Metabolome Alterations Associated with Three-Month Sitting-Time Reduction Among Sedentary Postmenopausal Latinas with Cardiometabolic Disease Risk
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Parent Study Design
2.3. Metabolomics
2.3.1. Reagents
2.3.2. Sample Preparation
2.3.3. Liquid Chromatography and Mass Spectrometry Conditions
2.4. Statistical Analyses
3. Results
3.1. Participant Characteristics
3.2. Analysis of 12-Week Metabolite Change
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hales, C.M.; Fryar, C.D.; Carroll, M.D.; Freedman, D.S.; Aoki, Y.; Ogden, C.L. Differences in Obesity Prevalence by Demographic Characteristics and Urbanization Level Among Adults in the United States, 2013–2016. JAMA 2018, 319, 2419–2429. [Google Scholar] [CrossRef] [PubMed]
- Ogden, C.L.; Fryar, C.D.; Martin, C.B.; Freedman, D.S.; Carroll, M.D.; Gu, Q.; Hales, C.M. Trends in Obesity Prevalence by Race and Hispanic Origin—1999–2000 to 2017–2018. JAMA 2020, 324, 1208. [Google Scholar] [CrossRef] [PubMed]
- Diabetes and Hispanic Americans|Office of Minority Health. Available online: https://minorityhealth.hhs.gov/diabetes-and-hispanic-americans (accessed on 13 March 2024).
- Lee, I.M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T. Impact of Physical Inactivity on the World’s Major Non-Communicable Diseases. Lancet 2012, 380, 219. [Google Scholar] [CrossRef] [PubMed]
- Booth, F.W.; Roberts, C.K.; Laye, M.J. Lack of exercise is a major cause of chronic diseases. Compr. Physiol. 2012, 2, 1143. [Google Scholar] [CrossRef]
- Health Policy Data Requests—Percent of U.S. Adults 55 and Over with Chronic Conditions. Available online: https://www.cdc.gov/nchs/health_policy/adult_chronic_conditions.htm (accessed on 13 February 2022).
- Kapoor, E.; Collazo-Clavell, M.L.; Faubion, S.S. Weight Gain in Women at Midlife: A Concise Review of the Pathophysiology and Strategies for Management. Mayo Clin. Proc. 2017, 92, 1552–1558. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.H.; Jung, Y. Energy Metabolism Changes and Dysregulated Lipid Metabolism in Postmenopausal Women. Nutrients 2021, 13, 4556. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Ferreira, D.L.S.; Nelson, S.M.; Sattar, N.; Ala-Korpela, M.; Lawlor, D.A. Metabolic characterization of menopause: Cross-sectional and longitudinal evidence. BMC Med. 2018, 16, 17. [Google Scholar] [CrossRef]
- De Rezende, L.F.M.; Rey-López, J.P.; Matsudo, V.K.R.; Luiz, O.D.C. Sedentary behavior and health outcomes among older adults: A systematic review. BMC Public Health 2014, 14, 333. [Google Scholar] [CrossRef]
- Renaud, L.R.; Huysmans, M.A.; van der Ploeg, H.P.; Speklé, E.M.; van der Beek, A.J. Natural Patterns of Sitting, Standing and Stepping During and Outside Work—Differences between Habitual Users and Non-Users of Sit–Stand Workstations. Int. J. Environ. Res. Public Health 2020, 17, 4075. [Google Scholar] [CrossRef] [PubMed]
- Bellettiere, J.; Winkler, E.A.; Chastin, S.F.; Kerr, J.; Owen, N.; Dunstan, D.W.; Healy, G.N. Associations of sitting accumulation patterns with cardio-metabolic risk biomarkers in Australian adults. PLoS ONE 2017, 12, e0180119. [Google Scholar] [CrossRef] [PubMed]
