Exploring the Antineoplastic Properties of the Lebanese Jania rubens against Colorectal Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Macroalgae
2.2. Preparation of Extract
2.2.1. Lipids Extraction
2.2.2. Proteins Extraction
2.2.3. Polysaccharides Extraction
2.3. Total Sulfate Content and Fourier Transform Infrared Spectroscopy (FT-IR) Analysis
2.4. Cell Lines and Culture Conditions
2.5. MTT Cell Viability Assay
2.6. Trypan Blue Test
2.7. Wound-Healing Scratch Assay
2.8. Cell Cycle Analysis
2.9. Chemicals
2.10. Statistical Analysis
3. Results
3.1. The Cytotoxic Activity of J. rubens Extracts on Human Colon Cancer Cells
3.1.1. Polysaccharide Extracts Reduce the Viability of HCT-116 Cells and HT-29 Cells
3.1.2. Protein Extracts Reduce the Viability of HT-29 and HCT-116 Cells
3.1.3. Lipid Extracts Reduce the Viability of HT-29 and HCT-116 Cells
3.2. The Anti-Migratory Effect of J. rubens Extracts on Colon Cancer Cell Lines
3.2.1. J. rubens Polysaccharide Extracts Prevent the Migration of Colon Cancer Cells
3.2.2. J. rubens Protein Extracts Prevent the Migration of Colon Cancer Cells
3.3. Cell Cycle Disruption of Colon Cancer Cells by Polysaccharide Extracts
3.4. FT-IR Analysis of Polysaccharide Extract and Total Content of Sulfate
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fitzmaurice, C.; Allen, C.; Barber, R.M.; Barregard, L.; Bhutta, Z.A.; Brenner, H.; Dicker, D.J.; Chimed-Orchir, O.; Dandona, R.; Dandona, L. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: A systematic analysis for the global burden of disease study. JAMA Oncol. 2017, 3, 524–548. [Google Scholar] [PubMed]
- Khachfe, H.H.; Salhab, H.A.; Fares, M.Y.; Khachfe, H.M. Current state of hypertrophic cardiomyopathy clinical trials. Glob. Heart 2019, 14, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Wild, C.P. The global cancer burden: Necessity is the mother of prevention. Nat. Rev. Cancer 2019, 19, 123–124. [Google Scholar] [CrossRef]
- Mabate, B.; Daub, C.D.; Pletschke, B.I.; Edkins, A.L. Comparative analyses of fucoidans from south african brown seaweeds that inhibit adhesion, migration, and long-term survival of colorectal cancer cells. Mar. Drugs 2023, 21, 203. [Google Scholar] [CrossRef]
- Khachfe, H.H.; Rahal, Z.; Sammouri, J.; Kheil, M.; Baydoun, H.; Chatila, D.; Dirawi, H.; Fouad, F.M. Cancer in lebanon: A review of incidence rates from 2008 to 2015 and projections till 2025. South Asian J. Cancer 2020, 9, 147–152. [Google Scholar] [CrossRef]
- Salhab, H.A.; Fares, M.Y.; Khachfe, H.H.; Khachfe, H.M. Epidemiological study of lung cancer incidence in lebanon. Medicina 2019, 55, 217. [Google Scholar] [CrossRef]
- Fares, M.Y.; Salhab, H.A.; Khachfe, H.H.; Khachfe, H.M. Breast cancer epidemiology among lebanese women: An 11-year analysis. Medicina 2019, 55, 463. [Google Scholar] [CrossRef]
- Charafeddine, M.A.; Olson, S.H.; Mukherji, D.; Temraz, S.N.; Abou-Alfa, G.K.; Shamseddine, A.I. Proportion of cancer in a middle eastern country attributable to established risk factors. BMC Cancer 2017, 17, 1–11. [Google Scholar] [CrossRef]
