Critical Review of Volatile Organic Compound Analysis in Breath and In Vitro Cell Culture for Detection of Lung Cancer
Abstract
:1. Introduction
2. VOC Biomarkers of Lung Cancer in Exhaled Breath
Year | First Author | Sample Size | Biomarker | |
---|---|---|---|---|
Lung Cancer | Control | |||
1985 | Gordon [21] | 12 | 17 | acetone, 2-butanone, n-propanol |
1988 | O’Neill [36] | 8 | 0 | hexane, 2-methylpentane, trimethyl heptane, isoprene, benzene, toluene, ethylbenzene, cumene, trimethyl benzene, alkylbenzene, styrene, naphthalene, 1-methylnaphthalene, propanal, acetone, 2-butanone, phenol, benzaldehyde, acetophenone, nonanal, ethyl propanoate, methyl isobutanoate, dichloromethane, dichlorobenzene, trichloroethane, trichlorofluoromethane, tetrachloroethylene |
1999 | Philips [25] | 60 | 48 | styrene, 2,2,4,6,6-pentamethylheptane, 2-methylheptane, decane, n-propylbenzene undecane, methyl cyclopentane, 1-methyl-2-pentylcyclopropane, trichlorofluoromethane, benzene, 1,2,4-trimethylbenzene, isoprene, 3-methyloctane, 1-hexene, 3-methylnonane, 1-heptene, 1,4-dimethylbenzene, 2,4-dimethylheptane, hexanal, cyclohexane, 1-methylethenylbenzene, heptanal |
2003 | Philips [26] | 178 | 102 | butane, 3-methyltridecane, 7-methyltridecane, 4-methylctane,3-methylhexane, heptane, 2-methylhexane, pentane, 5-methyldecane |
2005 | Poli [37] | 36 | 85 | 2-methylpentane, pentane, ethylbenzene, xylenes, trimethylbenzene, toluene, benzene, heptane, decane, styrene, octane, pentamethyl heptane |
2007 | Philips [27] | 193 | 211 | 1,5,9-trimethyl-1,5,9-cyclododecatriene, 2,2,4-trimethyl-1,3-pentanediol tributyrate, ethyl 4-ethoxybenzoate, 2-methyl- propanoic acid, (1,1-dimethylethyl)-2-methyl-1,3-propanediyl ester, 10,11-dihydro-5H-dibenz-(b,f)-azepine, 2,5-2,6-bis(1,1-dimethylethyl)-cyclohexadiene-1,4-dione, 1,1-oxybi-benzene, 2,5-dimethyl-furan, 2,2-diethyl-1,1-biphenyl, 2,4-dimethyl-3-pentanone, trans-caryophyllene, 2,3-dihydro-1,1,3-trimethyl-3-phenyl-1H-indene, 1-propanol, 4-methyl-decane, 1,2-benzenedicarboxylic acid, diethyl ester, 2,5-dimethyl-2,4-hexadiene |
2007 | Wehinger [38] | 17 | 170 | formaldehyde, isopropanol |
2009 | Bajtarevic [24] | 220 | 441 | isoprene, acetone, methanol, 2-butanone, benzaldehyde, 2,3-butanedione, 1-propanol |
2010 | Fuchs [28] | 12 | 12 | pentanal, hexanal, octanal, nonanal |
2010 | Peng [39] | 30 | 22 | p-cymene, toluene, dodecane, 3,3-dimethylpentane, 2,3,4-trimethylhexane, (1-phenyl-1-butenyl)benzene 1,3-dimethylbenzene, 1-iodononane, [(1,1-dimethylethyl) thiol]acetic acid, 4-(4-propylcyclohexyl)-4′-cyano[1,1′-biphenyl]4-yl ester benzoic acid, 2-amino-5-isopropyl-8-methyl-1-azulenecarbonitrile, 5-(2-methylpropyl)nonane, 2,3,4-trimethyldecane, 6-ethyl-3-octanyl 2-(trifluoromethyl)benzoate, p-xylene, and 2,2-dimethyldecane |
2010 | Song [40] | 43 | 41 | 1-butanol, 3-hydroxy-2-butanone |
