez-Santamarina, and et al. 2025. "Comparative Study of Lipid Profile for Mice Treated with Cyclophosphamide by HPLC-HRMS and Bioinformatics" Metabolites 15, no. 1: 60. https://doi.org/10.3390/metabo15010060
APA StyleDemicheva, E., Polanco Espino, F. J., Vedeneev, P., Shevyrin, V., Buhler, A., Mukhlynina, E., Berdiugina, O., Mondragon, A. d. C., Cepeda Sáez, A., Lopez-Santamarina, A., Cardelle-Cobas, A., Solovyova, O., Danilova, I., Miranda, J. M., & Kovaleva, E. (2025). Comparative Study of Lipid Profile for Mice Treated with Cyclophosphamide by HPLC-HRMS and Bioinformatics. Metabolites, 15(1), 60. https://doi.org/10.3390/metabo15010060