Breath Analysis in Disease Diagnosis: Methodological Considerations and Applications
Abstract
:1. Introduction
2. Techniques for Breath Analysis
Analytical Method | Mode of operation | Limit of detection (LOD) | Sensitivity | Specificity |
---|---|---|---|---|
SIFT-MS | Direct/Real time | ppbv | High | High |
PTR-MS | Direct/Real time | pptv | High | Medium-High |
IMS | Real-time | ppbv | Medium | Medium |
Sensor arrays | Reference to a database | ppbv | Medium | Medium |
GC-MS | Pre-concentration | pptv-ppbv | Very-high | Very-high |
LAS | Real-time | ppbv | High | High |
2.1. SIFT-MS
2.2. PTR-MS
2.3. Electronic Noses and Semiconductor-Based Sensor Arrays
3. The Challenge behind the Method
3.1. Mouth- vs. Nose-Exhaled Breath
3.2. Physiological Levels of Volatiles
3.2.1. Common Breath Metabolites
3.2.2. Age Influence/Gender
3.2.3. Influence of Food
3.2.4. Ovulation
3.3. Exposure to Volatile Compounds
Smoking and Air Contaminants
4. Sampling and Analysis
4.1. End-Tidal and Alveolar Breath
4.2. Dilution and Contamination
4.3. Sampling of Single or Multiple Breaths
4.4. Storage and Stability of Breath Samples
- Transparent or black Tedlar bags (PTFE-polytetrafluoroethylene)
- Flexfoil bags (PET/NY/AL/CPE-polyethylene terephthalate/nylon/aluminium foil/chlorinated polyethylene)
- Nalophan bags (PET-polyethylene terephthalate)
- Glass vials (for SPME)
- Thermal desorption tubes (different adsorbents, used in TD GC-MS)
- Micropacked sorbent traps
- Metal canisters
4.5. Physiological Parameters
5. Disease Diagnosis
5.1. Volatile Biomarkers
5.1.1. Lung Cancer
5.1.2. Colorectal Cancer
5.1.3. Breast Cancer
5.1.4. Liver Disease
5.1.5. Infectious Diseases–Tuberculosis
5.1.6. Food Intolerances
6. Clinical Studies
6.1. Diabetes Mellitus
7. Biomarkers vs. Biomarker Profiles
8. Breath Test as a Clinical Diagnostic
9. Concluding Remarks
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Risby, T.H. Current status of clinical breath analysis. In Breath Analysis for Clinical Diagnosis and Therapeutic Monitoring; World Scientific: Tuck Link, Singapore, 2005; pp. 251–265. [Google Scholar]
- Smith, D.; Španěl, P. Application of ion chemistry and the SIFT technique to the quantitative analysis of trace gases in air and on breath. Int. Rev. Phys. Chem. 1996, 15, 231–271. [Google Scholar] [CrossRef]
- Jordan, A.; Hansel, A.; Holzinger, R.; Lindinger, W. Acetonitrile and benzene in the breath of smokers and non-smokers investigated by proton transfer reaction mass spectrometry (PTR-MS). Int. J. Mass Spectrom. 1995, 148, L1–L3. [Google Scholar] [CrossRef]
- Phillips, M.; Gleeson, K.; Hughes, J.; Greenberg, J.; Cataneo, R.N.; Baker, L.; McVay, P. Volatile organic compounds in breath as markers of lung cancer: A cross-sectional study. Lancet 1999, 353, 1930–1933. [Google Scholar] [CrossRef]
- Lacy Costello, B.; Amann, A.; Al-Kateb, H.; Flynn, C.; Filipiak, W.; Khalid, T.; Osborne, D.; Ratcliffe, N.M. A review of the volatiles from the healthy human body. J. Breath Res. 2014, 8, 1–29. [Google Scholar]
- Smith, D.; Španěl, P. The challenge of breath analysis for clinical diagnosis and therapeutic monitoring. Analyst 2007, 132, 390–396. [Google Scholar] [CrossRef]
- Phillips, M.; Cataneo, R.N.; Ditkoff, B.A.; Fisher, P.; Greenberg, J.; Gunawardena, R.; Kwon, C.S.; Tietje, O.; Wong, C. Prediction of breast cancer using volatile biomarkers in the breath. Breast Cancer Res. Treat. 2006, 99, 1–3. [Google Scholar] [CrossRef]
- Phillips, M.; Cataneo1, R.N.; Saunders, C.; Hope, P.; Schmitt, P.; Wai, J. Volatile biomarkers in the breath of women with breast cancer. J. Breath Res. 2010, 4, 1–8. [Google Scholar]
- Smith, D.; Španěl, P.; Herbig, J.; Beauchamp, J. Mass spectrometry for real-time quantitative breath analysis. J. Breath Res. 2014. [Google Scholar] [CrossRef]
- Borsdorf, H.; Eiceman, G.A. Ion mobility spectrometry: Principles and applications. Appl. Spec. Rev. 2006, 41, 323–375. [Google Scholar] [CrossRef]
- Ruzsanyi, V.; Mochalski, P.; Schmid, A.; Wiesenhofer, H.; Klieber, M.; Hinterhuber, H.; Amann, A. Ion mobility spectrometry for detection of skin volatiles. J. Chromatogr. B 2012, 911, 84–92. [Google Scholar] [CrossRef]
- Westhoff, M.; Litterst, P.; Freitag, L.; Urfer, W.; Bader, S.; Baumbach, J.I. Ion mobility spectrometry for the detection of volatile organic compounds in exhaled breath of patients with lung cancer: Results of a pilot study. Thorax 2009, 64, 744–748. [Google Scholar] [CrossRef]
- Perl, T.; Carstens, E.; Hirn, A.; Quintel, M.; Vautz, W.; Nolte, J.; Jünger, M. Determination of serum propofol concentrations by breath analysis using ion mobility spectrometry. Br. J. Anaesth. 2009, 103, 822–827. [Google Scholar] [CrossRef]
- McCurdy, M.; Bakhirkin, Y.; Wysocki, G.; Lewicki, R.; Tittel, F.K. Recent advances of laser-spectroscopy- based techniques for applications in breath analysis. J. Breath Res. 2007, 1, 1–12. [Google Scholar]
