Separate and Combined Effects of Moderate-Intensity Exercise Training and Detraining with Protocatechuic Acid (PCA) on Myokines and Insulin-Signaling Pathways in Male Wistar Rats: A Preclinical Randomized Study
Abstract
:1. Introduction
Aim and Objectives
- Model moderate-intensity physical training in male Wistar rats;
- Explore the metabolic alterations that occur during the training period, the transition from the trained state to the detrained state, and the counteracting effect of PCA;
- Compare the impact of training, detraining, and PCA supplementation on insulin-signaling pathways and GLUT-4 expression;
- Assess relationships among studied variables, and find their associations reflecting the mode of training, changes in myokine metabolism, insulin-signaling mechanisms, and PCA supplementation.
2. Materials and Methods
2.1. Study Methodology
2.2. Sample Size Calculations and Animal Care
2.3. Protocatechuic Acid Supplementation
2.4. Determination of Myokines
2.5. Muscle Protein and Insulin-Signaling Pathways Analysis
3. Results
3.1. Modeling Moderate-Intensity Physical Training in Male Wistar Rats
3.2. Muscle Secretions
3.2.1. Insulin-like Growth Factor-1 (IGF-1)
3.2.2. Interleukin (IL)-6
3.2.3. Fibroblast Growth Factor-21 (FGF-21)
3.2.4. Myostatin
3.2.5. Irisin
3.3. Protein Expressions
3.4. Data Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Physical Activity; World Health Organization (WHO): Geneva, Switzerland, 2022; Available online: https://www.who.int/news-room/fact-sheets/detail/physical-activity (accessed on 22 May 2023).
- Magkos, F.; Hjorth, M.F.; Astrup, A. Diet and exercise in the prevention and treatment of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2020, 16, 545–555. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Simpson, L.K.; Carbone, N.P.; Hirshman, M.F.; Nigro, P.; Vamvini, M.; Goodyear, L.J.; Middelbeek, R.J. Moderate-intensity endurance training improves late phase β-cell function in adults with type 2 diabetes. Iscience 2023, 26, 107226. [Google Scholar] [CrossRef] [PubMed]
- Richter, E.A.; Hargreaves, M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol. Rev. 2013, 93, 993–1017. [Google Scholar] [CrossRef]
- Huang, Y.-C.; Sanotra, M.R.; Huang, C.-C.; Hsu, Y.-J.; Liao, C.-C. Aerobic Exercise Modulates Proteomic Profiles in Gastrocnemius Muscle of db/db Mice, Ameliorating Sarcopenia. Life 2024, 14, 412. [Google Scholar] [CrossRef]
- Chibalin, A.V.; Yu, M.; Ryder, J.W.; Song, X.M.; Galuska, D.; Krook, A.; Wallberg-Henriksson, H.; Zierath, J.R. Exercise-induced changes in expression and activity of proteins involved in insulin signal transduction in skeletal muscle: Differential effects on insulin-receptor substrates 1 and 2. Proc. Natl. Acad. Sci. USA 2000, 97, 38–43. [Google Scholar] [CrossRef]
- Shakoor, H.; Kizhakkayil, J.; Khalid, M.; Mahgoub, A.; Platat, C. Effect of moderate-intense training and detraining on glucose metabolism, lipid profile, and liver enzymes in male wistar rats: A preclinical randomized study. Nutrients 2023, 15, 3820. [Google Scholar] [CrossRef] [PubMed]