- Biswas, A.; Oh, P.I.; Faulkner, G.E.; Bajaj, R.R.; Silver, M.A.; Mitchell, M.S.; Alter, D.A. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults a systematic review and meta-analysis. Ann. Intern. Med. 2015, 162, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Bellettiere, J.; Godbole, S.; Keshavarz, S.; Maestas, J.P.; Unkart, J.T.; Ervin, D.; Allison, M.A.; Rock, C.L.; Patterson, R.E.; et al. Total Sitting Time and Sitting Pattern in Postmenopausal Women Differ by Hispanic Ethnicity and are Associated with Cardiometabolic Risk Biomarkers. J. Am. Hear. Assoc. Cardiovasc. Cerebrovasc. Dis. 2020, 9, e013403. [Google Scholar] [CrossRef] [PubMed]
- Diaz, K.M.; Goldsmith, J.; Greenlee, H.; Strizich, G.; Qi, Q.; Mossavar-Rahmani, Y.; Vidot, D.C.; Buelna, C.; Brintz, C.E.; Elfassy, T.; et al. Prolonged, uninterrupted sedentary behavior and glycemic biomarkers among US Hispanic/Latino adults: The Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Circulation 2017, 136, 1362. [Google Scholar] [CrossRef] [PubMed]
- Paterson, C.; Fryer, S.; Zieff, G.; Stone, K.; Credeur, D.P.; Gibbs, B.B.; Padilla, J.; Parker, J.K.; Stoner, L. The Effects of Acute Exposure to Prolonged Sitting, With and Without Interruption, on Vascular Function Among Adults: A Meta-analysis. Sport Med. 2020, 50, 1929–1942. [Google Scholar] [CrossRef]
- Kerr, J.; Crist, K.; Vital, D.G.; Dillon, L.; Aden, S.A.; Trivedi, M.; Castellanos, L.R.; Godbole, S.; Li, H.; Allison, M.A.; et al. Acute glucoregulatory and vascular outcomes of three strategies for interrupting prolonged sitting time in postmenopausal women: A pilot, laboratory-based, randomized, controlled, 4-condition, 4-period crossover trial. PLoS ONE 2017, 12, e0188544. [Google Scholar] [CrossRef]
- Thosar, S.S.; Bielko, S.L.; Mather, K.J.; Johnston, J.D.; Wallace, J.P. Effect of prolonged sitting and breaks in sitting time on endothelial function. Med. Sci. Sports Exerc. 2015, 47, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.S.J.; Haga, J.H.; Chien, S. Molecular basis of the effects of shear stress on vascular endothelial cells. J. Biomech. 2005, 38, 1949–1971. [Google Scholar] [CrossRef]
- Dunstan, D.W.; Kingwell, B.A.; Larsen, R.; Healy, G.N.; Cerin, E.; Hamilton, M.T.; Shaw, J.E.; Bertovic, D.A.; Zimmet, P.Z.; Salmon, J.; et al. Breaking up prolonged sitting reduces postprandial glucose and insulin responses. Diabetes Care 2012, 35, 976–983. [Google Scholar] [CrossRef] [PubMed]
- Dunstan, D.W.; Dogra, S.; Carter, S.E.; Owen, N. Sit less and move more for cardiovascular health: Emerging insights and opportunities. Nat. Rev. Cardiol. 2021, 18, 637–648. [Google Scholar] [CrossRef]
- Menni, C.; Zhai, G.; MacGregor, A.; Prehn, C.; Römisch-Margl, W.; Suhre, K.; Adamski, J.; Cassidy, A.; Illig, T.; Spector, T.D.; et al. Targeted metabolomics profiles are strongly correlated with nutritional patterns in women. Metabolomics 2013, 9, 506–514. [Google Scholar] [CrossRef]
