Alterations in Exercise-Induced Plasma Adenosine Triphosphate Concentration in Highly Trained Athletes in a One-Year Training Cycle
Abstract
:1. Introduction
2. Results
2.1. Training Characteristics
2.2. Pre-Exercise Nucleotide Concentration
2.3. Nucleotide Concentration during Exercise
2.4. Nucleotide Concentration at Maximal Intensity
2.5. Nucleotide Concentration during Recovery
2.6. Respiratory Compensation Point
3. Discussion
4. Materials and Methods
4.1. Subjects
4.2. Study Design
4.3. Somatic and Physiological Variables
4.4. Hematological and Lactic Acid Measurements
4.5. Plasma Nucleotide Measurements
4.6. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ellsworth, M.L.; Ellis, C.G.; Goldman, D.; Stephenson, A.H.; Dietrich, H.H.; Sprague, R.S. Erythrocytes: Oxygen Sensors and Modulators of Vascular Tone. Physiology 2009, 24, 107–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez, A. Erythrocyte and the regulation of human skeletal muscle blood flow and oxygen delivery: Role of circulating ATP. Circ. Res. 2003, 92, E61. [Google Scholar] [CrossRef] [PubMed]
- Kalsi, K.K.; Gonzalez-Alonso, J. Temperature-dependent release of ATP from human erythrocytes: Mechanism for the control of local tissue perfusion. Exp. Physiol. 2012, 97, 419–432. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Alonso, J.; Calbet, J.A.L.; Boushel, R.; Helge, J.W.; Sondergaard, H.; Munch-Andersen, T.; van Hall, G.; Mortensen, S.P.; Secher, N.H. Blood temperature and perfusion to exercising and non-exercising human limbs. Exp. Physiol. 2015, 100, 1118–1131. [Google Scholar] [CrossRef] [PubMed]
- Ellsworth, M.L.; Forrester, T.; Ellis, C.G.; Dietrich, H.H. The erythrocyte as a regulator of vascular tone. Am. J. Physiol. 1995, 269, H2155–H2161. [Google Scholar] [CrossRef] [PubMed]
- Rosenmeier, J.B.; Hansen, J.; Gonzalez-Alonso, J. Circulating ATP-induced vasodilatation overrides sympathetic vasoconstrictor activity in human skeletal muscle. J. Physiol. 2004, 558, 351–365. [Google Scholar] [CrossRef] [Green Version]
- Rosenmeier, J.B.; Yegutkin, G.G.; Gonzalez-Alonso, J. Activation of ATP/UTP-selective receptors increases blood flow and blunts sympathetic vasoconstriction in human skeletal muscle. J. Physiol. 2008, 586, 4993–5002. [Google Scholar] [CrossRef]
- Kirby, B.S.; Voyles, W.F.; Carlson, R.E.; Dinenno, F.A. Graded sympatholytic effect of exogenous ATP on postjunctional alpha-adrenergic vasoconstriction in the human forearm: Implications for vascular control in contracting muscle. J. Physiol. 2008, 586, 4305–4316. [Google Scholar] [CrossRef]
- Shepherd, J.R.A.; Joyner, M.J.; Dinenno, F.A.; Curry, T.B.; Ranadive, S.M. Prolonged adenosine triphosphate infusion and exercise hyperemia in humans. J. Appl. Physiol. 2016, 121, 629–635. [Google Scholar] [CrossRef] [Green Version]
- Olivecrona, G.; Gotberg, M.; Harnek, J.; Wang, L.W.; Jacobson, K.A.; Erlinge, D. Coronary artery reperfusion: ADP acting on P2Y1 receptors mediates early reactive hyperemia in vivo in pigs. Purinergic Signal. 2004, 1, 59–64. [Google Scholar] [CrossRef]