- Correia, I.R.; Magalhães, J.P.; Júdice, P.B.; Hetherington-Rauth, M.; Freitas, S.P.; Lopes, J.M.; Gama, F.F.; Sardinha, L.B. Breaking-up sedentary behavior and detraining effects on glycemic control: A randomized crossover trial in trained older adults. J. Aging Phys. Act. 2022, 31, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Ai, Z.; Liu, S.; Qu, F.; Zhang, H.; Chen, Y.; Ni, D. Effect of Stereochemical Configuration on the Transport and Metabolism of Catechins from Green Tea across Caco-2 Monolayers. Molecules 2019, 24, 1185. [Google Scholar] [CrossRef]
- Severinsen, M.C.K.; Pedersen, B.K. Muscle–organ crosstalk: The emerging roles of myokines. Endocr. Rev. 2020, 41, 594–609. [Google Scholar] [CrossRef]
- Leuchtmann, A.B.; Adak, V.; Dilbaz, S.; Handschin, C. The role of the skeletal muscle secretome in mediating endurance and resistance training adaptations. Front. Physiol. 2021, 12, 709807. [Google Scholar] [CrossRef]
- Böhm, A.; Hoffmann, C.; Irmler, M.; Schneeweiss, P.; Schnauder, G.; Sailer, C.; Schmid, V.; Hudemann, J.; Machann, J.; Schick, F. TGF-β contributes to impaired exercise response by suppression of mitochondrial key regulators in skeletal muscle. Diabetes 2016, 65, 2849–2861. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, C.; Weigert, C. Skeletal muscle as an endocrine organ: The role of myokines in exercise adaptations. Cold Spring Harb. Perspect. Med. 2017, 7, a029793. [Google Scholar] [CrossRef] [PubMed]
- Hittel, D.S.; Axelson, M.; Sarna, N.; Shearer, J.; Huffman, K.M.; Kraus, W.E. Myostatin decreases with aerobic exercise and associates with insulin resistance. Med. Sci. Sports Exerc. 2010, 42, 2023. [Google Scholar] [CrossRef]
- Cleasby, M.E.; Jarmin, S.; Eilers, W.; Elashry, M.; Andersen, D.K.; Dickson, G.; Foster, K. Local overexpression of the myostatin propeptide increases glucose transporter expression and enhances skeletal muscle glucose disposal. Am. J. Physiol.-Endocrinol. Metab. 2014, 306, E814–E823. [Google Scholar] [CrossRef] [PubMed]
- Ellingsgaard, H.; Hojman, P.; Pedersen, B.K. Exercise and health—Emerging roles of IL-6. Curr. Opin. Physiol. 2019, 10, 49–54. [Google Scholar] [CrossRef]
- Natalicchio, A.; Marrano, N.; Biondi, G.; Spagnuolo, R.; Labarbuta, R.; Porreca, I.; Cignarelli, A.; Bugliani, M.; Marchetti, P.; Perrini, S. The myokine irisin is released in response to saturated fatty acids and promotes pancreatic β-cell survival and insulin secretion. Diabetes 2017, 66, 2849–2856. [Google Scholar] [CrossRef]
- Żebrowska, A.; Sikora, M.; Konarska, A.; Zwierzchowska, A.; Kamiński, T.; Robins, A.; Hall, B. Moderate intensity exercise in hypoxia increases IGF-1 bioavailability and serum irisin in individuals with type 1 diabetes. Ther. Adv. Endocrinol. Metab. 2020, 11, 2042018820925326. [Google Scholar] [CrossRef]
- Shabkhiz, F.; Khalafi, M.; Rosenkranz, S.; Karimi, P.; Moghadami, K. Resistance training attenuates circulating FGF-21 and myostatin and improves insulin resistance in elderly men with and without type 2 diabetes mellitus: A randomised controlled clinical trial. Eur. J. Sport Sci. 2021, 21, 636–645. [Google Scholar] [CrossRef]
- Lee, H.J.; Lee, J.O.; Kim, N.; Kim, J.K.; Kim, H.I.; Lee, Y.W.; Kim, S.J.; Choi, J.-I.; Oh, Y.; Kim, J.H. Irisin, a novel myokine, regulates glucose uptake in skeletal muscle cells via AMPK. Mol. Endocrinol. 2015, 29, 873–881. [Google Scholar] [CrossRef] [PubMed]