- Lakkis, N.A.; El-Kibbi, O.; Osman, M.H. Colorectal cancer in lebanon: Incidence, temporal trends, and comparison to regional and western countries. Cancer Control 2021, 28, 1073274821996869. [Google Scholar] [CrossRef]
- Cotas, J.; Pacheco, D.; Gonçalves, A.M.; Silva, P.; Carvalho, L.G.; Pereira, L. Seaweeds’ nutraceutical and biomedical potential in cancer therapy: A concise review. J. Cancer Metastasis Treat. 2021, 7, 13. [Google Scholar] [CrossRef]
- Huang, M.; Lu, J.-J.; Ding, J. Natural products in cancer therapy: Past, present and future. Nat. Prod. Bioprospecting 2021, 11, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Saadaoui, I.; Rasheed, R.; Abdulrahman, N.; Bounnit, T.; Cherif, M.; Al Jabri, H.; Mraiche, F. Algae-derived bioactive compounds with anti-lung cancer potential. Mar. Drugs 2020, 18, 197. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.-M.; Aweya, J.J.; Liu, X.; Liu, Y.; Tang, S.; Zhang, W.; Cheong, K.-L. Bioactive polysaccharides from red seaweed as potent food supplements: A systematic review of their extraction, purification, and biological activities. Carbohydr. Polym. 2022, 275, 118696. [Google Scholar] [CrossRef]
- Al Monla, R.; Salma, Y.; Kouzayha, A.; Gali-Muhtasib, H.; Dassouki, Z.; Mawlawi, H. Antioxidative, cytotoxic, and anti-metastatic potentials of laurencia obtusa and ulva lactuca seaweeds. Asian Pac. J. Trop. Biomed. 2021, 11, 308–316. [Google Scholar] [CrossRef]
- Mehra, R.; Bhushan, S.; Bast, F.; Singh, S. Marine macroalga caulerpa: Role of its metabolites in modulating cancer signaling. Mol. Biol. Rep. 2019, 46, 3545–3555. [Google Scholar] [CrossRef]
- Yun, C.W.; Kim, H.J.; Lee, S.H. Therapeutic application of diverse marine-derived natural products in cancer therapy. Anticancer. Res. 2019, 39, 5261–5284. [Google Scholar] [CrossRef]
- Han, N.; Li, J.; Li, X. Natural marine products: Anti-colorectal cancer in vitro and in vivo. Mar. Drugs 2022, 20, 349. [Google Scholar] [CrossRef]
- Barbalace, M.C.; Malaguti, M.; Giusti, L.; Lucacchini, A.; Hrelia, S.; Angeloni, C. Anti-inflammatory activities of marine algae in neurodegenerative diseases. Int. J. Mol. Sci. 2019, 20, 3061. [Google Scholar] [CrossRef]
- Thomas, N.V.; Ghafour, D.D.; Diyya, A.S.M.; Ismail, R.R.; Jalal, L.K. Antibacterial effects of the organic crude extracts of freshwater algae of sulaymaniyah, kurdistan region, iraq. J. Med. Plants Res. 2021, 15, 178–187. [Google Scholar]
- Frassini, R.; Steffens, D.; Moura, S.; Aguzzoli, C.; Martins, A.P.; Colepicolo, P.; Fujii, M.T.; Yokoya, N.S.; De Pereira, C.M.P.; Phillipus, A.C. Desmarestia anceps montagne (phaeophyceae) against colorectal cancer cells: Cytotoxic activity and proapoptotic effects. Adv. Biol. Chem. 2022, 12, 228–245. [Google Scholar] [CrossRef]