- Vaittinen, O.; Manfred Schmidt, F.; Metsala, M.; Halonen, L. Exhaled breath biomonitoring using laser spectroscopy. Curr. Anal. Chem. 2013, 9, 463–475. [Google Scholar] [CrossRef]
- Adams, N.G.; Smith, D. The Selected Ion Flow Tube (SIFT): A technique for studying thermal energy ion-neutral reactions. Int. J. Mass. Spectrom. Ion Phys. 1976, 21, 349–359. [Google Scholar] [CrossRef]
- Smith, D.; Adams, N.G. The Selected Ion Flow Tube (SIFT): Studies of ion-neutral reactions. Adv. Atom. Mol. Phys. 1987, 24, 1–49. [Google Scholar] [CrossRef]
- Smith, D. The ion chemistry of interstellar clouds. Chem. Rev. 1992, 92, 1473–1485. [Google Scholar] [CrossRef]
- Španěl, P.; Smith, D. Selected ion flow tube: A technique for quantitative trace gas analysis of air and breath. Med. Biol. Eng. Comput. 1996, 34, 409–419. [Google Scholar] [CrossRef]
- Smith, D.; Španěl, P. The novel selected-ion flow tube approach to trace gas analysis of air and breath. Rapid. Commun. Mass Spectrom. 1996, 10, 1183–1198. [Google Scholar] [CrossRef]
- Španěl, P.; Rolfe, P.; Rajant, B.; Smith, D. The selected ion flow tube (SIFT)—A novel technique for biological monitoring. Ann. Occup. Hyg. 1996, 40, 615–626. [Google Scholar] [CrossRef]
- Španěl, P.; Smith, D. Selected ion flow tube mass spectrometry for on-line trace gas analysis in biology and medicine. Eur. J. Mass. Spectrom. 2007, 13, 77–82. [Google Scholar] [CrossRef]
- Smith, D.; Španěl, P. Selected ion flow tube mass spectrometry (SIFT-MS) for on-line trace gas analysis. Mass. Spectrom. Rev. 2005, 24, 661–700. [Google Scholar] [CrossRef]
- Smith, D.; Sovová, K.; Španěl, P. A selected ion flow tube study of the reactions of H3O+, NO+ and O2+• with seven isomers of hexanol in support of SIFT-MS. Int. J. Mass Spectrom. 2012, 25–30. [Google Scholar] [CrossRef]
- Španěl, P.; Smith, D. Progress in SIFT-MS: Breath Analysis and other applications. Mass. Spectrom. Rev. 2011, 30, 236–267. [Google Scholar] [CrossRef]
- Španěl, P.; Smith, D. Advances in on-line absolute trace gas analysis by SIFT-MS. Curr. Anal. Chem. 2013, 9, 525–539. [Google Scholar] [CrossRef]
- Lindinger, W.; Hansel, A.; Jordan, A. On-line monitoring of volatile organic compounds at pptv levels by means of Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) Medical applications, food control and environmental research. Int. J. Mass Spectrom. Ion Processes 1998, 173, 191–241. [Google Scholar] [CrossRef]
- Jordan, A.; Haidacher, S.; Hanel, G.; Hartungen, E.; Herbig, J.; Märk, L.; Schottkowsky, R.; Seehauser, H.; Sulzer, P.; Märk, T.D. An online ultra-high sensitivity Proton-transfer-reaction mass-spectrometer combined with switchable reagent ion capability (PTR + SRI-MS). Int. J. Mass Spectrom. 2009, 286, 32–38. [Google Scholar] [CrossRef]
- Herbig, J.; Müller, M.; Schallhart, S.; Titzmann, T.; Graus, M.; Hansel, A. On-line breath analysis with PTR-TOF. J. Breath Res. 2009, 3, 1–10. [Google Scholar]
- Jordan, A.; Haidacher, S.; Hanel, G.; Hartungen, E.; Märk, L.; Seehauser, H.; Schottkowsky, R.; Sulzer, P.; Märk, T.D. A high resolution and high sensitivity proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS). Int. J. Mass Spectrom. 2009, 286, 122–128. [Google Scholar] [CrossRef]
- Beauchamp, J.; Herbig, J.; Dunkl, J.; Singer, W.; Hansel, A. On the performance of proton-transfer-reaction mass spectrometry for breath-relevant gas matrices. Meas. Sci. Technol. 2013, 24, 1–13. [Google Scholar]
- Hewitt, C.N.; Hayward, S.; Tani, A. The application of proton transfer reaction-mass spectrometry (PTR-MS) to the monitoring and analysis of volatile organic compounds in the atmosphere. J. Environ. Monit. 2003, 5, 1–7. [Google Scholar] [CrossRef]
- Herbig, J.; Amann, A. Proton transfer reaction-mass spectrometry applications in medical research. J. Breath Res. 2009, 3, 1–2. [Google Scholar]
- Shurmer, H.; Fard, A.; Barker, J.; Bartlett, P.; Dodd, G.; Hayat, U. Development of an electronic nose. Phys. Technol. 1987, 18, 170–176. [Google Scholar] [CrossRef]
- Li, B.; Sauvé, G.; Iovu, M.; Jeffries-EL, M.; Zhang, R.; Cooper, J.; Santhanam, S.; Schultz, L.; Revelli, J.; Kusne, A.; et al. Volatile organic compound detection using nanostructured copolymers. Nano Lett. 2006, 6, 1598–1602. [Google Scholar]
- Amann, A.; Smith, D. Volatile Biomarkers Non-Invasive Diagnosis in Physiology and Medicine; Elsevier: Oxford, UK, 2013. [Google Scholar]
- Righettoni, M.; Tricoli, A.; Gass, S.; Schmid, A.; Amann, A.; Pratsinis, S. Breath acetone monitoring by portable Si:WO3 gas sensors. Anal. Chim. Acta 2012, 738, 69–75. [Google Scholar] [CrossRef]
- Pauling, L.; Robinson, A.B.; Teranishi, R.; Cary, P. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proc. Nat. Acad. Sci. USA 1971, 68, 2374–2376. [Google Scholar] [CrossRef]