- Barton, S.; Navarro, S.L.; Buas, M.F.; Schwarz, Y.; Gu, H.; Djukovic, D.; Raftery, D.; Kratz, M.; Neuhouser, M.L.; Lampe, J.W. Targeted plasma metabolome response to variations in dietary glycemic load in a randomized, controlled, crossover feeding trial in healthy adults. Food Funct. 2015, 6, 2949–2956. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Zhang, P.; Zhu, J.; Raftery, D. Globally Optimized Targeted Mass Spectrometry: Reliable Metabolomics Analysis with Broad Coverage. Anal. Chem. 2015, 87, 12355–12362. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Wang, S.; Jasbi, P.; Turner, C.; Hrovat, J.; Wei, Y.; Liu, J.; Gu, H. Database Assisted Globally Optimized Targeted Mass Spectrometry (dGOT-MS): Broad and Reliable Metabolomics Analysis with Enhanced Identification. Anal. Chem. 2019, 91, 13737–13745. [Google Scholar] [CrossRef] [PubMed]
- Mamas, M.; Dunn, W.B.; Neyses, L.; Goodacre, R. The role of metabolites and metabolomics in clinically applicable biomarkers of disease. Arch. Toxicol. 2011, 85, 5–17. [Google Scholar] [CrossRef]
- Zhao, H.; Shen, J.; Djukovic, D.; Daniel-MacDougall, C.; Gu, H.; Wu, X.; Chow, W.-H. Metabolomics-identified metabolites associated with body mass index and prospective weight gain among Mexican American women. Obes. Sci. Pract. 2016, 2, 309–317. [Google Scholar] [CrossRef]
- Jasbi, P.; Baker, O.; Shi, X.; Gonzalez, L.A.; Wang, S.; Anderson, S.; Xi, B.; Gu, H.; Johnston, C.S. Daily red wine vinegar ingestion for eight weeks improves glucose homeostasis and affects the metabolome but does not reduce adiposity in adults. Food Funct. 2019, 10, 7343–7355. [Google Scholar] [CrossRef]
- Patterson, J.; Shi, X.; Bresette, W.; Eghlimi, R.; Atlas, S.; Farr, K.; Vega-López, S.; Gu, H. A Metabolomic Analysis of the Sex-Dependent Hispanic Paradox. Metabolites 2021, 11, 552. [Google Scholar] [CrossRef]
- Parnell, L.D.; Noel, S.E.; Bhupathiraju, S.N.; Smith, C.E.; Haslam, D.E.; Zhang, X.; Tucker, K.L.; Ordovas, J.M.; Lai, C.-Q. Metabolite patterns link diet, obesity, and type 2 diabetes in a Hispanic population. Metabolomics 2021, 17, 88. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.H.; Newgard, C.B. Integrated Metabolomics and Genomics: Systems Approaches to Biomarkers and Mechanisms of Cardiovascular Disease. Circ. Cardiovasc. Genet. 2015, 8, 410. [Google Scholar] [CrossRef] [PubMed]
- Kurland, I.J.; Accili, D.; Burant, C.; Fischer, S.M.; Kahn, B.B.; Newgard, C.B.; Ramagiri, S.; Ronnett, G.V.; Ryals, J.A.; Sanders, M.; et al. Application of combined omics platforms to accelerate biomedical discovery in diabesity. Ann. N. Y. Acad. Sci. 2013, 1287, 1–16. [Google Scholar] [CrossRef]
- Wang, T.J.; Larson, M.G.; Vasan, R.S.; Cheng, S.; Rhee, E.P.; McCabe, E.; Lewis, G.D.; Fox, C.S.; Jacques, P.F.; Fernandez, C.; et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 2011, 17, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Roberts, L.D.; Gerszten, R.E. Toward new biomarkers of cardiometabolic diseases. Cell Metab. 2013, 18, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Abu Bakar, M.H.; Sarmidi, M.R.; Cheng, K.-K.; Khan, A.A.; Suan, C.L.; Huri, H.Z.; Yaakob, H. Metabolomics—The complementary field in systems biology: A review on obesity and type 2 diabetes. Mol. Biosyst. 2015, 11, 1742–1774. [Google Scholar] [CrossRef] [PubMed]