- Mashili, F.L.; Austin, R.L.; Deshmukh, A.S.; Fritz, T.; Caidahl, K.; Bergdahl, K.; Zierath, J.R.; Chibalin, A.V.; Moller, D.E.; Kharitonenkov, A. Direct effects of FGF21 on glucose uptake in human skeletal muscle: Implications for type 2 diabetes and obesity. Diabetes/Metab. Res. Rev. 2011, 27, 286–297. [Google Scholar] [CrossRef]
- Cuevas-Ramos, D.; Almeda-Valdés, P.; Meza-Arana, C.E.; Brito-Córdova, G.; Gómez-Pérez, F.J.; Mehta, R.; Oseguera-Moguel, J.; Aguilar-Salinas, C.A. Exercise increases serum fibroblast growth factor 21 (FGF21) levels. PLoS ONE 2012, 7, e38022. [Google Scholar] [CrossRef] [PubMed]
- Abdelmageed, M.E.; Shehatou, G.S.G.; Suddek, G.M.; Salem, H.A. Protocatechuic acid improves hepatic insulin resistance and restores vascular oxidative status in type-2 diabetic rats. Environ. Toxicol. Pharmacol. 2021, 83, 103577. [Google Scholar] [CrossRef]
- Scazzocchio, B.; Varì, R.; Filesi, C.; Del Gaudio, I.; D’Archivio, M.; Santangelo, C.; Iacovelli, A.; Galvano, F.; Pluchinotta, F.R.; Giovannini, C. Protocatechuic acid activates key components of insulin signaling pathway mimicking insulin activity. Mol. Nutr. Food Res. 2015, 59, 1472–1481. [Google Scholar] [CrossRef] [PubMed]
- Masella, R.; Santangelo, C.; D’archivio, M.; LiVolti, G.; Giovannini, C.; Galvano, F. Protocatechuic acid and human disease prevention: Biological activities and molecular mechanisms. Curr. Med. Chem. 2012, 19, 2901–2917. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Chen, X.; Chen, D.; Yu, B.; He, J.; Luo, Y.; Zheng, P.; Chen, H.; Yan, H.; Huang, Z. Effects of protocatechuic acid on antioxidant capacity, mitochondrial biogenesis and skeletal muscle fiber transformation. J. Nutr. Biochem. 2023, 116, 109327. [Google Scholar] [CrossRef] [PubMed]
- Koza, L.A.; Winter, A.N.; Holsopple, J.; Baybayon-Grandgeorge, A.N.; Pena, C.; Olson, J.R.; Mazzarino, R.C.; Patterson, D.; Linseman, D.A. Protocatechuic acid extends survival, improves motor function, diminishes gliosis, and sustains neuromuscular junctions in the hSOD1G93A mouse model of amyotrophic lateral sclerosis. Nutrients 2020, 12, 1824. [Google Scholar] [CrossRef]
- Jia, Y.; Wu, C.; Kim, Y.-S.; Yang, S.O.; Kim, Y.; Kim, J.-S.; Jeong, M.-Y.; Lee, J.H.; Kim, B.; Lee, S.; et al. A dietary anthocyanin cyanidin-3-O-glucoside binds to PPARs to regulate glucose metabolism and insulin sensitivity in mice. Commun. Biol. 2020, 3, 514. [Google Scholar] [CrossRef] [PubMed]
- Kocaman Kalkan, K.; Şen, S.; Narlı, B.; Seymen, C.M.; Yılmaz, C. Effects of quercetin on hepatic fibroblast growth factor-21 (FGF-21) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) levels in rats fed with high fructose. Mol. Biol. Rep. 2023, 50, 4983–4997. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.J.; Son, H.J.; Kim, J.-S.; Jung, C.H.; Ahn, J.; Hur, J.; Ha, T.Y. Coffee consumption promotes skeletal muscle hypertrophy and myoblast differentiation. Food Funct. 2018, 9, 1102–1111. [Google Scholar] [CrossRef] [PubMed]
- González-Hedström, D.; Priego, T.; Amor, S.; de la Fuente-Fernández, M.; Martín, A.I.; López-Calderón, A.; Inarejos-García, A.M.; García-Villalón, Á.L.; Granado, M. Olive leaf extract supplementation to old wistar rats attenuates aging-induced sarcopenia and increases insulin sensitivity in adipose tissue and skeletal muscle. Antioxidants 2021, 10, 737. [Google Scholar] [CrossRef] [PubMed]