- Wang, L.; Olivecrona, G.; Gotberg, M.; Olsson, M.L.; Winzell, M.S.; Erlinge, D. ADP acting on P2Y13 receptors is a negative feedback pathway for ATP release from human red blood cells. Circ. Res. 2005, 96, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Zarebska, E.A.; Kusy, K.; Slominska, E.M.; Kruszyna, L.; Zielinski, J. Plasma Nucleotide Dynamics during Exercise and Recovery in Highly Trained Athletes and Recreationally Active Individuals. BioMed Res. Int. 2018, 11. [Google Scholar] [CrossRef] [PubMed]
- Yegutkin, G.G.; Samburski, S.S.; Mortensen, S.P.; Jalkanen, S.; González-Alonso, J. Intravascular ADP and soluble nucleotidases contribute to acute prothrombotic state during vigorous exercise in humans. J. Physiol. 2007, 579, 553–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walther, G.; Nottin, S.; Karpoff, L.; Perez-Martin, A.; Dauzat, M.; Obert, P. Flow-mediated dilation and exercise-induced hyperaemia in highly trained athletes: Comparison of the upper and lower limb vasculature. Acta Physiol. 2008, 193, 139–150. [Google Scholar] [CrossRef]
- Mairbäurl, H. Red blood cells in sports: Effects of exercise and training on oxygen supply by red blood cells. Front. Physiol. 2013, 4, 9–21. [Google Scholar] [CrossRef]
- Laursen, P.B. Training for intense exercise performance: High-intensity or high-volume training? Scand. J. Med. Sci. Sports 2010, 20, 1–10. [Google Scholar] [CrossRef]
- Holloszy, J.O.; Coyle, E.F. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J. Appl. Physiol. 1984, 56, 831–838. [Google Scholar] [CrossRef]
- Takada, S.; Okita, K.; Suga, T.; Omokawa, M.; Morita, N.; Horiuchi, M.; Kadoguchi, T.; Takahashi, M.; Hirabayashi, K.; Yokota, T.; et al. Blood Flow Restriction Exercise in Sprinters and Endurance Runners. Med. Sci. Sports Exerc. 2012, 44, 413–419. [Google Scholar] [CrossRef]
- Boutcher, Y.N.; Boutcher, S.H. Limb vasodilatory capacity and venous capacitance of trained runners and untrained males. Eur. J. Appl. Physiol. 2005, 95, 83–87. [Google Scholar] [CrossRef]
- Esteve-Lanao, J.; Foster, C.; Seiler, S.; Lucia, A. Impact of training intensity distribution on performance in endurance athletes. J. Strength Cond. Res. 2007, 21, 943–949. [Google Scholar] [CrossRef]
- Duffield, R.; Dawson, B.; Goodman, C. Energy system contribution to 100-m and 200-m track running events. J. Sci. Med. Sport 2004, 7, 302–313. [Google Scholar] [CrossRef]
- Barbero-Alvarez, J.C.; Soto, V.M.; Barbero-Alvarez, V.; Granda-Vera, J. Match analysis and heart rate of futsal players during competition. J. Sports Sci. 2008, 26, 63–73. [Google Scholar] [CrossRef]
- Naser, N.; Ali, A.; Macadam, P. Physical and physiological demands of futsal. J. Exerc. Sci. Fit. 2017, 15, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Bompa, T.; Haff, G. Periodization: Theory and Methodology of Training, 5th ed.; Human Kinetics: Champaign, IL, USA, 2009; pp. 81–84. [Google Scholar]