- Miekisch, W.; Schubert, J.K.; Noeldge-Schomburg, G. Diagnostic potential of breath analysis—focus on volatile organic compounds. Clin. Chim. Acta 2004, 347, 25–39. [Google Scholar] [CrossRef]
- Smith, D.; Turner, C.; Španěl, P. Volatile metabolites in the exhaled breath of healthy volunteers: Their levels and distributions. J. Breath Res. 2007, 1, 1–12. [Google Scholar]
- Buszewski, B.; Kesy, M.; Ligor, T.; Amann, A. Human exhaled air analytics: Biomarkers of diseases. Biomed. Chromatogr. 2007, 21, 553–566. [Google Scholar] [CrossRef]
- Phillips, M.; Greenberg, J.; Sabas, M. Alveolar gradient of pentane in normal human breath. Free Radic. Res. 1994, 20, 333–337. [Google Scholar] [CrossRef]
- Schubert, J.K.; Miekisch, W.; Birken, T.; Geiger, K.; Noeldge-Schomburg, G. Impact of inspired substance concentrations on the results of breath analysis in mechanically ventilated patients. Biomarkers 2005, 10, 138–152. [Google Scholar] [CrossRef]
- Španěl, P.; Dryahina, K.; Smith, D. A quantitative study of the influence of inhaled compounds on their concentrations in exhaled breath. J. Breath Res. 2013, 7, 1–10. [Google Scholar]
- Phillips, M.; Cataneo, R.N.; Greenberg, J.; Munawar, M.I.; Nachnani, S.; Samtani, S. Pilot study of a breath test for volatile organic compounds associated with oral malodor: Evidence for the role of oxidative stress. Oral Dis. 2005, 11, 32–34. [Google Scholar] [CrossRef]
- Wang, T.; Pysanenko, A.; Dryahina, K.; Španěl, P. Analysis of breath, exhaled via the mouth and nose, and the air in the oral cavity. J. Breath Res. 2008, 2, 1–13. [Google Scholar]
- Smith, D.; Wang, T.; Pysanenko, A.; Španěl, P. A selected ion flow tube mass spectrometry study of ammonia in mouth- and nose-exhaled breath and in the oral cavity. Rapid Commun. Mass Spectrom. 2008, 22, 783–789. [Google Scholar] [CrossRef]
- Pysanenko, A.; Spaněl, P.; Smith, D. A study of sulfur-containing compounds in mouth- and nose-exhaled breath and in the oral cavity using selected ion flow tube mass spectrometry. J. Breath Res. 2008, 2, 1–13. [Google Scholar]
- Khalid, T.Y.; Saad, S.; Greenman, J.; Costello, B.L.; Probert, C.S.J.; Ratcliffe, N.M. Volatiles from oral anaerobes confounding breath biomarker discovery. J. Breath Res. 2013, 7, 1–12. [Google Scholar]
- Španěl, P.; Turner, C.; Wang, T.; Bloor, R.; Smith, D. Generation of volatile compounds on mouth exposure to urea and sucrose: Implications for exhaled breath analysis. Physiol. Meas. 2006, 27, N7–N17. [Google Scholar] [CrossRef]
- Amann, A.; Miekisch, W.; Pleil, J.; Risby, T.; Schubert, J.K. Methodological issues of sample collection and analysis of exhaled breath. In Exhal. Biomark; European Respiratory Society: Plymouth, UK, 2010; pp. 96–107. [Google Scholar]
- Ulanowska, A.; Kowalkowski, T.; Hrynkiewicz, K.; Jackowskic, M.; Buszewskia, B. Determination of volatile organic compounds in human breath for Helicobacter pylori detection by SPME-GC/MS. Biomed. Chromatogr. 2011, 25, 391–397. [Google Scholar] [CrossRef]
- Smith, D.; Pysanenko, A.; Španěl, P. Kinetics of ethanol decay in mouth- and nose-exhaled breath measured on-line by selected ion flow tube mass spectrometry following varying doses of alcohol. Rapid Commun. Mass Spectrom. 2010, 24, 1066–1074. [Google Scholar] [CrossRef]
- Španěl, P.; Smith, D. On-line measurement of the absolute humidity of air, breath and liquid headspace samples by selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 2001, 15, 563–569. [Google Scholar] [CrossRef]
- Diskin, A.M.; Španěl, P.; Smith, D. Time variation of ammonia, acetone, isoprene and ethanol in breath: A quantitative SIFT-MS study over 30 days. Physiol. Meas. 2003, 24, 107–119. [Google Scholar] [CrossRef]
- Turner, C.; Španěl, P.; Smith, D. A longitudinal study of methanol in the exhaled breath of 30 healthy volunteers using selected ion flow tube mass spectrometry, SIFT-MS. Physiol. Meas. 2006, 27, 637–648. [Google Scholar] [CrossRef]
- Turner, C.; Španěl, P.; Smith, D. A longitudinal study of ammonia, acetone and propanol in the exhaled breath of 30 subjects using selected ion flow tube mass spectrometry, SIFT-MS. Physiol. Meas. 2006, 27, 321–337. [Google Scholar] [CrossRef]
- Turner, C.; Španěl, P.; Smith, D. A longitudinal study of breath isoprene in healthy volunteers using selected ion flow tube mass spectrometry (SIFT-MS). Physiol. Meas. 2006, 27, 13–22. [Google Scholar]
- Turner, C.; Španěl, P.; Smith, D. A longitudinal study of ethanol and acetaldehyde in the exhaled breath of healthy volunteers using selected-ion flow-tube mass spectrometry. Rapid Commun. Mass Spectrom. 2006, 20, 61–68. [Google Scholar] [CrossRef]