2010 | Kischkel [41] | 31 | 31 | isoprene, acetone, 2-butanone, cyclohexanone, dimethyl sulfide, acetonitrile, ethanol, isopropanol, acetaldehyde, propanal, butanal, pentanal, hexanal, heptanal, octanal, 2-propenal, 2-butenal, propane, butane, pentane, hexane, heptane, 2-methylbutane, 2-methylpropanal, 2,2-dimethylbutane, 2,3-dimethylbutane, 2-methylpentane, 3-methylpentane, 2,2-dimethylpentane, 2,4-dimethylpentane, 3,3-dimethylpentane, 2-methylhexane, cyclohexane, benzene, toluene, chlorobenzene, 1,2-dimethylbenzene, 1,2-dichlorobenzene, carbon disulfide, dimethyl formamide, 2,5-dimethylfuran, 1-propanol |
2011 | Rudnicka [42] | 23 | 30 | propane, carbon disulfide, 2-propenal, ethylbenzene, isopropyl alcohol |
2011 | Ulanowska [43] | 134 | 143 | ethanol, acetone, butane, dimethyl sulfide, isoprene, propanal, 1-propanol, 2-pentanone, furan, o-xylene, ethylbenzene, pentanal, hexanal, nonane |
2012 | Peled [44] | 53 | 19 | 1-octene |
2012 | Wang [45] | 88 | 85 | 2,4,6-trimethyloctane, 2-methyldodecane, 2-tridecanone, 2-pentadecanone, 8-methylheptadecane, 2-heptadecanone, nonadecane, eicosane |
2012 | Buszewski [46] | 29 | 44 | butanal, ethyl acetate, 2-pentanone, ethylbenzene, 1-propanol, 2-propanol |
2014 | Handa [23] | 50 | 39 | 3-methyldodecane, 1-butanol, 2-methylbutylacetate/2-hexanol/nonanal cyclohexanone, isopropylamine, ethylbenzene, hexanal, cyclohexanone, heptanal, 3-methyl-1-butanol |
2014 | Wang [29] | 18 | 0 | caprolactam, propanoic acid |
2014 | Zou [47] | 79 | 38 | 2-methyl-5-propylnonane, butylated hydroxytoluene, 2,6,11-trimethyl-dodecane, hexadecanal, 8-hexylpentadecane |
2015 | Capuano [48] | 20 | 10 | ethanol, 2-butanone, thiophene, 4-heptanone, butanoic acid, , acetic acid, cyclohexanone, 2,2,-dimethyl-hexanal, 1,1-diethoxy-3-methylbutane; 1-(1-ethoxyethoxy)-pentane, 2,2,6-trimethyloctane, 2-ehtyl-1-hexanol, undecane, thymol, 2-methyl-1-decanol, 3,7-dimethyl- decane, |
2015 | Corradi [49] | 71 | 67 | pentane, 2-methylpentane, hexane, benzene, ethylbenzene, trimethylbenzene, heptane, pentamethyl heptane, toluene, total xylenes, styrene, propanal, butanal, pentanal, hexanal, heptanal, octanal, nonanal, trans-2-hexenal, trans-2-heptenal, trans-2-nonenal |
2016 | Monila [30] | 68 | 60 | p-cresol, eicosenamide, 1-hexadecylindane and cumyl alcohol |
2016 | Schallschmidt [50] | 37 | 23 | propanal, butanal, decanal, butanal, 2-butanone, ethylbenzene |
2017 | Sakumura [51] | 107 | 29 | hydrogen cyanide, methanol, acetonitrile, isoprene, 1-propanol |
2.1. Methodological Issues of Clinical Studies
2.2. Environmental VOCs
2.3. Phase of Breath Sample Collected
2.4. Expiratory Flow Rate, Breath-Holding, and Hyperventilation
2.5. Temperature and Humidity of Environmental Air
2.6. Contamination from Collection Systems
2.7. Age/Gender
2.8. Diet
2.9. Smoking
2.10. Comorbidity
2.11. Disease Staging
2.12. Histology
3. In Vitro Studies
Limitations of In Vitro Studies
4. Conclusions
Funding
Conflicts of Interest
References
- WHO. Cancer. Available online: http://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 15 May 2018).
- World Health Organization. Cancer. Available online: http://www.who.int/mediacentre/factsheets/fs297/en/ (accessed on 18 April 2017).