- Carpena, M.; García-Pérez, P.; García-Oliveira, P.; Chamorro, F.; Otero, P.; Lourenço-Lopes, C.; Cao, H.; Simal-Gandara, J.; Prieto, M. Biological properties and potential of compounds extracted from red seaweeds. Phytochem. Rev. 2023, 22, 1509–1540. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, B.; Ki, J.-S. Biological activity of algal derived carrageenan: A comprehensive review in light of human health and disease. Int. J. Biol. Macromol. 2023, 124085. [Google Scholar] [CrossRef] [PubMed]
- Gordalina, M.; Pinheiro, H.M.; Mateus, M.; da Fonseca, M.M.R.; Cesário, M.T. Macroalgae as protein sources—A review on protein bioactivity, extraction, purification and characterization. Appl. Sci. 2021, 11, 7969. [Google Scholar] [CrossRef]
- Cunha, S.A.; Pintado, M.E. Bioactive peptides derived from marine sources: Biological and functional properties. Trends Food Sci. Technol. 2022, 119, 348–370. [Google Scholar] [CrossRef]
- Ismail, M.M.; Alotaibi, B.S.; El-Sheekh, M.M. Therapeutic uses of red macroalgae. Molecules 2020, 25, 4411. [Google Scholar] [CrossRef]
- Hentati, F.; Tounsi, L.; Djomdi, D.; Pierre, G.; Delattre, C.; Ursu, A.V.; Fendri, I.; Abdelkafi, S.; Michaud, P. Bioactive polysaccharides from seaweeds. Molecules 2020, 25, 3152. [Google Scholar] [CrossRef]
- Zhang, L.-X.; Cai, C.-E.; Guo, T.-T.; Gu, J.-W.; Xu, H.-L.; Zhou, Y.; Wang, Y.; Liu, C.-C.; He, P.-M. Anti-cancer effects of polysaccharide and phycocyanin from porphyra yezoensis. J. Mar. Sci. Technol. 2011, 19, 6. [Google Scholar] [CrossRef]
- Anand, J.; Sathuvan, M.; Babu, G.V.; Sakthivel, M.; Palani, P.; Nagaraj, S. Bioactive potential and composition analysis of sulfated polysaccharide from acanthophora spicifera (vahl) borgeson. Int. J. Biol. Macromol. 2018, 111, 1238–1244. [Google Scholar] [CrossRef]
- Shao, P.; Chen, X.; Sun, P. In vitro antioxidant and antitumor activities of different sulfated polysaccharides isolated from three algae. Int. J. Biol. Macromol. 2013, 62, 155–161. [Google Scholar] [CrossRef]
- Bhuyan, P.P.; Nayak, R.; Patra, S.; Abdulabbas, H.S.; Jena, M.; Pradhan, B. Seaweed-derived sulfated polysaccharides; the new age chemopreventives: A comprehensive review. Cancers (Basel) 2023, 15, 715. [Google Scholar] [CrossRef] [PubMed]
- Rifi, M.; Radwan, Z.; AlMonla, R.; Fajloun, Z.; Sabatier, J.M.; Kouzayha, A.; El-Sabban, M.; Mawlawi, H.; Dassouki, Z. The lebanese red algae jania rubens: Promising biomolecules against colon cancer cells. Molecules 2022, 27, 6617. [Google Scholar] [CrossRef]
- Torres, P.B.; Nagai, A.; Jara, C.E.P.; Santos, J.P.; Chow, F.; Santos, D.Y.A.C.d. Determination of sulfate in algal polysaccharide samples: A step-by-step protocol using microplate reader. Ocean Coast. Res. 2021, 69, e21021. [Google Scholar] [CrossRef]
- Ji, C.F.; Ji, Y.B.; Meng, D.Y. Sulfated modification and anti-tumor activity of laminarin. Exp. Ther. Med. 2013, 6, 1259–1264. [Google Scholar] [CrossRef]
- Mouradi, A.; Chikhaoui-Khay, M.; Akki, S.A.; Akallal, R.; Hrrimle, I.; Givernaud, T. Analyse structurale des fractions polysaccharidiques extraites de laparoi cellulaire d’hypnea musciformis (rhodophyceae, gigartinales). Afr. Sci. Rev. Int. Sci. Technol. 2006, 2. [Google Scholar] [CrossRef]