- Masodsai, K.; Lin, Y.-Y.; Chaunchaiyakul, R.; Su, C.-T.; Lee, S.-D.; Yang, A.-L. Twelve-Week Protocatechuic Acid Administration Improves Insulin-Induced and Insulin-Like Growth Factor-1-Induced Vasorelaxation and Antioxidant Activities in Aging Spontaneously Hypertensive Rats. Nutrients 2019, 11, 699. [Google Scholar] [CrossRef]
- Chakravarthy, M.V.; Booth, F.W. Eating, exercise, and “thrifty” genotypes: Connecting the dots toward an evolutionary understanding of modern chronic diseases. J. Appl. Physiol. 2004, 96, 3–10. [Google Scholar] [CrossRef]
- Klein, R.G. The Human Career: Human Biological and Cultural Origins; University of Chicago Press: Chicago, IL, USA, 2009. [Google Scholar]
- Freese, J.; Klement, R.J.; Ruiz-Núñez, B.; Schwarz, S.; Lötzerich, H. The sedentary (r) evolution: Have we lost our metabolic flexibility? F1000Research 2018, 6, 1787. [Google Scholar] [CrossRef]
- Kerr, N.R.; Booth, F.W. Contributions of physical inactivity and sedentary behavior to metabolic and endocrine diseases. Trends Endocrinol. Metab. 2022, 33, 817–827. [Google Scholar] [CrossRef]
- Wendorf, M.; Goldfine, I.D. Archaeology of NIDDM: Excavation of the “thrifty” genotype. Diabetes 1991, 40, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Hatakeyama, J.; Inoue, S.; Jiang, H.; Yokoi, R.; Moriyama, H. Exercise-induced interactions between skeletal muscle and bone via myokines and osteokine in mice: Role of FNDC5/irisin, IGF-1, and osteocalcin. Bone 2025, 190, 117314. [Google Scholar] [CrossRef] [PubMed]
- Garneau, L.; Mulvihill, E.E.; Smith, S.R.; Sparks, L.M.; Aguer, C. Myokine Secretion following an Aerobic Exercise Intervention in Individuals with Type 2 Diabetes with or without Exercise Resistance. Int. J. Mol. Sci. 2024, 25, 4889. [Google Scholar] [CrossRef]
- Vakilian, H.; Hossieni, M. The effect of aerobic training and curcumin supplementation on the expression of IGF-1 gene in muscle rat. J. Sports Physiol. Athl. Cond. (JSPAC) 2023, 3, 12–22. [Google Scholar]
- Delioglan, A.; Pancar, Z.; Darendeli, M.K.; Kılıcoğlu, Y.; Ulusal, H.; Dal, M.; Tasdogan, A.M.; Yan, X. The Effect of Curcumin Supplementation on Irisin, Nesfatin-1, and Leptin Levels in Rats Subjected to Treadmill Exercise Long-Term. Ann. Appl. Sport Sci. 2024, e1469, 2322–4479. [Google Scholar] [CrossRef]
- Ghiyami, H.; Afroundeh, R.; Pourvaghar, M.J.P.; Sadeghi, A. The effect of 8 weeks of combined exercises with supplemental consumption of mulberry leaf extract on the serum levels of fibroblast growth factor 21, glucose and insulin in elderly men with type 2 diabetes. Complement. Med. J. 2023, 12, 1–12. [Google Scholar] [CrossRef]
- Arifin, W.N.; Zahiruddin, W.M. Sample size calculation in animal studies using resource equation approach. Malays. J. Med. Sci. MJMS 2017, 24, 101. [Google Scholar] [PubMed]
- Semaming, Y.; Kumfu, S.; Pannangpetch, P.; Chattipakorn, S.C.; Chattipakorn, N. Protocatechuic acid exerts a cardioprotective effect in type 1 diabetic rats. J. Endocrinol. 2014, 223, 13–23. [Google Scholar] [CrossRef] [PubMed]
- El-Sonbaty, Y.A.; Suddek, G.M.; Megahed, N.; Gameil, N.M. Protocatechuic acid exhibits hepatoprotective, vasculoprotective, antioxidant and insulin-like effects in dexamethasone-induced insulin-resistant rats. Biochimie 2019, 167, 119–134. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Tian, H.; Guo, D.; Tian, Q.; Yao, T.; Kong, X. Impacts of exercise intervention on various diseases in rats. J. Sport Health Sci. 2020, 9, 211–227. [Google Scholar] [CrossRef] [PubMed]