- Turner, C.; Parekh, B.; Walton, C.; Španěl, P.; Smith, D.; Evans, M. An exploratory comparative study of volatile compounds in exhaled breath and emitted by skin using selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 2008, 22, 526–532. [Google Scholar] [CrossRef]
- Kalapos, M.P. On the mammalian acetone metabolism: From chemistry to clinical implications. Biochim. Biophys. Acta 2003, 1621, 122–139. [Google Scholar]
- Lindinger, W.; Taucher, J.; Jordan, A.; Hansel, A.; Vogel, W. Endogenous production of methanol after the consumption of fruit. Alcohol Clin. Exp. Res. 1997, 21, 939–943. [Google Scholar] [CrossRef]
- Smith, D.; Wang, T.; Španěl, P. On-line, simultaneous quantification of ethanol, some metabolites and water vapour in breath following the ingestion of alcohol. Physiol. Meas. 2002, 23, 477–489. [Google Scholar] [CrossRef]
- Hyspler, R.; Crhova, S.; Gasparic, J.; Zadak, Z.; Cizkova, M.; Balasova, V. Determination of isoprene in human expired breath using solid-phase microextraction and gas chromatography-mass spectrometry. J. Chromatogr. B 2000, 739, 183–190. [Google Scholar] [CrossRef]
- Lirk, P.; Bodrogi, P.; Raifer, H.; Greiner, K.; Ulmer, H.; Rieder, J. Elective haemodialysis increases exhaled isoprene. Nephrol. Dial. Transpl. 2003, 18, 937–941. [Google Scholar] [CrossRef]
- King, J.; Koc, H.; Unterkofler, K.; Mochalski, P.; Kupferthaler, A.; Teschl, G.; Teschl, S.; Hinterhuber, H.; Amann, A. Physiological modeling of isoprene dynamics in exhaled breath. J. Theor. Biol. 2010, 267, 626–637. [Google Scholar] [CrossRef]
- Enderby, B.; Lenney, W.; Brady, M.; Emmett, C.; Španěl, P.; Smith, D. Concentrations of some metabolites in the breath of healthy children aged 7–18 years measured using selected ion flow tube mass spectrometry (SIFT-MS). J. Breath Res. 2009, 3, 1–11. [Google Scholar]
- Pöschl, G.; Seitz, H.K. Alcohol and cancer. Alcohol Alcsm 2004, 39, 155–165. [Google Scholar] [CrossRef]
- Taucher, J.; Hansel, A.; Jordan, A.; Fall, R.; Futrell, J.H.; Lindinger, W. Detection of isoprene in expired air from human subjects using proton-transfer-reaction mass spectrometry. Rapid. Commun. Mass Spectrom. 1997, 11, 1230–1234. [Google Scholar] [CrossRef]
- Lechner, M.; Moser, B.; Niederseer, D.; Karlseder, A.; Holzknecht, B.; Fuchs, M.; Colvin, S.; Tilg, H.; Rieder, J. Gender and age specific differences in exhaled isoprene levels. J. Respir. Physiol. Neurobiol. 2006, 154, 478–483. [Google Scholar] [CrossRef]
- Španěl, P.; Dryahina, K.; Smith, D. Acetone, ammonia and hydrogen cyanide in exhaled breath of several volunteers aged 4–83 years. J. Breath Res. 2007, 1, 1–4. [Google Scholar]
- Smith, D.; Španěl, P.; Enderby, B.; Lenney, W.; Turner, C.; Davies, S.J. Isoprene levels in the exhaled breath of 200 healthy pupils within the age range 7–18 years studied using SIFT-MS. J. Breath Res. 2010, 4, 1–7. [Google Scholar]
- Španěl, P.; Smith, D. Selected ion flow tube–mass spectrometry: detection and real-time monitoring of flavours released by food products. Rapid Commun. Mass Spectrom. 1999, 13, 585–596. [Google Scholar] [CrossRef]
- Winkler, K.; Herbig, J.; Kohl, I. Real-time metabolic monitoring with proton transfer reaction mass spectrometry. J. Breath Res. 2013, 7, 1–8. [Google Scholar]
- Taucher, J.; Hansel, A.; Jordan, A.; Lindinger, W. Analysis of compounds in human breath after ingestion of garlic using proton-transfer-reaction mass spectrometry. J. Agric. Food Chem. 1996, 44, 3778–3782. [Google Scholar] [CrossRef]
- Diskin, A.M.; Španěl, P.; Smith, D. Increase of acetone and ammonia in urine headspace and breath during ovulation quantified using selected ion flow tube mass spectrometry. Physiol. Meas. 2003, 24, 191–199. [Google Scholar] [CrossRef]
- Smith, D.; Ismail, K.; Diskin, A.M.; Chapman, G.; Magnay, J.; Španěl, P.; O’Brien, S. Increase of acetone emitted by urine in relation to ovulation. Acta Obstet. Gynecol. 2006, 85, 1008–1011. [Google Scholar] [CrossRef]
- 78. Abbott, S.M.; Elder, J.B.; Španěl, P.; Smith, D. Quantification of acetonitrile in exhaled breath and urinary headspace using selected ion flow tube mass spectrometry. Int. J. Mass Spectrom. 2003, 228, 655–665. [Google Scholar] [CrossRef]
- Buszewski, B.; Ulanowska, A.; Ligor, T.; Denderz, N.; Amann, A. Analysis of exhaled breath from smokers, passive smokers and non-smokers by solid-phase microextraction gas chromatography/mass spectrometry. Biomed. Chromatogr. 2009, 23, 551–556. [Google Scholar] [CrossRef]
- Prazeller, P.; Karl, T.; Jordan, A.; Holzinger, R.; Hansel, A.; Lindinger, W. Quantification of passive smoking using proton-transfer-reaction mass spectrometry. Int. J. Mass Spectrom. 1998, 178, L1–L4. [Google Scholar] [CrossRef]
- Habib, M.P.; Clements, N.C.; Garewal, H.S. Cigarette smoking and ethane exhalation in humans. Am. J. Respir. Crit. Care Med. 1995, 151, 1368–1372. [Google Scholar] [CrossRef]