- Weinberg, R.A. The Biology of Cancer, 2nd ed.; Garland Science: New York, NY, USA, 2013. [Google Scholar]
- Jemal, A.; Siegel, R.L.; Miller, K.D. Cancer statistics, 2017. CA Cancer J. Clin. 2017, 67, 7–30. [Google Scholar] [CrossRef]
- The National Lung Screening Trial Research Team. Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening. N. Engl. J. Med. 2011, 365, 395–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasparri, R.; Santonico, M.; Valentini, C.; Sedda, G.; Borri, A.; Petrella, F.; Maisonneuve, P.; Pennazza, G.; D’Amico, A.; Di Natale, C.; et al. Volatile signature for the early diagnosis of lung cancer. J. Breath Res. 2016, 10, 16007. [Google Scholar] [CrossRef]
- Barash, O.; Peled, N.; Hirsch, F.R.; Haick, H. Sniffing the Unique Odor Print of Non-Small-Cell Lung Cancer with Gold Nanoparticles. Small 2009, 5, 2618–2624. [Google Scholar] [CrossRef] [PubMed]
- Macagnano, A.; D’Arcangelo, G.; Roscioni, C.; Finazzi-Agrò, A.; D’Amico, A.; Di Natale, C.; Martinelli, E.; Paolesse, R. Lung cancer identification by the analysis of breath by means of an array of non-selective gas sensors. Biosens. Bioelectron. 2003, 18, 1209–1218. [Google Scholar] [CrossRef]
- Mazzone, P.J.; Wang, X.-F.; Xu, Y.; Mekhail, T.; Beukemann, M.C.; Na, J.; Kemling, J.W.; Suslick, K.S.; Sasidhar, M. Exhaled Breath Analysis with a Colorimetric Sensor Array for the Identification and Characterization of Lung Cancer. J. Thorac. Oncol. 2012, 7, 137–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazzone, P.J.; Hammel, J.; Dweik, R.; Na, J.; Czich, C.; Laskowski, D.; Mekhail, T. Diagnosis of lung cancer by the analysis of exhaled breath with a colorimetric sensor array. Thorax 2007, 62, 565–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Amico, A.; Pennazza, G.; Santonico, M.; Martinelli, E.; Roscioni, C.; Galluccio, G.; Paolesse, R.; Di Natale, C. An investigation on electronic nose diagnosis of lung cancer. Lung Cancer 2010, 68, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Machado, R.F.; Laskowski, D.; Deffenderfer, O.; Burch, T.; Zheng, S.; Mazzone, P.J.; Mekhail, T.; Jennings, C.; Stoller, J.K.; Pyle, J.; et al. Detection of Lung Cancer by Sensor Array Analyses of Exhaled Breath. Am. J. Respir. Crit. Care Med. 2005, 171, 1286–1291. [Google Scholar] [CrossRef] [Green Version]
- Dragonieri, S.; Annema, J.T.; Schot, R.; Van Der Schee, M.P.; Spanevello, A.; Carratu, P.; Resta, O.; Rabe, K.F.; Sterk, P.J. An electronic nose in the discrimination of patients with non-small cell lung cancer and COPD. Lung Cancer 2009, 64, 166–170. [Google Scholar] [CrossRef]
- Peng, G.; Tisch, U.; Adams, O.; Hakim, M.; Shehada, N.; Broza, Y.Y.; Billan, S.; Abdah-Bortnyak, R.; Kuten, A.; Haick, H. Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat. Nanotechnol. 2009, 4, 669–673. [Google Scholar] [CrossRef]
- Adiguzel, Y.; Külah, H. Breath sensors for lung cancer diagnosis. Biosens. Bioelectron. 2015, 65, 121–138. [Google Scholar] [CrossRef]
- Queralto, N.; Berliner, A.N.; Goldsmith, B.; Martino, R.; Rhodes, P.; Lim, S.H. Detecting cancer by breath volatile organic compound analysis: A review of array-based sensors. J. Breath Res. 2014, 8, 27112. [Google Scholar] [CrossRef] [PubMed]
- Iniesta, C.B.; Carpeño, J.D.C.; Carrasco, J.A.; Moreno, V.; Saenz, E.C.; Feliú, J.; Sereno, M.; Río, F.G.; Barriuso, J.; Barón, M.G.; et al. New screening method for lung cancer by detecting volatile organic compounds in breath. Clin. Transl. Oncol. 2007, 9, 364–368. [Google Scholar] [CrossRef] [Green Version]