- Sabaratnam, R.; Pedersen, A.J.T.; Kristensen, J.M.; Handberg, A.; Wojtaszewski, J.F.P.; Højlund, K. Intact regulation of muscle expression and circulating levels of myokines in response to exercise in patients with type 2 diabetes. Physiol. Rep. 2018, 6, e13723. [Google Scholar] [CrossRef]
- Garneau, L.; Aguer, C. Role of myokines in the development of skeletal muscle insulin resistance and related metabolic defects in type 2 diabetes. Diabetes Metab. 2019, 45, 505–516. [Google Scholar] [CrossRef]
- Oh, K.-J.; Lee, D.S.; Kim, W.K.; Han, B.S.; Lee, S.C.; Bae, K.-H. Metabolic adaptation in obesity and type II diabetes: Myokines, adipokines and hepatokines. Int. J. Mol. Sci. 2017, 18, 8. [Google Scholar] [CrossRef] [PubMed]
- Okuyama, T.; Kyohara, M.; Terauchi, Y.; Shirakawa, J. The roles of the IGF axis in the regulation of the metabolism: Interaction and difference between insulin receptor signaling and IGF-I receptor signaling. Int. J. Mol. Sci. 2021, 22, 6817. [Google Scholar] [CrossRef] [PubMed]
- Pranoto, A.; Wardana, Z.S.; Munir, M.; Kinandita, H.; Merawati, D.; Sugiharto, P.S.R. Treadmill and Ergo cycle Exercises Increase Insulin-Like Growth Factor-1 Levels in Obese Female. J. Hunan Univ. Nat. Sci. 2021, 47, 85–94. [Google Scholar]
- Kido, K.; Ato, S.; Yokokawa, T.; Makanae, Y.; Sato, K.; Fujita, S. Acute resistance exercise-induced IGF 1 expression and subsequent GLUT 4 translocation. Physiol. Rep. 2016, 4, e12907. [Google Scholar] [CrossRef] [PubMed]
- Pal, M.; Febbraio, M.A.; Whitham, M. From cytokine to myokine: The emerging role of interleukin-6 in metabolic regulation. Immunol. Cell Biol. 2014, 92, 331–339. [Google Scholar] [CrossRef]
- Fischer, C.P. Interleukin-6 in acute exercise and training: What is the biological relevance. Exerc. Immunol. Rev. 2006, 12, 41. [Google Scholar]
- Wolsk, E.; Mygind, H.; Grøndahl, T.S.; Pedersen, B.K.; van Hall, G. IL-6 selectively stimulates fat metabolism in human skeletal muscle. Am. J. Physiol.-Endocrinol. Metab. 2010, 299, E832–E840. [Google Scholar] [CrossRef] [PubMed]
- Isanejad, A.; Saraf, Z.H.; Mahdavi, M.; Gharakhanlou, R.; Shamsi, M.M.; Paulsen, G. The effect of endurance training and downhill running on the expression of IL-1β, IL-6, and TNF-α and HSP72 in rat skeletal muscle. Cytokine 2015, 73, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Bilski, J.; Mazur-Bialy, A.I.; Surmiak, M.; Hubalewska-Mazgaj, M.; Pokorski, J.; Nitecki, J.; Nitecka, E.; Pokorska, J.; Targosz, A.; Ptak-Belowska, A. Effect of acute sprint exercise on myokines and food intake hormones in young healthy men. Int. J. Mol. Sci. 2020, 21, 8848. [Google Scholar] [CrossRef] [PubMed]
- Eaton, M.; Granata, C.; Barry, J.; Safdar, A.; Bishop, D.; Little, J.P. Impact of a single bout of high-intensity interval exercise and short-term interval training on interleukin-6, FNDC5, and METRNL mRNA expression in human skeletal muscle. J. Sport Health Sci. 2018, 7, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, B.K.; Åkerström, T.C.A.; Nielsen, A.R.; Fischer, C.P. Role of myokines in exercise and metabolism. J. Appl. Physiol. 2007, 103, 1093–1098. [Google Scholar] [CrossRef]