- Kushch, I.; Schwarz, K.; Schwentner, L.; Baumann, B.; Dzien, A.; Schmid, A.; Unterkofler, K.; Gastl, G.; Španěl, P.; Smith, D.; et al. Compounds enhanced in a mass spectrometric profile of smokers’ exhaled breath vs. non-smokers as determined in a pilot study using PTR-MS. J. Breath Res. 2008, 2, 1–26. [Google Scholar]
- Sandberg, A.; Skold, C.M.; Grunewald, J.; Eklund, A.; Wheelock, A.M. Assessing recent smoking status by measuring exhaled carbon monoxide levels. PLoS One 2011, 6, 1–7. [Google Scholar]
- Beauchamp, J. Inhaled today, not gone tomorrow: Pharmacokinetics and environmental exposure of volatiles in exhaled breath. J. Breath Res. 2011, 5, 1–14. [Google Scholar] [CrossRef]
- Steerenberg, P.A.; Nierkens, S.; van Loveren, H.; van Amsterdam, J.G.C. A simple method to sample exhaled NO not contaminated by ambient NO from children and adults in epidemiological studies. Nitric Oxide 2000, 4, 168–174. [Google Scholar] [CrossRef]
- Pleil, J.; Lindstrom, A.B. Sample timing and mathematical considerations for modeling breath elimination of volatile organic compounds. Risk Anal. 1998, 18, 585–602. [Google Scholar] [CrossRef]
- Society, A.T. Recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide in adults and children-1999. Am. J. Respir. Crit. Care Med. 1999, 160, 2104–2117. [Google Scholar] [CrossRef]
- Society, A.T. ATS/ERS Recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am. J. Respir. Crit. Care Med. 2005, 171, 912–930. [Google Scholar] [CrossRef]
- Horváth, I.; Hunt, J.; Barnes, P.J. Exhaled breath condensate: Methodological recommendations and unresolved questions. Eur. Respir. J. 2005, 26, 523–548. [Google Scholar] [CrossRef]
- Beauchamp, J.; Pleil, J. Simply breath-taking? Developing a strategy for consistent breath sampling. J. Breath Res. 2013, 7, 1–3. [Google Scholar]
- Gilchrist, F.J.; Razavi, C.; Webb, A.K.; Jones, A.M.; Spaněl, P.; Smith, D.; Lenney, W. An investigation of suitable bag materials for the collection and storage of breath samples containing hydrogen cyanide. J. Breath Res. 2012, 6, 1–7. [Google Scholar]
- Anderson, J.; Babb, A.; Hlastala, M.P. Modeling soluble gas exchange in the airways and Alveoli. Ann. Biomed. Eng. 2003, 31, 1402–1422. [Google Scholar] [CrossRef]
- Levitt, M.; Ellis, C.; Furne, J. Influence of method of alveolar air collection on results of breath tests. Dig. Dis. Sci. 1998, 43, 1938–1945. [Google Scholar] [CrossRef]
- Anderson, J.; Hlastala, M. Breath tests and airway gas exchange. Pulm. Pharmacol. Ther. 2007, 20, 112–117. [Google Scholar] [CrossRef]
- Herbig, J.; Titzmann, T.; Beauchamp, J.; Kohl, I.; Hansel, A. Buffered end-tidal (BET) sampling—A novel method for real-time breath-gas analysis. J. Breath Res. 2008, 2, 1–9. [Google Scholar]
- Di Francesco, F.; Loccioni, C.; Fioravanti, M.; Russo, A.; Pioggia, G.; Ferro, M.; Roehrer, I.; Tabucchi, S.; Onor, M. Implementation of Fowler’s method for end-tidal air sampling. J. Breath Res. 2008, 2, 1–9. [Google Scholar]
- Fowler, W.S. Lung function studies: II. The respiratory dead space. Am. J. Physiol. 1948, 154, 405–416. [Google Scholar]
- Dubowski, K.M. Biological aspects of breath-alcohol analysis. Clin. Chem. 1974, 20, 294–299. [Google Scholar]
- Schubert, J.K.; Spittler, K.H.; Braun, G.; Geiger, K.; Guttmann, J. CO2-controlled sampling of alveolar gas in mechanically ventilated patients. J. Appl. Physiol. 2001, 90, 486–492. [Google Scholar]
- Birken, T.; Schubert, J.; Miekisch, W.; Nӧldge-Schomburg, G. A novel visually CO2 controlled alveolar breath sampling technique. Technol. Health Care 2006, 14, 499–506. [Google Scholar] [CrossRef] [Green Version]
- Filipiak, W.; Filipiak, A.; Ager, C.; Wiesenhofer, H.; Amann, A. Optimization of sampling parameters for collection and preconcentration of alveolar air by needle traps. J. Breath Res. 2012, 6, 1–19. [Google Scholar]
- Cope, K.A.; Watson, M.T.; Foster, W.M.; Sehnert, S.S.; Risby, T.H. Effects of ventilation on the collection of exhaled breath in humans. J. Appl. Physiol. 2004, 96, 1371–1379. [Google Scholar] [CrossRef]
- Anderson, J.; Lamm, W.; Hlastala, M. Measuring airway exchange of endogenous acetone using a single-exhalation breathing maneuver. J. Appl. Physiol. 2006, 100, 880–889. [Google Scholar] [CrossRef]
- O’Hara, M.E.; O’Hehir, S.; Green, S.; Mayhew, C.A. Development of a protocol to measure volatile organic compounds in human breath: A comparison of rebreathing and on-line single exhalations using proton transfer reaction mass spectrometry. Physiol. Meas. 2008, 29, 309–330. [Google Scholar] [CrossRef]
- King, J.; Unterkofler, K.; Teschl, S.; Mochalski, P.; Koc, H.; Hinterhuber, H.; Amann, A. A modeling-based evaluation of isothermal rebreathing for breath gas analyses of highly soluble volatile organic compounds. J. Breath Res. 2012, 6, 1–10. [Google Scholar]