- Saalberg, Y.; Wolff, M. VOC breath biomarkers in lung cancer. Clin. Chim. Acta 2016, 459, 5–9. [Google Scholar] [CrossRef]
- Hua, Q.; Zhu, Y.; Liu, H. Detection of volatile organic compounds in exhaled breath to screen lung cancer: A systematic review. Future Oncol. 2018, 14, 1647–1662. [Google Scholar] [CrossRef]
- Zhou, J.; Huang, Z.-A.; Kumar, U.; Chen, D.D. Review of recent developments in determining volatile organic compounds in exhaled breath as biomarkers for lung cancer diagnosis. Anal. Chim. Acta 2017, 996. [Google Scholar] [CrossRef]
- Davies, T.; Hayward, N. Volatile products from acetylcholine as markers in the rapid urine test using head-space gas—liquid chromatography. J. Chromatogr. B Biomed. Sci. Appl. 1984, 307, 11–21. [Google Scholar] [CrossRef]
- Feinberg, T.; Alkoby-Meshulam, L.; Herbig, J.; Cancilla, J.C.; Torrecilla, J.S.; Mor, N.G.; Bar, J.; Ilouze, M.; Haick, H.; Peled, N. Cancerous glucose metabolism in lung cancer—Evidence from exhaled breath analysis. J. Breath Res. 2016, 10, 26012. [Google Scholar] [CrossRef] [PubMed]
- Handa, H.; Usuba, A.; Maddula, S.; Baumbach, J.I.; Mineshita, M.; Miyazawa, T. Exhaled Breath Analysis for Lung Cancer Detection Using Ion Mobility Spectrometry. PLoS ONE 2014, 9, e114555. [Google Scholar] [CrossRef]
- Bajtarevic, A.; Ager, C.; Pienz, M.; Klieber, M.; Schwarz, K.; Ligor, T.; Filipiak, W.; Denz, H.; Fiegl, M.; Jamnig, H.; et al. Noninvasive detection of lung cancer by analysis of exhaled breath. BMC Cancer 2009, 9, 348. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.; Gleeson, K.; Hughes, J.M.B.; Greenberg, J.; Cataneo, R.N.; Baker, L.; McVay, W.P. Volatile organic compounds in breath as markers of lung cancer: A cross-sectional study. Lancet 1999, 353, 1930–1933. [Google Scholar] [CrossRef]
- Phillips, M.; Cataneo, R.N.; Cummin, A.R.; Gagliardi, A.J.; Gleeson, K.; Greenberg, J.; Maxfield, R.A.; Rom, W.N. Detection of Lung Cancer With Volatile Markers in the Breatha. Chest 2003, 123, 2115–2123. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.; Altorki, N.; Austin, J.H.; Cameron, R.B.; Cataneo, R.N.; Greenberg, J.; Kloss, R.; Maxfield, R.A.; Munawar, M.I.; Pass, H.I.; et al. Prediction of lung cancer using volatile biomarkers in breath. Cancer Biomark. 2007, 3, 95–109. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, P.; Loeseken, C.; Schubert, J.K.; Miekisch, W. Breath gas aldehydes as biomarkers of lung cancer. Int. J. Cancer 2009, 126, 2663–2670. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Dong, R.; Wang, X.; Lian, A.; Chi, C.; Ke, C.; Guo, L.; Liu, S.; Zhao, W.; Xu, G.; et al. Exhaled volatile organic compounds as lung cancer biomarkers during one-lung ventilation. Sci. Rep. 2014, 4, 7312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peralbo-Molina, A.; Calderón-Santiago, M.; Priego-Capote, F.; Gamez, B.J.; De Castro, M.D.L. Identification of metabolomics panels for potential lung cancer screening by analysis of exhaled breath condensate. J. Breath Res. 2016, 10, 26002. [Google Scholar] [CrossRef] [PubMed]
- Hakim, M.; Broza, Y.Y.; Barash, O.; Peled, N.; Phillips, M.; Amann, A.; Haick, H. Volatile Organic Compounds of Lung Cancer and Possible Biochemical Pathways. Chem. Rev. 2012, 112, 5949–5966. [Google Scholar] [CrossRef]
- Krilaviciute, A.; Heiss, J.A.; Leja, M.; Kupcinskas, J.; Haick, H.; Brenner, H. Detection of cancer through exhaled breath: A systematic review. Oncotarget 2015, 6, 38643–38657. [Google Scholar] [CrossRef]