- Newgard, C.B. Metabolomics and Metabolic Diseases: Where Do We Stand? Cell Metab. 2017, 25, 43–56. [Google Scholar] [CrossRef]
- Talavera, G.A.; Castañeda, S.F.; Lopez-Gurrola, M.D.; Alvarez-Malo, A.R.; Hernandez, J.; Estrada, I.; Narayan, U.; Ruetuer, C.; Natarajan, L.; Sears, D.D.; et al. Arriba por la Vida Estudio: A randomized controlled trial promoting standing behavior to reduce sitting time among postmenopausal Latinas. J. Behav. Med. 2024, 47, 782–791. [Google Scholar] [CrossRef] [PubMed]
- Remie, C.M.E.; Janssens, G.E.; Bilet, L.; van Weeghel, M.; Duvivier, B.M.F.M.; de Wit, V.H.W.; Connell, N.J.; Jörgensen, J.A.; Schomakers, B.V.; Schrauwen-Hinderling, V.B.; et al. Sitting less elicits metabolic responses similar to exercise and enhances insulin sensitivity in postmenopausal women. Diabetologia 2021, 64, 2817–2828. [Google Scholar] [CrossRef] [PubMed]
- Meireles, K.; Peçanha, T.; Mazzolani, B.C.; Smaira, F.I.; Rezende, D.; Benatti, F.B.; Ribeiro, A.C.M.; Pinto, A.L.d.S.; Lima, F.R.; Shinjo, S.K.; et al. Acute cardiometabolic effects of brief active breaks in sitting for patients with rheumatoid arthritis. Am. J. Physiol.—Endocrinol. Metab. 2021, 321, E782–E794. [Google Scholar] [CrossRef]
- Fukai, K.; Harada, S.; Iida, M.; Kurihara, A.; Takeuchi, A.; Kuwabara, K.; Sugiyama, D.; Okamura, T.; Akiyama, M.; Nishiwaki, Y.; et al. Metabolic Profiling of Total Physical Activity and Sedentary Behavior in Community-Dwelling Men. PLoS ONE 2016, 11, e0164877. [Google Scholar] [CrossRef] [PubMed]
- Patterson, J.S.; Rana, B.K.; Gu, H.; Sears, D.D. Sitting Interruption Modalities during Prolonged Sitting Acutely Improve Postprandial Metabolome in a Crossover Pilot Trial among Postmenopausal Women. Metabolites 2024, 14, 478. [Google Scholar] [CrossRef] [PubMed]
- Takemoto, M.; Schechtman, M.; Villa, N.; Talavera, G.; Sears, D.D.; Natarajan, L.; Owen, N.; Rosenberg, D.E.; Dunstan, D.; Allison, M.; et al. Arriba por la Vida Estudio (AVE): Study protocol for a standing intervention targeting postmenopausal Latinas. Contemp. Clin. Trials 2019, 79, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Jasbi, P.; Wang, D.; Cheng, S.L.; Fei, Q.; Cui, J.Y.; Liu, L.; Wei, Y.; Raftery, D.; Gu, H. Breast cancer detection using targeted plasma metabolomics. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1105, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Jasbi, P.; Nikolich-Žugich, J.; Patterson, J.; Knox, K.S.; Jin, Y.; Weinstock, G.M.; Smith, P.; Twigg, H.L.; Gu, H. Targeted metabolomics reveals plasma biomarkers and metabolic alterations of the aging process in healthy young and older adults. GeroScience 2023, 45, 3131–3146. [Google Scholar] [CrossRef]
- Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D.S.; Xia, J. MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018, 46, W486–W494. [Google Scholar] [CrossRef]
- Pekas, E.J.; Allen, M.F.; Park, S.Y. Prolonged sitting and peripheral vascular function: Potential mechanisms and methodological considerations. J. Appl. Physiol. 2023, 134, 810–822. [Google Scholar] [CrossRef] [PubMed]