- Mochalski, P.; King, J.; Unterkofler, K.; Amann, A. Stability of selected volatile breath constituents in Tedlar, Kynar and Flexfilm sampling bags. Analyst 2013, 138, 1405–1418. [Google Scholar] [CrossRef]
- Beauchamp, J.; Herbig, J.; Gutmann, R. On use of Tedlar bags for breath-gas sampling and analysis. J. Breath Res. 2008, 2, 1–18. [Google Scholar]
- Mochalski, P.; Wzorek, B.; Sliwka, I.; Amann, A. Suitability of different polymer bags for storage of volatile sulphur compounds relevant to breath analysis. J. Chromatogr. B 2009, 877, 189–196. [Google Scholar] [CrossRef]
- Van Harreveld, A. Odor concentration decay and stability in gas sampling bags. J. Air Waste Manage. Assoc. 2003, 53, 51–60. [Google Scholar] [CrossRef]
- Groves, W.; Zellers, E. Investigation of organic vapor losses to condensed water vapor in Tedlar bags used for exhaled-breath sampling. Am. Ind. Hyg. Assoc. J. 1996, 57, 257–263. [Google Scholar] [CrossRef]
- Trefz, P.; Rösner, L.; Hein, D.; Schubert, J.K.; Miekisch, W. Evaluation of needle trap micro-extraction and automatic alveolar sampling for point-of-care breath analysis. Anal. Bioanal. Chem. 2013, 405, 3105–3115. [Google Scholar] [CrossRef]
- Greger, R.; Windhorst, U. Pulmonary Gas Exchange. In Comprehensive Human Physiology; Springer-Verlag: Berlin, Germany, 1996; Volume 2, pp. 2037–2049. [Google Scholar]
- Schubert, R.; Schwoebel, H.; Mau-Moeller, A.; Behrens, M.; Fuchs, P.; Sklorz, M.; Schubert, J.K.; Bruhn, S.; Miekisch, W. Metabolic monitoring and assessment of anaerobic threshold by means of breath biomarkers. Metabolomics 2012, 8, 1069–1080. [Google Scholar] [CrossRef]
- King, J.; Unterkofler, K.; Teschl, G.; Teschl, S.; Koc, H.; Hinterhuber, H.; Amann, A. A mathematical model for breath gas analysis of volatile organic compounds with special emphasis on acetone. J. Math. Biol. 2011, 63, 959–999. [Google Scholar] [CrossRef]
- King, J.; Unterkofler, K.; Teschl, S.; Mochalski, P.; Koc, H.; Hinterhuber, H.; Amann, A. Isoprene and acetone concentration profiles during exercise on an ergometer. J. Breath Res. 2009, 6, 1–11. [Google Scholar]
- Karl, T.; Prazeller, P.; Mayr, D.; Jordan, A.; Rieder, J.; Fall, R.; Lindinger, W. Human breath isoprene and its relation to blood cholesterol levels: New measurements and modeling. J. Appl. Physiol. 2001, 91, 762–770. [Google Scholar]
- Smith, D.; Chippendale, W.E.T.; Dryahina, K.; Španěl, P. SIFT-MS analysis of nose-exhaled breath; mouth contamination and the influence of exercise. Curr. Anal. Chem. 2013, 9, 565–575. [Google Scholar] [CrossRef]
- Smith, D.; Wang, T.; Sulé-Suso, J.; Španěl, P.; Haj, A.E. Quantification of acetaldehyde released by lung cancer cells in vitro using selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 2003, 17, 845–850. [Google Scholar] [CrossRef]
- Filipiak, W.; Sponring, A.; Mikoviny, T.; Ager, C.; Schubert, J.K.; Miekisch, W.; Amann, A.; Troppmair, J. Release of volatile organic compounds (VOCs) from the lung cancer cell line CALU-1 in vitro. Cancer Cell Int. 2008, 8, 1–11. [Google Scholar]
- Rutter, A.; Chippendale, W.E.T.; Yang, Y.; Španěl, P.; Smith, D.; Sulé-Suso, J. Quantification by SIFT-MS of acetaldehyde released by lung cells in a 3D model. Analyst 2013, 138, 91–95. [Google Scholar] [CrossRef]
- Cummings, J.H.; Bingham, S.A. Dietary fibre, fermentation and large bowel cancer. Cancer Surv. 1987, 6, 601–621. [Google Scholar]
- Van Munster, I.P.; Nagengast, F.M. The role of carbohydrate fermentation in colon-cancer prevention. Scand. J. Gastroenterol. Suppl. 1993, 28, 80–86. [Google Scholar]
- Windey, K.; Preter, V.; Verbeke, K. Relevance of protein fermentation to gut health. Mol. Nutr. Food Res. 2012, 56, 184–196. [Google Scholar] [CrossRef]
- Larsson, S.; Wolk, A. Meat consumption and risk of colorectal cancer: A meta-analysis of prospective studies. Int. J. Cancer 2006, 119, 2657–2664. [Google Scholar] [CrossRef]
- Ajibola, O.A.; Smith, D.; Španěl, P.; Ferns, G.A.A. Effects of dietary nutrients on volatile breath metabolites. J. Nutr. Sci. 2013, 2, 1–15. [Google Scholar] [CrossRef]
- Musa-Veloso, K.; Likhodii, S.; Cunnane, S. Breath acetone is a reliable indicator of ketosis in adults consuming ketogenic meals. Am. J. Clin. Nutr. 2002, 76, 65–70. [Google Scholar]
- Mckay, L.; Eastwood, M.A.; Brydon, M.G. Methane excretion in man-A study of breath, flatus, and faeces. Gut 1985, 26, 69–74. [Google Scholar] [CrossRef]
- Bond, J.H.; Levitt, M.D. Use of pulmonary hydrogen (H2) measurements to quantitate carbohydrate malabsorption: Study of partially gastrectomized patients. J. Clin. Invest. 1972, 51, 1219–1225. [Google Scholar] [CrossRef]
- Lacy Costello, B.; Ledochowski, M.; Ratcliffe, N.M. The importance of methane breath testing: A review. J. Breath Res. 2013, 7, 1–8. [Google Scholar]