- Amann, A.; Corradi, M.; Mazzone, P.; Mutti, A. Lung cancer biomarkers in exhaled breath. Expert Rev. Mol. Diagn. 2011, 11, 207–217. [Google Scholar] [CrossRef]
- Miekisch, W.; Herbig, J.; Schubert, J.K. Data interpretation in breath biomarker research: Pitfalls and directions. J. Breath Res. 2012, 6, 36007. [Google Scholar] [CrossRef] [PubMed]
- Smolinska, A.; Hauschild, A.-C.; Fijten, R.; Dallinga, J.W.; Baumbach, J.; Van Schooten, F.J. Current breathomics—A review on data pre-processing techniques and machine learning in metabolomics breath analysis. J. Breath Res. 2014, 8, 27105. [Google Scholar] [CrossRef]
- O’Neill, H.J.; Gordon, S.M.; O’Neill, M.H.; Gibbons, R.D.; Szidon, J.P. A computerized classification technique for screening for the presence of breath biomarkers in lung cancer. Clin. Chem. 1988, 34, 1613–1618. [Google Scholar] [PubMed]
- Poli, D.; Carbognani, P.; Corradi, M.; Goldoni, M.; Acampa, O.; Balbi, B.; Bianchi, L.; Rusca, M.; Mutti, A. Exhaled volatile organic compounds in patients with non-small cell lung cancer: Cross sectional and nested short-term follow-up study. Respir. Res. 2005, 6, 71. [Google Scholar] [CrossRef]
- Wehinger, A.; Schmid, A.; Mechtcheriakov, S.; Ledochowski, M.; Grabmer, C.; Gastl, G.A.; Amann, A. Lung cancer detection by proton transfer reaction mass-spectrometric analysis of human breath gas. Int. J. Mass Spectrom. 2007, 265, 49–59. [Google Scholar] [CrossRef]
- Hakim, M.; Broza, Y.Y.; Billan, S.; Abdah-Bortnyak, R.; Kuten, A.; Tisch, U.; Haick, H.; Peng, G. Detection of lung, breast, colorectal and prostate cancers from exhaled breath using a single array of nanosensors. Br. J. Cancer 2010, 103, 542–551. [Google Scholar] [CrossRef]
- Song, G.; Qin, T.; Liu, H.; Xu, G.-B.; Pan, Y.-Y.; Xiong, F.-X.; Gu, K.-S.; Sun, G.-P.; Chen, Z.-D. Quantitative breath analysis of volatile organic compounds of lung cancer patients. Lung Cancer 2010, 67, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Kischkel, S.; Miekisch, W.; Sawacki, A.; Straker, E.M.; Trefz, P.; Amann, A.; Schubert, J.K. Breath biomarkers for lung cancer detection and assessment of smoking related effects—Confounding variables, influence of normalization and statistical algorithms. Clin. Chim. Acta 2010, 411, 1637–1644. [Google Scholar] [CrossRef] [PubMed]
- Rudnicka, J.; Kowalkowski, T.; Ligor, T.; Buszewski, B. Determination of volatile organic compounds as biomarkers of lung cancer by SPME–GC–TOF/MS and chemometrics. J. Chromatogr. B Biomed. Sci. Appl. 2011, 879, 3360–3366. [Google Scholar] [CrossRef]
- Ulanowska, A.; Kowalkowski, T.; Trawińska, E.; Buszewski, B. The application of statistical methods using VOCs to identify patients with lung cancer. J. Breath Res. 2011, 5, 46008. [Google Scholar] [CrossRef]
- Peled, N.; Hakim, M.; Bunn, P.A.; Miller, Y.E.; Kennedy, T.C.; Mattei, J.; Mitchell, J.D.; Hirsch, F.R.; Haick, H. Non-Invasive Breath Analysis of Pulmonary Nodules. J. Thorac. Oncol. 2012, 7, 1528–1533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Hu, Y.; Wang, D.; Yu, K.; Wang, L.; Zou, Y.; Zhao, C.; Zhang, X.; Wang, P.; Ying, K. The analysis of volatile organic compounds biomarkers for lung cancer in exhaled breath, tissues and cell lines. CBM 2012, 11, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Buszewski, B.; Ligor, T.; Jezierski, T.; Wenda-Piesik, A.; Walczak, M.; Rudnicka, J. Identification of volatile lung cancer markers by gas chromatography–mass spectrometry: Comparison with discrimination by canines. Anal. Bioanal. Chem. 2012, 404, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zou, Y.; Zhang, X.; Chen, X.; Ying, K.; Wang, P. Optimization of volatile markers of lung cancer to exclude interferences of non-malignant disease. Cancer Biomark. 2014, 14, 371–379. [Google Scholar] [CrossRef]