- Fine, K.S.; Wilkins, J.T.; Sawicki, K.T. Circulating Branched Chain Amino Acids and Cardiometabolic Disease. J. Am. Heart Assoc. 2024, 13, e031617. [Google Scholar] [CrossRef]
- Newgard, C.B. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab. 2012, 15, 606–614. [Google Scholar] [CrossRef] [PubMed]
- Vanweert, F.; Schrauwen, P.; Phielix, E. Role of branched-chain amino acid metabolism in the pathogenesis of obesity and type 2 diabetes-related metabolic disturbances BCAA metabolism in type 2 diabetes. Nutr. Diabetes 2022, 12, 35. [Google Scholar] [CrossRef] [PubMed]
- Cuomo, P.; Capparelli, R.; Iannelli, A.; Iannelli, D. Role of Branched-Chain Amino Acid Metabolism in Type 2 Diabetes, Obesity, Cardiovascular Disease and Non-Alcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2022, 23, 4325. [Google Scholar] [CrossRef]
- Gilinsky, M.A.; Polityko, Y.K.; Markel, A.L.; Latysheva, T.V.; Samson, A.O.; Polis, B.; Naumenko, S.E. Norvaline Reduces Blood Pressure and Induces Diuresis in Rats with Inherited Stress-Induced Arterial Hypertension. Biomed. Res. Int. 2020, 2020, 4935386. [Google Scholar] [CrossRef]
- Javrushyan, H.; Nadiryan, E.; Grigoryan, A.; Avtandilyan, N.; Maloyan, A. Antihyperglycemic activity of L-norvaline and L-arginine in high-fat diet and streptozotocin-treated male rats. Exp. Mol. Pathol. 2022, 126, 104763. [Google Scholar] [CrossRef] [PubMed]
- Yako, H.; Niimi, N.; Kato, A.; Takaku, S.; Tatsumi, Y.; Nishito, Y.; Kato, K.; Sango, K. Role of pyruvate in maintaining cell viability and energy production under high-glucose conditions. Sci. Rep. 2021, 11, 18910. [Google Scholar] [CrossRef]
- Zhang, S.; Hulver, M.W.; McMillan, R.P.; Cline, M.A.; Gilbert, E.R. The pivotal role of pyruvate dehydrogenase kinases in metabolic flexibility. Nutr. Metab. 2014, 11, 10. [Google Scholar] [CrossRef]
- Seiler, S.E.; Koves, T.R.; Gooding, J.R.; Wong, K.E.; Stevens, R.D.; Ilkayeva, O.R.; Wittmann, A.H.; DeBalsi, K.L.; Davies, M.N.; Lindeboom, L.; et al. Carnitine Acetyltransferase Mitigates Metabolic Inertia and Muscle Fatigue during Exercise. Cell Metab. 2015, 22, 65–76. [Google Scholar] [CrossRef]
- Owei, I.; Umekwe, N.; Stentz, F.; Wan, J.; Dagogo-Jack, S. Association of plasma acylcarnitines with insulin sensitivity, insulin secretion, and prediabetes in a biracial cohort. Exp. Biol. Med. 2021, 246, 1698. [Google Scholar] [CrossRef]
- Guasch-Ferré, M.; Ruiz-Canela, M.; Li, J.; Zheng, Y.; Bullo, M.; Wang, D.D.; Toledo, E.; Clish, C.; Corella, D.; Estruch, R.; et al. Plasma Acylcarnitines and Risk of Type 2 Diabetes in a Mediterranean Population at High Cardiovascular Risk. J. Clin. Endocrinol. Metab. 2019, 104, 1508–1519. [Google Scholar] [CrossRef] [PubMed]
- Batchuluun, B.; Al Rijjal, D.; Prentice, K.J.; Eversley, J.A.; Burdett, E.; Mohan, H.; Bhattacharjee, A.; Gunderson, E.P.; Liu, Y.; Wheeler, M.B. Elevated medium-chain acylcarnitines are associated with gestational diabetes mellitus and early progression to type 2 diabetes and induce pancreatic β-cell dysfunction. Diabetes 2018, 67, 885–897. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, T.A.; Nguyen, J.C.D.; Polglaze, K.E.; Bertrand, P.P. Influence of Tryptophan and Serotonin on Mood and Cognition with a Possible Role of the Gut-Brain Axis. Nutrients 2016, 8, 56. [Google Scholar] [CrossRef]