- Kalliokoski, K.K.; Oikonen, V.; Takala, T.O.; Sipila, H.; Knuuti, J.; Nuutila, P. Enhanced oxygen extraction and reduced flow heterogeneity in exercising muscle in endurance-trained men. Am. J. Physiol. Endocrinol. Metab. 2001, 280, E1015–E1021. [Google Scholar] [CrossRef] [PubMed]
- Proctor, D.N.; Miller, J.D.; Dietz, N.M.; Minson, C.T.; Joyner, M.J. Reduced submaximal leg blood flow after high-intensity aerobic training. J. Appl. Physiol. 2001, 91, 2619–2627. [Google Scholar] [CrossRef] [PubMed]
- Calbet, J.A.L.; Lundby, C. Skeletal muscle vasodilatation during maximal exercise in health and disease. J. Physiol. 2012, 590, 6285–6296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laughlin, M.H.; Roseguini, B. Mechanisms for exercise training-induced increases in skeletal muscle blood flow capacity: Differences with interval sprint training versus aerobic endurance training. J. Physiol. Pharmacol. 2008, 59, 71–88. [Google Scholar] [PubMed]
- Mortensen, S.P.; Damsgaard, R.; Dawson, E.A.; Secher, N.H.; Gonzalez-Alonso, J. Restrictions in systemic and locomotor skeletal muscle perfusion, oxygen supply and VO2 during high-intensity whole-body exercise in humans. J. Physiol. 2008, 586, 2621–2635. [Google Scholar] [CrossRef]
- Zielinski, J.; Kusy, K. Training-induced adaptation in purine metabolism in high-level sprinters vs. triathletes. J. Appl. Physiol. 2012, 112, 542–551. [Google Scholar] [CrossRef] [Green Version]
- Hearon, C.M.; Dinenno, F.A. Regulation of skeletal muscle blood flow during exercise in ageing humans. J. Physiol. 2016, 594, 2261–2273. [Google Scholar] [CrossRef]
- Mortensen, S.P.; Nyberg, M.; Gliemann, L.; Thaning, P.; Saltin, B.; Hellsten, Y. Exercise training modulates functional sympatholysis and alpha-adrenergic vasoconstrictor responsiveness in hypertensive and normotensive individuals. J. Physiol. 2014, 592, 3063–3073. [Google Scholar] [CrossRef] [PubMed]
- Piil, P.; Jřrgensen, T.S.; Egelund, J.; Gliemann, L.; Hellsten, Y.; Nyberg, M. Effect of high-intensity exercise training on functional sympatholysis in young and older habitually active men. Transl. Sports Med. 2017, 1, 37–45. [Google Scholar] [CrossRef]
- Kruse, N.T.; Hughes, W.E.; Ueda, K.; Casey, D.P. Vasoconstrictor responsiveness in contracting human muscle: Influence of contraction frequency, contractile work, and metabolic rate. Eur. J. Appl. Physiol. 2017, 117, 1697–1706. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, S.P.; Nyberg, M.; Winding, K.; Saltin, B. Lifelong physical activity preserves functional sympatholysis and purinergic signalling in the ageing human leg. J. Physiol. 2012, 590, 6227–6236. [Google Scholar] [CrossRef] [PubMed]
- Nana, A.; Slater, G.J.; Stewart, A.D.; Burke, L.M. Methodology Review: Using Dual-Energy X-ray Absorptiometry (DXA) for the Assessment of Body Composition in Athletes and Active People. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 198–215. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Wang, Z.M.; Heymsfield, S.B.; Baumgartner, R.N.; Gallagher, D. Total-body skeletal muscle mass: Estimation by a new dual-energy X-ray absorptiometry method. Am. J. Clin. Nutr. 2002, 76, 378–383. [Google Scholar] [CrossRef]