- Amimi, A.; Mouradi, A.; Givernaud, T.; Chiadmi, N.; Lahaye, M. Structural analysis of gigartina pistillata carrageenans (gigartinaceae, rhodophyta). Carbohydr. Res. 2001, 333, 271–279. [Google Scholar] [CrossRef]
- Rochas, C.; Lahaye, M.; Yaphe, W. Sulfate content of carrageenan and agar determined by infrared spectroscopy. Bot. Mar. 1986, 29, 335–340. [Google Scholar] [CrossRef]
- Martínez-Ruiz, M.; Martínez-González, C.A.; Kim, D.-H.; Santiesteban-Romero, B.; Reyes-Pardo, H.; Villaseñor-Zepeda, K.R.; Meléndez-Sánchez, E.R.; Ramírez-Gamboa, D.; Díaz-Zamorano, A.L.; Sosa-Hernández, J.E. Microalgae bioactive compounds to topical applications products—A review. Molecules 2022, 27, 3512. [Google Scholar] [CrossRef]
- Kumari, A.; Garima; Bharadvaja, N. A comprehensive review on algal nutraceuticals as prospective therapeutic agent for different diseases. 3 Biotech. 2023, 13, 44. [Google Scholar] [CrossRef]
- Lajili, S.; Ammar, H.H.; Mzoughi, Z.; Amor, H.B.H.; Muller, C.D.; Majdoub, H.; Bouraoui, A. Characterization of sulfated polysaccharide from laurencia obtusa and its apoptotic, gastroprotective and antioxidant activities. Int. J. Biol. Macromol. 2019, 126, 326–336. [Google Scholar] [CrossRef]
- Matloub, A.A.; Aglan, H.A.; El Souda, S.S.M.; Aboutabl, M.E.; Maghraby, A.S.; Ahmed, H.H. Influence of bioactive sulfated polysaccharide-protein complexes on hepatocarcinogenesis, angiogenesis and immunomodulatory activities. Asian Pac. J. Trop. Med. 2016, 9, 1200–1211. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Xu, J.; Xu, X. Bioactivity of fucoidan extracted from laminaria japonica using a novel procedure with high yield. Food Chem. 2018, 245, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Jose, G.M.; Kurup, G.M. Sulfated polysaccharides from padina tetrastromatica arrest cell cycle, prevent metastasis and downregulate angiogenic mediators in hela cells. Bioact. Carbohydr. Diet. Fibre 2017, 12, 7–13. [Google Scholar] [CrossRef]
- Ghannam, A.; Murad, H.; Jazzara, M.; Odeh, A.; Allaf, A.W. Isolation, structural characterization, and antiproliferative activity of phycocolloids from the red seaweed laurencia papillosa on mcf-7 human breast cancer cells. Int. J. Biol. Macromol. 2018, 108, 916–926. [Google Scholar] [CrossRef]
- Gheda, S.; El-Sheekh, M.; Abou-Zeid, A. In vitro anticancer activity of polysaccharide extracted from red alga jania rubens against breast and colon cancer cell lines. Asian Pac. J. Trop. Med. 2018, 11, 583–589. [Google Scholar]
- Morais, A.M.; Alves, A.; Kumla, D.; Morais, R.M. Pharmaceutical and biomedical potential of sulphated polysaccharides from algae. In Polysaccharides of Microbial Origin: Biomedical Applications; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–28. [Google Scholar]
- Kanaan, H.; Belous, O.; Chokr, A. Diversity investigation of the seaweeds growing on the lebanese coast. J. Mar. Sci. Res. Dev. 2015, 5, 1. [Google Scholar]
- Sunarwidhi Prasedya, E.; Miyake, M.; Kobayashi, D.; Hazama, A. Carrageenan delays cell cycle progression in human cancer cells in vitro demonstrated by fucci imaging. BMC Complement. Altern. Med. 2016, 16. [Google Scholar]