- Capuano, R.; Santonico, M.; Pennazza, G.; Ghezzi, S.; Martinelli, E.; Roscioni, C.; Lucantoni, G.; Galluccio, G.; Paolesse, R.; Di Natale, C.; et al. The lung cancer breath signature: A comparative analysis of exhaled breath and air sampled from inside the lungs. Sci. Rep. 2015, 5, 16491. [Google Scholar] [CrossRef] [PubMed]
- Corradi, M.; Poli, D.; Banda, I.; Bonini, S.; Mozzoni, P.; Pinelli, S.; Alinovi, R.; Andreoli, R.; Ampollini, L.; Casalini, A.; et al. Exhaled breath analysis in suspected cases of non-small-cell lung cancer: A cross-sectional study. J. Breath Res. 2015, 9, 27101. [Google Scholar] [CrossRef] [PubMed]
- Schallschmidt, K.; Becker, R.; Jung, C.; Bremser, W.; Walles, T.; Neudecker, J.; Leschber, G.; Frese, S.; Nehls, I. Comparison of volatile organic compounds from lung cancer patients and healthy controls—Challenges and limitations of an observational study. J. Breath Res. 2016, 10, 46007. [Google Scholar] [CrossRef] [PubMed]
- Sakumura, Y.; Koyama, Y.; Tokutake, H.; Hida, T.; Sato, K.; Itoh, T.; Akamatsu, T.; Shin, W.; Seitz, W.R. Diagnosis by Volatile Organic Compounds in Exhaled Breath from Lung Cancer Patients Using Support Vector Machine Algorithm. Sensors 2017, 17, 287. [Google Scholar] [CrossRef] [PubMed]
- Costello, B.D.L.; Amann, A.; Alkateb, H.; Flynn, C.; Filipiak, W.; Khalid, T.; Osborne, D.; Ratcliffe, N.M. A review of the volatiles from the healthy human body. J. Breath Res. 2014, 8, 14001. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.; Greenberg, J.; Sabas, M. Alveolar gradient of pentane in normal human breath. Free Radic. Res. 1994, 20, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.; Herrera, J.; Krishnan, S.; Zain, M.; Greenberg, J.; Cataneo, R.N. Variation in volatile organic compounds in the breath of normal humans. J. Chromatogr. B Biomed. Sci. Appl. 1999, 729, 75–88. [Google Scholar] [CrossRef]
- Ajibola, O.A.; Smith, D.; Spaněl, P.; Ferns, G.A.A. Effects of dietary nutrients on volatile breath metabolites. J. Nutr. Sci. 2013, 2, e34. [Google Scholar] [CrossRef]
- Kamysek, S.; Fuchs, P.; Sukul, P.; Schubert, J.; Miekisch, W.; Trefz, P. Drug detection in breath: Non-invasive assessment of illicit or pharmaceutical drugs. J. Breath Res. 2017, 11, 24001. [Google Scholar] [CrossRef]
- Beauchamp, J.; Kirsch, F.; Buettner, A. Real-time breath gas analysis for pharmacokinetics: Monitoring exhaled breath by on-line proton-transfer-reaction mass spectrometry after ingestion of eucalyptol-containing capsules. J. Breath Res. 2010, 4, 26006. [Google Scholar] [CrossRef] [PubMed]
- Schulz, S.; Dickschat, J.S. Bacterial volatiles: The smell of small organisms. Nat. Prod. Rep. 2007, 24, 814–842. [Google Scholar] [CrossRef]
- Phillips, M.; Greenberg, J.; Awad, J. Metabolic and environmental origins of volatile organic compounds in breath. J. Clin. Pathol. 1994, 47, 1052–1053. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, J. Inhaled today, not gone tomorrow: Pharmacokinetics and environmental exposure of volatiles in exhaled breath. J. Breath Res. 2011, 5, 37103. [Google Scholar] [CrossRef] [PubMed]