- Pryde, S.E.; Duncan, S.H.; Hold, G.L.; Stewart, C.S.; Flint, H.J. The microbiology of butyrate formation in the human colon. FEMS Microbiol. Lett. 2002, 217, 133–139. [Google Scholar] [CrossRef]
- McIntyre, A.; Gibson, P.R.; Young, G.P. Butyrate production from dietary fibre and protection against large bowel cancer in a rat model. Gut 1993, 34, 386–391. [Google Scholar] [CrossRef]
- Schmidt, F.M.; Metsälä, M.; Vaittinen, O.; Halonen, L. Background levels and diurnal variations of hydrogen cyanide in breath and emitted from skin. J. Breath Res. 2011, 5, 1–10. [Google Scholar]
- Altomare, D.F.; Lena, M.D.; Porcelli, F.; Trizio, L.; Travaglio, E.; Tutino, M.; Dragonieri, S.; Memeo, V.; Gennaro, G. Exhaled volatile organic compounds identify patients with colorectal cancer. Br. J. Surg. 2013, 100, 144–150. [Google Scholar] [CrossRef]
- Moore, J.G.; Jessop, L.D.; Osborne, D.N. Gas-chromatographic and mass-spectrometric analysis of the odor of human feces. Gastroenterology 1987, 93, 1321–1329. [Google Scholar]
- Hietanen, E.; Bartsch, H.; Béréziat, J.C.; Camus, A.M.; McClinton, S.; Eremin, O.; Davidson, L.; Boyle, P. Diet and oxidative stress in breast, colon and prostate cancer patients: A case-control study. Eur. J. Clin. Nutr. 1994, 48, 575–586. [Google Scholar]
- Phillips, M.; Cataneo, R.N.; Ditkoff, B.; Fisher, P.; Greenberg, J.; Gunawardena, R.; Kwon, C.S.; Rahbari-Oskoui, F.; Wong, C. Volatile markers of breast cancer in the breath. Breast J. 2003, 9, 184–191. [Google Scholar] [CrossRef]
- Van den Velde, S.; Nevens, S.; van Hee, P.; van Steenberghe, D.; Quirynen, M. GC-MS analysis of breath odor compounds in liver patients. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2008, 875, 344–348. [Google Scholar] [CrossRef]
- Morisco, F.; Aprea, E.; Lembo, V.; Fogliano, V.; Vitaglione, P.; Mazzone, G.; Cappellin, L.; Gasperi, F.; Masone, S.; Domenico de Palma, G.; et al. Rapid “breath-print” of liver cirrhosis by proton transfer reaction time-of-flight mass spectrometry. A pilot study. PLoS One 2013, 8, 1–9. [Google Scholar]
- Khalid, T.Y.; Lacy Costello, B.; Ewen, R.; White, P.; Stevens, S.; Gordon, F.; Collins, P.; McCune, A.; Shenoy, A.; Shetty, S.; et al. Breath volatile analysis from patients diagnosed with harmful drinking, cirrhosis and hepatic encephalopathy: A pilot study. Metabolomics 2013, 9, 938–948. [Google Scholar] [CrossRef]
- Phillips, M.; Cataneo, R.N.; Condosc, R.; Ring Ericksond, G.; Greenberga, J.; Bombardie, V.; Munawar, M.; Tietje, O. Volatile biomarkers of pulmonary tuberculosis in the breath. Tuberculosis 2007, 87, 44–52. [Google Scholar] [CrossRef]
- Syhre, M.; Manning, L.; Phuanukoonnon, S.; Harino, P.; Chambers, S.T. The scent of Mycobacterium tuberculosis–Part II breath. Tuberculosis 2009, 89, 263–266. [Google Scholar] [CrossRef]
- Hryniuk, A.; Ross, B.M. A preliminary investigation of exhaled breath from patients with celiac disease using selected ion flow tube mass spectrometry. J. Gastrointestin. Liver Dis. 2010, 19, 15–20. [Google Scholar]
- Aprea, E.; Cappellin, L.; Gasperi, F.; Morisco, F.; Lembo, V.; Rispo, A.; Tortora, R.; Vitaglione, P.; Caporaso, N.; Biasioli, F. Application of PTR-TOF-MS to investigate metabolites in exhaled breath of patients affected by coeliac disease under gluten free diet. J. Chromatogr. B 2014. [Google Scholar] [CrossRef]
- Lechner, M.; Colvin, H.P.; Ginzel, C.; Lirk, P.; Rieder, J.; Tilg, H. Headspace screening of fluid obtained from the gut during colonoscopy and breath analysis by proton transfer reaction-mass spectrometry: A novel approach in the diagnosis of gastro-intestinal diseases. Int. J. Mass Spectrom. 2005, 243, 151–154. [Google Scholar] [CrossRef]
- Dryahina, K.; Španěl, P.; Pospíšilová, V.; Sovová, K.; Hrdlička, L.; Machková, M.; Smith, D. Quantification of pentane in exhaled breath, a potential biomarker of bowel disease, using selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 2013, 27, 1983–1992. [Google Scholar]
- Crofford, O.B.; Mallard, R.E.; Winton, R.E.; Rogers, N.L.; Jackson, J.C.; Keller, U. Acetone in breath and blood. Trans. Am. Clin. Climatol. Assoc. 1977, 88, 128–139. [Google Scholar]
- Reichard, G.A., Jr.; Skutches, C.L.; Hoeldtke, R.D.; Owen, O.E. Acetone Metabolism in Humans during diabetic ketoacidosis. Diabetes 1986, 35, 668–674. [Google Scholar] [CrossRef]
- Smith, D.; Španěl, P.; Fryer, A.; Hanna, F.; Ferns, G. Can volatile compounds in exhaled breath be used to monitor control in diabetes mellitus? J. Breath Res. 2011, 5, 1–8. [Google Scholar]
- Manolis, A. The diagnostic potential of breath analysis. Clin. Chem. 1983, 29, 5–15. [Google Scholar]
- Deng, C.; Zhang, J.; Yu, X.; Zhang, W.; Zhang, X. Determination of acetone in human breath by gas chromatography–mass spectrometry and solid-phase microextraction with on-fiber derivatization. J. Chromatogr. B 2004, 810, 269–275. [Google Scholar] [CrossRef]