- Edvardsen, E.; Hem, E.; Anderssen, S.A. End Criteria for Reaching Maximal Oxygen Uptake Must Be Strict and Adjusted to Sex and Age: A Cross-Sectional Study. PLoS ONE 2014, 9, e85276. [Google Scholar] [CrossRef]
- Beaver, W.L.; Wasserman, K.; Whipp, B.J. A new method for detecting anaerobic threshold by gas-exchange. J. Appl. Physiol. 1986, 60, 2020–2027. [Google Scholar] [CrossRef]
- Ciekot-Soltysiak, M.; Kusy, K.; Podgorski, T.; Zielinski, J. Training-induced annual changes in red blood cell profile in highly-trained endurance and speed-power athletes. J. Sports Med. Phys. Fit. 2018, 58, 1859–1866. [Google Scholar] [CrossRef]
- Smolenski, R.T.; Lachno, D.R.; Ledingham, S.J.M.; Yacoub, M.H. Determination of 16 nucleotides, nucleosides and bases using high-performance liquid-chromatography and its application to the study of purine metabolism in hearts for transplantation. J. Chromatogr. 1990, 527, 414–420. [Google Scholar] [CrossRef]
2nd Examination * | 3rd Examination ** | 4th Examination ** | |||||||
---|---|---|---|---|---|---|---|---|---|
General Preparation | Specific Preparation † | Competition Phase # | |||||||
FU | EN | SP | FU | EN | SP | FU | EN | SP | |
Training sessions (no.) | 71 | 181/122 | 80 | 62 | 132/96 | 61 | 63 | 179/120 | 87 |
Competitions (no.) | 10 | −/− | − | 11 | 4/5 | 6 | 13 | 6/9 | 8 |
Net exercise time (hours) | |||||||||
total | 84.3 | 225.5/151.3 | 92.6 | 70.1 | 201/142.4 | 67.3 | 70.4 | 212.2/140.3 | 100.1 |
per one training session | 1.19 | 1.25/1.24 | 1.16 | 1.13 | 1.52/1.48 | 1.10 | 1.12 | 1.18/1.17 | 1.15 |
Total training distance (km) | |||||||||
running | − | 1975/− | − | − | 501/− | − | − | 589/− | − |
swimming | − | 251/− | − | − | 162/− | − | − | 204/− | − |
cycling | − | 865/− | − | − | 2655/− | − | − | 2875/− | − |
Exercise zones (% of total time) | |||||||||
low-intensity | 74.3 | 83.9/83.6 | 70.6 | 67.4 | 81.3/80.9 | 82.5 | 67.5 | 78.0/75.6 | 73.3 |
moderate-intensity | 18.3 | 14.4/14.5 | 19.7 | 19.2 | 13.8/14.1 | 7.1 | 19.6 | 11.8/13.9 | 23.0 |
high-intensity | 7.4 | 1.7/1.9 | 9.7 | 13.4 | 4.9/5.0 | 10.4 | 12.9 | 10.2/10.5 | 3.7 |
Transition | General | Specific | Competition | ANOVA * | |
---|---|---|---|---|---|
Body Mass (kg) | |||||
Futsal Players | 75.8 ± 6.9 | 76.9 ± 7.0 | 77.6 ± 7.8 a | 77.9 ± 7.4 a | 0.006 |
Endurance | 74.6 ± 8.1 | 73.1 ± 7.6 † | 73.7 ± 6.7 † | 73.2 ± 7.3 † | 0.078 |
Sprinters | 81.6 ± 5.5 | 82.8 ± 5.4 | 82.7 ± 5.6 | 83.3 ± 6.1 a | 0.009 |
Control group | 77.2 ± 7.9 | 77.8 ± 8.0 | 76.9 ± 7.6 | 76.8 ± 7.0 | 0.295 |
ANOVA ** | 0.125 | 0.022 | 0.039 | 0.014 | |
Total-body SMM (kg) | |||||
Futsal Players | 33.0 ± 3.0 † | 33.9 ± 3.6 †,a | 34.1 ± 3.3 †,a | 34.2 ± 3.2 †,a | 0.001 |
Endurance | 32.9 ± 3.6 † | 32.8 ± 3.3 † | 33.1 ± 3.3 † | 33.0 ± 3.2 † | 0.672 |