- Haick, H.; Broza, Y.Y.; Mochalski, P.; Ruzsanyi, V.; Amann, A. Assessment, origin, and implementation of breath volatile cancer markers. Chem. Soc. Rev. 2013, 43, 1423–1449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakubowski, M.; Czerczak, S. Calculating the retention of volatile organic compounds in the lung on the basis of their physicochemical properties. Environ. Toxicol. Pharmacol. 2009, 28, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Buist, H.E.; De Wit-Bos, L.; Bouwman, T.; Vaes, W.H. Predicting blood:air partition coefficients using basic physicochemical properties. Regul. Toxicol. Pharmacol. 2012, 62, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Schubert, J.K.; Miekisch, W.; Birken, T.; Geiger, K.; Nöldge-Schomburg, G.F.E.; Schubert, J. Impact of inspired substance concentrations on the results of breath analysis in mechanically ventilated patients. Biomarkers 2005, 10, 138–152. [Google Scholar] [CrossRef] [PubMed]
- Španěl, P.; Dryahina, K.; Smith, D. A quantitative study of the influence of inhaled compounds on their concentrations in exhaled breath. J. Breath Res. 2013, 7, 17106. [Google Scholar] [CrossRef] [PubMed]
- D’mello, J.; Butani, M. Capnography. Indian J. Anaesth. 2002, 46, 269–278. [Google Scholar]
- Doran, S.L.F.; Romano, A.; Hanna, G.B. Optimisation of sampling parameters for standardised exhaled breath sampling. J. Breath Res. 2017, 12, 016007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birken, T.; Schubert, J.; Miekisch, W.; Nöldge-Schomburg, G. A novel visually CO2 controlled alveolar breath sampling technique. THC 2006, 14, 499–506. [Google Scholar]
- Miekisch, W.; Hengstenberg, A.; Kischkel, S.; Beckmann, U.; Mieth, M.; Schubert, J.K. Construction and Evaluation of a Versatile CO2 Controlled Breath Collection Device. IEEE Sens. J. 2010, 10, 211–215. [Google Scholar] [CrossRef]
- ReCIVA® Breath Sampler. Available online: https://www.owlstonemedical.com/products/reciva/ (accessed on 19 July 2018).
- Bikov, A.; Paschalaki, K.; Logan-Sinclair, R.; Horváth, I.; A Kharitonov, S.; Barnes, P.J.; Usmani, O.S.; Paredi, P. Standardised exhaled breath collection for the measurement of exhaled volatile organic compounds by proton transfer reaction mass spectrometry. BMC Pulm. Med. 2013, 13, 43. [Google Scholar] [CrossRef] [PubMed]
- Boshier, P.R.; Priest, O.H.; Hanna, G.B.; Marczin, N. Influence of respiratory variables on the on-line detection of exhaled trace gases by PTR-MS. Thorax 2011, 66, 919–920. [Google Scholar] [CrossRef] [Green Version]
- Lärstad, M.A.E.; Torén, K.; Bake, B.; Olin, A.-C. Determination of ethane, pentane and isoprene in exhaled air ? effects of breath-holding, flow rate and purified air. Acta Physiol. 2007, 189, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Španěl, P.; Smith, D. Comment on ‘Influences of mixed expiratory sampling parameters on exhaled volatile organic compound concentrations’. J. Breath Res. 2011, 5, 48001. [Google Scholar] [CrossRef] [PubMed]
- Herbig, J.; Titzmann, T.; Beauchamp, J.; Kohl, I.; Hansel, A. Buffered end-tidal (BET) sampling—A novel method for real-time breath-gas analysis. J. Breath Res. 2008, 2, 37008. [Google Scholar] [CrossRef] [PubMed]
- Sukul, P.; Schubert, J.K.; Kamysek, S.; Trefz, P.; Miekisch, W. Applied upper-airway resistance instantly affects breath components: A unique insight into pulmonary medicine. J. Breath Res. 2017, 11, 47108. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, J.; Herbig, J.; Gutmann, R.; Hansel, A. On the use of Tedlar® bags for breath-gas sampling and analysis. J. Breath Res. 2008, 2, 46001. [Google Scholar] [CrossRef]