- Taniguchi, H.; Tanisawa, K.; Sun, X.; Kubo, T.; Higuchi, M. Endurance exercise reduces hepatic fat content and serum fibroblast growth factor 21 levels in elderly men. J. Clin. Endocrinol. 2016, 101, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Zeng, K.; Tian, L.; Patel, R.; Shao, W.; Song, Z.; Liu, L.; Manuel, J.; Ma, X.; McGilvray, I.; Cummins, C.L. Diet polyphenol curcumin stimulates hepatic Fgf21 production and restores its sensitivity in high-fat-diet–fed male mice. Endocrinology 2017, 158, 277–292. [Google Scholar] [CrossRef] [PubMed]
- Masodzade, G.; Barari, A.; Farzanegi, P. Comparing the Effect of High and Moderate Intensity Exercise Trainings and Resveratrol Supplementation on FGF-21 and Cytokeratin-18 in Rats with Nonalcoholic Fatty Liver Disease. J. Maz. Univ. Med. Sci. 2021, 31, 1–11. [Google Scholar]
- Guo, T.; Jou, W.; Chanturiya, T.; Portas, J.; Gavrilova, O.; McPherron, A.C. Myostatin inhibition in muscle, but not adipose tissue, decreases fat mass and improves insulin sensitivity. PLoS ONE 2009, 4, e4937. [Google Scholar] [CrossRef] [PubMed]
- Ko, I.G.; Jeong, J.W.; Kim, Y.H.; Jee, Y.S.; Kim, S.E.; Kim, S.H.; Jin, J.J.; Kim, C.J.; Chung, K.J. Aerobic exercise affects myostatin expression in aged rat skeletal muscles: A possibility of antiaging effects of aerobic exercise related with pelvic floor muscle and urethral rhabdosphincter. Int. Neurourol. J. 2014, 18, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Askarpour Kabir, M.; Kordi, M.; Shabkhiz, F. The effects of two kinds of resistance training and detraining on serum levels of myostatin, cortisol, testosterone and muscle strength of non-athlete men. J. Sport Biosci. 2015, 7, 311–328. [Google Scholar]
- Jespersen, J.G.; Nedergaard, A.; Andersen, L.L.; Schjerling, P.; Andersen, J.L. Myostatin expression during human muscle hypertrophy and subsequent atrophy: Increased myostatin with detraining. Scand. J. Med. Sci. Sports 2011, 21, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Mafi, F.; Biglari, S.; Afousi, A.G.; Gaeini, A.A. Improvement in skeletal muscle strength and plasma levels of follistatin and myostatin induced by an 8-week resistance training and epicatechin supplementation in sarcopenic older adults. J. Aging Phys. Act. 2019, 27, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Schnyder, S.; Handschin, C. Skeletal muscle as an endocrine organ: PGC-1α, myokines and exercise. Bone 2015, 80, 115–125. [Google Scholar] [CrossRef]
- Czarkowska-Paczek, B.; Zendzian-Piotrowska, M.; Gala, K.; Sobol, M.; Paczek, L. One session of exercise or endurance training does not influence serum levels of irisin in rats. J. Physiol. Pharmacol. 2014, 65, 449–454. [Google Scholar]
- Sarah Eckstein, S.; Weigert, C.; Lehmann, R. Divergent roles of IRS (insulin receptor substrate) 1 and 2 in liver and skeletal muscle. Curr. Med. Chem. 2017, 24, 1827–1852. [Google Scholar] [CrossRef] [PubMed]
- Vukovich, M.D.; Arciero, P.J.; Kohrt, W.M.; Racette, S.B.; Hansen, P.A.; Holloszy, J.O. Changes in insulin action and GLUT-4 with 6 days of inactivity in endurance runners. J. Appl. Physiol. 1996, 80, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.H.; Bauman, W.A.; Cardozo, C.P. Myostatin inhibits glucose uptake via suppression of insulin-dependent and-independent signaling pathways in myoblasts. Physiol. Rep. 2018, 6, e13837. [Google Scholar] [CrossRef] [PubMed]