- Roth, W.; Zadeh, K.; Vekariya, R.; Ge, Y.; Mohamadzadeh, M. Tryptophan Metabolism and Gut-Brain Homeostasis. Int. J. Mol. Sci. 2021, 22, 2973. [Google Scholar] [CrossRef]
- Gashi, A.I.; Gontarev, S.; Zivkovic, V.; Gjorgovski, I.; Azemi, A. The Effect of Aerobic Physical Activity in Adrenaline Level in White Laboratory Rats. Med. Arch. 2020, 74, 84. [Google Scholar] [CrossRef] [PubMed]
- Zouhal, H.; Jacob, C.; Delamarche, P.; Gratas-Delamarche, A. Catecholamines and the effects of exercise, training and gender. Sport Med. 2008, 38, 401–423. [Google Scholar] [CrossRef] [PubMed]
- Palazzo, E.; Marabese, I.; Ricciardi, F.; Guida, F.; Luongo, L.; Maione, S. The influence of glutamate receptors on insulin release and diabetic neuropathy. Pharmacol. Ther. 2024, 263, 108724. [Google Scholar] [CrossRef] [PubMed]
- Xing, X.; Sun, Q.; Wang, R.; Wang, Y.; Wang, R. Impacts of glutamate, an exercise-responsive metabolite on insulin signaling. Life Sci. 2024, 341, 122471. [Google Scholar] [CrossRef]
- Brosnan, M.E.; Brosnan, J.T. Histidine Metabolism and Function. J. Nutr. 2020, 150 (Suppl. 1), 2570S. [Google Scholar] [CrossRef]
- Ely, M.R.; Ratchford, S.M.; La Salle, D.T.; Trinity, J.D.; Wray, D.W.; Halliwill, J.R. Effect of histamine-receptor antagonism on leg blood flow during exercise. J. Appl. Physiol. 2020, 128, 1626–1634. [Google Scholar] [CrossRef]
- Holeček, M. Histidine in Health and Disease: Metabolism, Physiological Importance, and Use as a Supplement. Nutrients 2020, 12, 848. [Google Scholar] [CrossRef] [PubMed]
Variable | Matched Controls (n = 43) | Best Responders (n = 43) | p-Value | Variable | Matched Controls (n = 43) | Best Responders (n = 43) | p-Value |
---|---|---|---|---|---|---|---|
Age (y) | 64.6 (7.5) | 63.8 (7.2) | 0.61 | VOS (avg) | 3.8 (0.7) | 3.8 (0.6) | 0.81 |
MVPA (min/d) | 48.7 (17.3) | 45.49 (13.1) | 0.34 | IWO (avg) | 3.7 (0.4) | 3.6 (0.4) | 0.29 |
Stepping (min/d) | 89.1 (23.8) | 84.2 (22.0) | 0.32 | CASB (avg) | 4.3 (0.5) | 4.3 (0.6) | 0.85 |
Sitting (min/d) | 527.7 (72.1) | 529.2 (77.5) | 0.93 | VASB (avg) | 2.9 (0.4) | 2.9 (0.5) | 0.87 |
Sit bout duration (min) | 13.0 (3.1) | 13.2 (3.3) | 0.86 | SLEEP (min) | 434.7 (83.9) | 406.4 (110.3) | 0.19 |
Waist Circ. (cm) | 100.1 (11.7) | 99.5 (10.8) | 0.80 | Sleep habits (avg) | 1.7 (0.5) | 1.9 (0.5) | 0.10 |
BMI (kg/m2) | 31.72 (4.86) | 32.20 (4.13) | 0.624 | PSS4 (avg) | 7.14 (2.47) | 7.95 (2.59) | 0.14 |
Education (y) | 10.12 (4.35) | 9.91 (4.51) | 0.827 | GPSS4 (avg) | 6.72 (2.20) | 7.30 (2.42) | 0.246 |
Income ($) | 0.874 | PHQ2 (avg) | 2.40 (0.73) | 3.05 (1.19) | 0.003 | ||
≤15K | 18 (41.9) | 17 (39.5) | BRS6 (avg) | 12.79 (3.05) | 15.12 (3.59) | 0.002 | |
>15K & ≤25K | 9 (20.9) | 12 (27.9) | CESD10 (avg) | 16.79 (2.04) | 18.49 (4.23) | 0.02 | |
>25K & ≤50K | 13 (30.2) | 12 (27.9) | GAD7 (avg) | 8.53 (2.20) | 10.49 (3.34) | 0.002 | |
>50K | 3 (7.0) | 2 (4.7) | LEC (avg) | 5.35 (1.54) | 5.12 (1.68) | 0.505 | |
SPPB score | 9.09 (1.84) | 9.12 (1.35) | 0.947 |