- Ling, N. Growth inhibition and cell cycle arrest of kappa-selenocarrageenan and paclitaxel on hepg2 cells. Adv. Mater. Res. 2012, 343, 530–534. [Google Scholar] [CrossRef]
- Raman, M.; Doble, M. Κ-carrageenan from marine red algae, kappaphycus alvarezii–a functional food to prevent colon carcinogenesis. J. Funct. Foods 2015, 15, 354–364. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, T.; Yang, Y.; Meng, F.; Zhan, F.; Jiang, Q.; Sun, X. Anti-cancer activity of porphyran and carrageenan from red seaweeds. Molecules 2019, 24, 4286. [Google Scholar] [CrossRef]
- Wali, A.F.; Majid, S.; Rasool, S.; Shehada, S.B.; Abdulkareem, S.K.; Firdous, A.; Beigh, S.; Shakeel, S.; Mushtaq, S.; Akbar, I.; et al. Natural products against cancer: Review on phytochemicals from marine sources in preventing cancer. Saudi Pharm. J. 2019, 27, 767–777. [Google Scholar] [CrossRef]
- Alves, C.; Silva, J.; Pinteus, S.; Gaspar, H.; Alpoim, M.C.; Botana, L.M.; Pedrosa, R. From marine origin to therapeutics: The antitumor potential of marine algae-derived compounds. Front. Pharmacol. 2018, 9, 777. [Google Scholar] [CrossRef]
In Vitro Cytotoxicity IC50 (µg/mL) | ||
---|---|---|
Extracts | HCT-116 | HT-29 |
Polysaccharides | 324.7 | 272.1 |
Proteins | 389.4 | 382.8 |
Lipids | 588.5 | 627.7 |
Wound Healing % (Polysaccharides) 24 h | ||
---|---|---|
Concetration (µg/mL) | HCT-116 | HT-29 |
0 | 35.55 | 27.88 |
100 | 19.87 | 7.12 |
250 | 19.48 | 6.36 |
500 | 15.78 | 5.07 |
750 | 13.35 | 4.57 |
Wound Healing % (Proteins) 24 h | ||
---|---|---|
Concetration (µg/mL) | HCT-116 | HT-29 |
0 | 33.67 | 30.28 |
100 | 11.35 | 15.38 |
250 | 10.72 | 12.04 |
500 | 7.90 | 9.18 |
750 | 6.60 | 5.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rifi, M.; Radwan, Z.; Sari-Chmayssem, N.; Kassir, R.; Fajloun, Z.; Abdel Rahman, A.; El-Sabban, M.; Prévostel, C.; Dassouki, Z.; Mawlawi, H. Exploring the Antineoplastic Properties of the Lebanese Jania rubens against Colorectal Cancer. Metabolites 2025, 15, 90. https://doi.org/10.3390/metabo15020090
Rifi M, Radwan Z, Sari-Chmayssem N, Kassir R, Fajloun Z, Abdel Rahman A, El-Sabban M, Prévostel C, Dassouki Z, Mawlawi H. Exploring the Antineoplastic Properties of the Lebanese Jania rubens against Colorectal Cancer. Metabolites. 2025; 15(2):90. https://doi.org/10.3390/metabo15020090
Chicago/Turabian StyleRifi, Mariam, Zeina Radwan, Nouha Sari-Chmayssem, Rayan Kassir, Ziad Fajloun, Abir Abdel Rahman, Marwan El-Sabban, Corinne Prévostel, Zeina Dassouki, and Hiba Mawlawi. 2025. "Exploring the Antineoplastic Properties of the Lebanese Jania rubens against Colorectal Cancer" Metabolites 15, no. 2: 90. https://doi.org/10.3390/metabo15020090
APA StyleRifi, M., Radwan, Z., Sari-Chmayssem, N., Kassir, R., Fajloun, Z., Abdel Rahman, A., El-Sabban, M., Prévostel, C., Dassouki, Z., & Mawlawi, H. (2025). Exploring the Antineoplastic Properties of the Lebanese Jania rubens against Colorectal Cancer. Metabolites, 15(2), 90. https://doi.org/10.3390/metabo15020090