- Trendelenburg, A.U.; Meyer, A.; Rohner, D.; Boyle, J.; Hatakeyama, S.; Glass, D.J. Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am. J. Physiol.-Cell Physiol. 2009, 296, C1258–C1270. [Google Scholar] [CrossRef]
- de Melo Madureira, Á.N.; de Oliveira, J.R.S.; de Menezes Lima, V.L. The Role of IL-6 Released During Exercise to Insulin Sensitivity and Muscle Hypertrophy. Mini Rev. Med. Chem. 2022, 22, 2419–2428. [Google Scholar] [PubMed]
- Steensberg, A.; Febbraio, M.A.; Osada, T.; Schjerling, P.; Van Hall, G.; Saltin, B.; Pedersen, B.K. Interleukin-6 production in contracting human skeletal muscle is influenced by pre-exercise muscle glycogen content. J. Physiol. 2001, 537, 633–639. [Google Scholar] [CrossRef]
- Ikeda, S.-i.; Tamura, Y.; Kakehi, S.; Sanada, H.; Kawamori, R.; Watada, H. Exercise-induced increase in IL-6 level enhances GLUT4 expression and insulin sensitivity in mouse skeletal muscle. Biochem. Biophys. Res. Commun. 2016, 473, 947–952. [Google Scholar] [CrossRef] [PubMed]
- Weigert, C.; Hennige, A.M.; Lehmann, R.; Brodbeck, K.; Baumgartner, F.; Schaüble, M.; Häring, H.U.; Schleicher, E.D. Direct cross-talk of interleukin-6 and insulin signal transduction via insulin receptor substrate-1 in skeletal muscle cells. J. Biol. Chem. 2006, 281, 7060–7067. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.S.; Choi, S.-E.; Ha, E.S.; An, S.-Y.; Kim, T.H.; Han, S.J.; Kim, H.J.; Kim, D.J.; Kang, Y.; Lee, K.-W. Fibroblast growth factor-21 protects human skeletal muscle myotubes from palmitate-induced insulin resistance by inhibiting stress kinase and NF-κB. Metabolism 2012, 61, 1142–1151. [Google Scholar] [CrossRef]
- Shakoor, H.; Hussein, H.; Al-Hassan, N.; Alketbi, M.; Kizhakkayil, J.; Platat, C. The Muscle-Conditioned Medium Containing Protocatechuic Acid Improves Insulin Resistance by Modulating Muscle Communication with Liver and Adipose Tissue. Int. J. Mol. Sci. 2023, 24, 9490. [Google Scholar] [CrossRef] [PubMed]
Factor 1 | Factor 2 | Factor 3 | Factor 4 | Factor 5 | Factor 6 | |
---|---|---|---|---|---|---|
Eigenvalue | 3.177682 | 2.130712 | 1.648920 | 1.450948 | 1.166205 | 1.017794 |
% Total var. | 21.18455 | 14.20475 | 10.99280 | 9.67298 | 7.77470 | 6.78529 |
Cumulative Eigenvalue | 3.17768 | 5.30839 | 6.95731 | 8.40826 | 9.57447 | 10.59226 |
Cumulative % | 21.18455 | 35.38929 | 46.38209 | 56.05508 | 63.82978 | 70.61507 |
Factor Loadings | ||||||
Training duration | 0.467496 | 0.604667 | 0.061130 | −0.093507 | 0.232490 | 0.368406 |
Detraining duration | 0.563920 | 0.150715 | 0.586729 | −0.009279 | 0.175967 | 0.162510 |
PCA | 0.968852 | 0.001756 | −0.058743 | 0.019085 | 0.037452 | 0.005106 |
FGF-21 | −0.069646 | −0.352479 | 0.216256 | −0.161121 | 0.648786 | −0.059321 |
IGF-1 | −0.038731 | 0.735340 | −0.068022 | 0.313606 | −0.142595 | 0.022376 |
IL-6 | 0.204327 | 0.162538 | −0.120818 | 0.054503 | 0.710443 | 0.225555 |
Myostatin | 0.025372 | −0.869641 | 0.031107 | 0.117826 | −0.059805 | 0.020451 |
Irisin | −0.100065 | −0.061525 | −0.063804 | −0.396537 | −0.524290 | 0.027056 |
PI3K | −0.119980 | 0.139276 | 0.025471 | 0.703937 | 0.079711 | 0.155606 |
IRS-1 | 0.243344 | −0.169831 | 0.070690 | 0.635818 | −0.176945 | −0.196094 |
IRS-2 | −0.111179 | 0.359744 | −0.670777 | 0.235372 | −0.076692 | −0.090543 |