Sitting Behavior Outcomes | Matched Controls Baseline | Matched Controls Change | Best Responders Baseline | Best Responders Change | p-Value | Percent Change |
---|---|---|---|---|---|---|
Sitting time (min/d) | 514.9 (10.4) | 7.1 (9.8) | 526.0 (10.4) | −110.4 (11.0) | <0.0001 | −21% |
Standing time (min/d) | 272.0 (9.7) | −7.8 (9.0) | 261.0 (9.7) | 104.6 (10.1) | <0.0001 | +40% |
Stepping time (min/d) | 90.5 (1.8) | 0.9 (1.3) | 89.8 (1.8) | 6.5 (1.5) | 0.0045 | +7% |
Sitting in 30+ minute bouts (min/d) | 291.4 (11.6) | −4.6 (12.7) | 290.9 (11.5) | −102.3 (13.9) | <0.0001 | −35% |
Sitting bout duration (min/d) | 12.8 (0.5) | 0.3 (0.5) | 12.9 (0.5) | −2.6 (0.5) | <0.0001 | −20% |
MVPA (min/d) | 47.8 (2.7) | 2.5 (2.2) | 45.7 (2.6) | 13.3 (2.2) | 0.0008 | +29% |
Metabolite | p-Value | FDR q-Value | |
---|---|---|---|
Amino Acid Metabolism | |||
Valine | <0.001 | <0.001 | |
Norvaline | <0.001 | <0.001 | |
Histidine | <0.001 | 0.001 | |
Leucine | <0.001 | 0.004 | |
Isoleucine | <0.001 | 0.002 | |
Tyrosine | 0.002 | 0.015 | |
Adenosyl-L-homocysteine | 0.008 | 0.048 | |
Kynurenine | <0.001 | 0.005 | |
5-Hydroxyindoleacetic acid | 0.004 | 0.031 | |
2-Aminoadipic acid | 0.002 | 0.013 | |
Sugar Metabolism | |||
Pyruvate | <0.001 | <0.001 | |
Glucose | <0.001 | 0.003 | |
Fructose | <0.001 | 0.003 | |
Mannose | <0.001 | 0.003 | |
Oxoglutaric acid | 0.002 | 0.013 | |
Lipid Metabolism | |||
Propionyl-L-carnitine | <0.001 | 0.003 | |
2-Methylbutyryl-L-carnitine | 0.008 | 0.048 | |
Isovaleryl-L-carnitine | 0.007 | 0.046 | |
Isobutyric acid | <0.001 | 0.001 | |
2-Methylglutaric acid | <0.001 | 0.003 | |
Other Metabolism | |||
TMAO | <0.001 | 0.007 | |
Epinephrine | 0.005 | 0.036 | |
Acetohydroxamic acid | <0.001 | 0.003 | |
N,N-Dicyclohexylurea | <0.001 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patterson, J.S.; Jasbi, P.; Jin, Y.; Gu, H.; Allison, M.A.; Reuter, C.; Rana, B.K.; Natarajan, L.; Sears, D.D. Metabolome Alterations Associated with Three-Month Sitting-Time Reduction Among Sedentary Postmenopausal Latinas with Cardiometabolic Disease Risk. Metabolites 2025, 15, 75. https://doi.org/10.3390/metabo15020075
Patterson JS, Jasbi P, Jin Y, Gu H, Allison MA, Reuter C, Rana BK, Natarajan L, Sears DD. Metabolome Alterations Associated with Three-Month Sitting-Time Reduction Among Sedentary Postmenopausal Latinas with Cardiometabolic Disease Risk. Metabolites. 2025; 15(2):75. https://doi.org/10.3390/metabo15020075
Chicago/Turabian StylePatterson, Jeffrey S., Paniz Jasbi, Yan Jin, Haiwei Gu, Matthew A. Allison, Chase Reuter, Brinda K. Rana, Loki Natarajan, and Dorothy D. Sears. 2025. "Metabolome Alterations Associated with Three-Month Sitting-Time Reduction Among Sedentary Postmenopausal Latinas with Cardiometabolic Disease Risk" Metabolites 15, no. 2: 75. https://doi.org/10.3390/metabo15020075
APA StylePatterson, J. S., Jasbi, P., Jin, Y., Gu, H., Allison, M. A., Reuter, C., Rana, B. K., Natarajan, L., & Sears, D. D. (2025). Metabolome Alterations Associated with Three-Month Sitting-Time Reduction Among Sedentary Postmenopausal Latinas with Cardiometabolic Disease Risk. Metabolites, 15(2), 75. https://doi.org/10.3390/metabo15020075