Sprinters | 39.1 ± 3.7 | 40.5 ± 3.6 | 40.4 ± 3.8 | 41.4 ± 4.6 a | 0.002 |
Control group | 33.3 ± 3.1 † | 33.5 ± 3.2 † | 33.0 ± 3.6 † | 33.5 ± 3.6 † | 0.335 |
ANOVA ** | 0.000 | 0.000 | 0.000 | 0.000 | |
Total-body fat (%) | |||||
Futsal Players | 17.4 ± 3.0 † | 16.4 ± 2.1 † | 16.7 ± 2.7 † | 17.1 ± 2.3 † | 0.391 |
Endurance | 16.1 ± 2.6 | 14.0 ± 2.7 a | 14.5 ± 2.3 †,a | 14.2 ± 2.1 †,a | 0.002 |
Sprinters | 12.6 ± 2.2 | 11.0 ± 2.0 a | 10.8 ± 1.9 a | 10.6 ± 1.8 a | 0.000 |
Control group | 18.4 ± 3.9 † | 18.5 ± 4.2 ‡,† | 18.2 ± 3.7 ‡,† | 17.2 ± 4.2 † | 0.315 |
ANOVA ** | 0.000 | 0.000 | 0.000 | 0.000 | |
LArest (mmol·L−1) | |||||
Futsal Players | 1.4 ± 0.4 | 1.2 ± 0.2 | 1.0 ± 0.2 a | 0.8 ± 0.2 a,b | 0.000 |
Endurance | 1.2 ± 0.3 | 1.0 ± 0.2 | 1.0 ± 0.2 | 0.9 ± 0.1 a | 0.006 |
Sprinters | 1.4 ± 0.6 | 1.4 ± 0.5 | 1.2 ± 0.4 | 0.9 ± 0.2 | 0.023 |
Control group | 1.3 ± 0.3 | 1.4 ± 0.3 | 1.2 ± 0.3 | 1.1 ± 0.2 §,‡,b | 0.015 |
ANOVA ** | 0.652 | 0.033 | 0.057 | 0.002 | |
LAmax (mmol·L−1) | |||||
Futsal Players | 11.6 ± 2.2 | 11.2 ± 2.9 | 10.8 ± 2.4 | 9.9 ± 1.5 | 0.065 |
Endurance | 11.2 ± 1.8 | 9.9 ± 2.1 | 10.2 ± 1.9 | 10.1 ± 1.5 | 0.135 |
Sprinters | 10.7 ± 1.9 | 10.8 ± 2.2 | 9.6 ± 1.9 | 10.0 ± 1.4 | 0.026 |
Control group | 10.7 ± 1.4 b | 11.6 ± 1.8 | 10.2 ± 1.9 b | 10.6 ± 2.1 b | 0.001 |
ANOVA ** | 0.543 | 0.319 | 0.575 | 0.784 | |
VO2max (ml·kg−1·min−1) | |||||
Futsal Players | 55.81 ± 3.94 ‡ | 55.57 ± 2.81 ‡ | 57.04 ± 2.18 | 58.47 ± 2.06 ‡,† | 0.063 |
Endurance | 64.58 ± 3.52 | 65.26 ± 7.81 | 67.72 ± 3.15 | 66.81 ± 4.66 | 0.392 |
Sprinters | 52.53 ± 4.32 ‡ | 53.01 ± 4.19 ‡ | 52.88 ± 3.92 ‡ | 52.91 ± 3.92 ‡ | 0.932 |
Control group | 57.92 ± 3.42 ‡,† | 57.38 ± 4.25 ‡ | 56.66 ± 3.08 ‡ | 55.96 ± 3.47 ‡ | 0.128 |
ANOVA ** | 0.000 | 0.000 | 0.007 | 0.000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarębska, E.A.; Kusy, K.; Słomińska, E.M.; Kruszyna, Ł.; Zieliński, J. Alterations in Exercise-Induced Plasma Adenosine Triphosphate Concentration in Highly Trained Athletes in a One-Year Training Cycle. Metabolites 2019, 9, 230. https://doi.org/10.3390/metabo9100230
Zarębska EA, Kusy K, Słomińska EM, Kruszyna Ł, Zieliński J. Alterations in Exercise-Induced Plasma Adenosine Triphosphate Concentration in Highly Trained Athletes in a One-Year Training Cycle. Metabolites. 2019; 9(10):230. https://doi.org/10.3390/metabo9100230
Chicago/Turabian StyleZarębska, Ewa Anna, Krzysztof Kusy, Ewa Maria Słomińska, Łukasz Kruszyna, and Jacek Zieliński. 2019. "Alterations in Exercise-Induced Plasma Adenosine Triphosphate Concentration in Highly Trained Athletes in a One-Year Training Cycle" Metabolites 9, no. 10: 230. https://doi.org/10.3390/metabo9100230
APA StyleZarębska, E. A., Kusy, K., Słomińska, E. M., Kruszyna, Ł., & Zieliński, J. (2019). Alterations in Exercise-Induced Plasma Adenosine Triphosphate Concentration in Highly Trained Athletes in a One-Year Training Cycle. Metabolites, 9(10), 230. https://doi.org/10.3390/metabo9100230