GLUT-4 | 0.034674 | 0.036316 | 0.038942 | 0.008295 | 0.022137 | 0.930953 |
P-Akt | 0.160373 | 0.254290 | 0.004893 | −0.273040 | 0.498454 | −0.288243 |
Group | 0.450075 | −0.041752 | −0.772618 | −0.221498 | 0.079374 | 0.047304 |
Expl. Var | 2.788124 | 2.085171 | 1.479985 | 1.386836 | 1.611055 | 1.241089 |
Prp. Totl | 0.185875 | 0.139011 | 0.098666 | 0.092456 | 0.107404 | 0.082739 |
Cluster 1 n = 65 | Cluster 2 n = 78 | Cluster 3 n = 47 | |
---|---|---|---|
Exercise duration | 0.883042 | 0.022045 | −1.257814 |
Detraining duration | 1.199994 | −0.571681 | −0.710818 |
PCA | 0.797392 | −0.414644 | −0.414644 |
FGF-21 | 0.272150 | −0.433520 | 0.343081 |
IGF-1 | 0.021389 | 0.481533 | −0.828721 |
IL-6 | 0.465307 | −0.151049 | −0.392832 |
Myostatin | −0.069604 | −0.649550 | 1.174237 |
Irisin | −0.299198 | 0.109226 | 0.232516 |
PI3K | 0.002155 | 0.037973 | −0.066000 |
IRS-1 | 0.133499 | −0.217289 | 0.175981 |
IRS-2 | −0.380456 | 0.5476708 | −0.382736 |
GLUT-4 | 0.481973 | −0.139146 | −0.435635 |
P-Akt | 0.280464 | 0.027416 | −0.433375 |
Wilks’ Lambda | Partial Lambda | F-Remove (1179) | p-Value | Toler. | 1-Toler. (R-Sqr.) | |
---|---|---|---|---|---|---|
FGF-21 | 0.890687 | 0.972180 | 5.12236 | 0.024820 | 0.747687 | 0.252313 |
IGF-1 | 0.872217 | 0.992767 | 1.30410 | 0.254991 | 0.612676 | 0.387324 |
IL-6 | 0.929458 | 0.931627 | 13.13707 | 0.000377 | 0.790123 | 0.209877 |
Myostatin | 0.867070 | 0.998660 | 0.24027 | 0.624611 | 0.645224 | 0.354776 |
Irisin | 0.866857 | 0.998906 | 0.19606 | 0.658457 | 0.933302 | 0.066698 |
PI3K | 0.866631 | 0.999166 | 0.14935 | 0.699618 | 0.873500 | 0.126501 |
IRS-1 | 0.896774 | 0.965581 | 6.38067 | 0.012404 | 0.879700 | 0.120300 |
IRS-2 | 0.880657 | 0.983252 | 3.04899 | 0.082503 | 0.835026 | 0.164974 |
GLUT-4 | 0.866314 | 0.999531 | 0.08395 | 0.772355 | 0.941397 | 0.058603 |
P-Akt | 0.874549 | 0.990120 | 1.78624 | 0.183081 | 0.915865 | 0.084135 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shakoor, H.; Kizhakkayil, J.; Statsenko, Y.; Platat, C. Separate and Combined Effects of Moderate-Intensity Exercise Training and Detraining with Protocatechuic Acid (PCA) on Myokines and Insulin-Signaling Pathways in Male Wistar Rats: A Preclinical Randomized Study. Metabolites 2025, 15, 87. https://doi.org/10.3390/metabo15020087
Shakoor H, Kizhakkayil J, Statsenko Y, Platat C. Separate and Combined Effects of Moderate-Intensity Exercise Training and Detraining with Protocatechuic Acid (PCA) on Myokines and Insulin-Signaling Pathways in Male Wistar Rats: A Preclinical Randomized Study. Metabolites. 2025; 15(2):87. https://doi.org/10.3390/metabo15020087
Chicago/Turabian StyleShakoor, Hira, Jaleel Kizhakkayil, Yauhen Statsenko, and Carine Platat. 2025. "Separate and Combined Effects of Moderate-Intensity Exercise Training and Detraining with Protocatechuic Acid (PCA) on Myokines and Insulin-Signaling Pathways in Male Wistar Rats: A Preclinical Randomized Study" Metabolites 15, no. 2: 87. https://doi.org/10.3390/metabo15020087
APA StyleShakoor, H., Kizhakkayil, J., Statsenko, Y., & Platat, C. (2025). Separate and Combined Effects of Moderate-Intensity Exercise Training and Detraining with Protocatechuic Acid (PCA) on Myokines and Insulin-Signaling Pathways in Male Wistar Rats: A Preclinical Randomized Study. Metabolites, 15(2), 87. https://doi.org/10.3390/metabo15020087