- Španěl, P.; Dryahina, K.; Rejskova, A.; Chippendale, W.E.T.; Smith, D. Breath acetone concentration; bilogical variability and the influence of diet. Physiol. Meas. 2011, 32, 23–31. [Google Scholar]
- Schwarz, K.; Pizzini, A.; Arendack, B.; Zerlauth, K.; Filipiak, W.; Schmid, A.; Dzien, A.; Neuner, S.; Lechleitner, M.; Scholl-Bürgi, S.; et al. Breath acetone—aspects of normal physiology related to age and gender as determined in a PTR-MS study. J. Breath Res. 2009, 3, 1–9. [Google Scholar]
- Simmons, J.; Mcfann, K.; Brown, A.; Rewers, A.; Follansbee, D.; Temple-Trujillo, R.; Klingensmith, G. Reliability of the diabetes fear of injecting and self-testing questionnaire in pediatric patients with type 1 diabetes. Diabetes Care 2007, 30, 987–988. [Google Scholar] [CrossRef]
- Hamilton, J.G. Needle phobia-A neglected diagnosis. J. Fam. Pract. 1995, 41, 169–175. [Google Scholar]
- Guo, D.; Zhang, D.; Li, N.; Zhang, L.; Yang, J. Diabetes identification and classification by means of a breath analysis system. In Proceedings of the Medical Biometrics Second International Conference, ICMB 2010; Springer: Berlin, Germany, 2010; pp. 52–63. [Google Scholar]
- Turner, C.; Walton, C.; Hoashi, S.; Evans, M. Breath acetone concentration decreases with blood glucose concentration in type I diabetes mellitus patients during hypoglycaemic clamps. J. Breath Res. 2009, 3, 1–6. [Google Scholar]
- Minh, T.; Oliver, S.; Ngo, J.; Flores, R.; Midyett, R.; Meinardi, S.; Carlson, M.K.; Rowland, F.S.; Blake, D.R.; Galassetti, P.R. Noninvasive measurement of plasma glucose from exhaled breath in healthy and type 1 diabetic subjects. Am. J. Physiol. Endocrinol. Metab. 2011, 300, 1166–1175. [Google Scholar] [CrossRef]
- Storer, M.; Dummer, M.; Lunt, H.; Scotter, J.; McCartin, F.; Cook, J.; Swanney, M.; Kendall, D.; Logan, F.; Epton, M. Measurement of breath acetone concentrations by selected ion flow tube mass spectrometry in type 2 Diabetes. J. Breath Res. 2011, 5, 1–5. [Google Scholar]
- Righettoni, M.; Schmid, A.; Amann, A.; Pratsinis, S.E. Correlations between blood glucose and breath components from portable gas sensors and PTR-TOF-MS. J. Breath Res. 2013, 7, 1–9. [Google Scholar]
- Ghimenti, S.; Tabucchi, S.; Lomonaco, T.; di Francesco, F.; Fuoco, R.; Onor, M.; Lenzi, S.; Trivella, M.G. Monitoring breath during oral glucose tolerance tests. J. Breath Res. 2013, 7, 1–7. [Google Scholar]
- Wells, D.; Lawson, S.; Siriwardena, A.N. Canine responses to hypoglycemia in patients with type 1 diabetes. J. Altern. Complement. Med. 2008, 14, 1235–1241. [Google Scholar] [CrossRef]
- Salerno-Kennedy, R.; Cashman, K.D. Potential applications of breath isoprene as a biomarker in modern medicine: A concise overview. Wien. Klin. Wochenschr. 2005, 117, 180–186. [Google Scholar] [CrossRef]
- O’Hara, M.E.; Clutton-Brock, T.H.; Green, S.; Mayhew, C.A. Endogenous volatile organic compounds in breath and blood of healthy volunteers: Examining breath analysis as a surrogate for blood measurements. J. Breath Res. 2009, 3, 1–10. [Google Scholar]
- Miekisch, W.; Herbig, J.; Schubert, J.K. Data interpretation in breath biomarker research: Pitfalls and directions. J. Breath Res. 2012, 6, 1–10. [Google Scholar]
- Halbritter, S.; Fedrigo, M.; Hollriegl, V.; Szymczak, W.; Maier, J.M.; Ziegler, A.G.; Hummel, M. Human breath gas analysis in the screening of gestational diabetes mellitus. Diabetes Technol. Therapeut. 2012, 14, 917–925. [Google Scholar] [CrossRef]
- Harrison, G.R.; Critchley, A.D.; Mayhew, C.A.; Thompson, J.M. Real-time breath monitoring of propofol and its volatile metabolites during surgery using a novel mass spectrometric technique: A feasibility study. Br. J. Anaesth. 2003, 91, 797–799. [Google Scholar] [CrossRef]
- Smith, D.; Španěl, P.; Gilchrist, F.J.; Lenney, W. Hydrogen cyanide, a volatile biomarker of Pseudomonas aeruginosa infection. J. Breath Res. 2013, 7, 1–13. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Lourenço, C.; Turner, C. Breath Analysis in Disease Diagnosis: Methodological Considerations and Applications. Metabolites 2014, 4, 465-498. https://doi.org/10.3390/metabo4020465
Lourenço C, Turner C. Breath Analysis in Disease Diagnosis: Methodological Considerations and Applications. Metabolites. 2014; 4(2):465-498. https://doi.org/10.3390/metabo4020465
Chicago/Turabian StyleLourenço, Célia, and Claire Turner. 2014. "Breath Analysis in Disease Diagnosis: Methodological Considerations and Applications" Metabolites 4, no. 2: 465-498. https://doi.org/10.3390/metabo4020465
APA StyleLourenço, C., & Turner, C. (2014). Breath Analysis in Disease Diagnosis: Methodological Considerations and Applications. Metabolites, 4(2), 465-498. https://doi.org/10.3390/metabo4020465