- Pet’Ka, J.; Etiévant, P.; Callement, G. Suitability of different plastic materials for head or nose spaces short term storage. Analusis 2000, 28, 330–335. [Google Scholar] [CrossRef] [Green Version]
- Phillips, M.; Cataneo, R.N.; Greenberg, J.; Gunawardena, R.; Naidu, A.; Rahbari-Oskoui, F. Effect of age on the breath methylated alkane contour, a display of apparent new markers of oxidative stress. J. Lab. Clin. Med. 2000, 136, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Lechner, M.; Moser, B.; Niederseer, D.; Karlseder, A.; Holzknecht, B.; Fuchs, M.; Colvin, S.; Tilg, H.; Rieder, J. Gender and age specific differences in exhaled isoprene levels. Respir. Physiol. Neurobiol. 2006, 154, 478–483. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.; Greenberg, J.; Cataneo, R.N. Effect of age on the profile of alkanes in normal human breath. Free Radic. Res. 2000, 33, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Španěl, P.; Dryahina, K.; Smith, D. Acetone, ammonia and hydrogen cyanide in exhaled breath of several volunteers aged 4–83 years. J. Breath Res. 2007, 1, 11001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, M.K.; Bishwal, S.C.; Das, A.; Dabral, D.; Varshney, A.; Badireddy, V.K.; Nanda, R. Investigation of Gender-Specific Exhaled Breath Volatome in Humans by GCxGC-TOF-MS. Anal. Chem. 2013, 86, 1229–1237. [Google Scholar] [CrossRef]
- Cheng, H. Volatile Flavor Compounds in Yogurt: A Review. Crit. Rev. Food Sci. Nutr. 2010, 50, 938–950. [Google Scholar] [CrossRef]
- Varlet, V.; Fernandez, X. Review. Sulfur-containing Volatile Compounds in Seafood: Occurrence, Odorant Properties and Mechanisms of Formation. Food Sci. Technol. Int. 2010, 16, 463–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jordan, A.; Hansel, A.; Lindinger, W.; Holzinger, R. Acetonitrile and benzene in the breath of smokers and non-smokers investigated by proton transfer reaction mass spectrometry (PTR-MS). Int. J. Mass Spectrom. Ion Process. 1995, 148, 68–70. [Google Scholar] [CrossRef]
- Hesselbrock, V.M.; Shaskan, E.G. Endogenous breath acetaldehyde levels among alcoholic and non-alcoholic probands: Effect of alcohol use and smoking. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 1985, 9, 259–265. [Google Scholar] [CrossRef]
- Euler, D.E.; Davé, S.J.; Guo, H. Effect of cigarette smoking on pentane excretion in alveolar breath. Clin. Chem. 1996, 42, 303–308. [Google Scholar] [PubMed]
- Herbig, J.; Beauchamp, J. Towards standardization in the analysis of breath gas volatiles. J. Breath Res. 2014, 8, 37101. [Google Scholar] [CrossRef]
- Horváth, I.; Barnes, P.J.; Loukides, S.; Sterk, P.J.; Högman, M.; Olin, A.-C.; Amann, A.; Antus, B.; Baraldi, E.; Bikov, A.; et al. A European Respiratory Society technical standard: Exhaled biomarkers in lung disease. Eur. Respir. J. 2017, 49, 1600965. [Google Scholar] [CrossRef]
- Smith, D.; Wang, T.; Sulé-Suso, J.; Španěl, P.; El Haj, A. Quantification of acetaldehyde released by lung cancer cellsin vitrousing selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 2003, 17, 845–850. [Google Scholar] [CrossRef]
- Sulé-Suso, J.; Pysanenko, A.; Španěl, P.; Smith, D. Quantification of acetaldehyde and carbon dioxide in the headspace of malignant and non-malignant lung cells in vitro by SIFT-MS. Analyst 2009, 134, 2419. [Google Scholar] [CrossRef]
- Rutter, A.V.; Chippendale, T.W.E.; Yang, Y.; Smith, D.; Španěl, P.; Sulé-Suso, J. Quantification by SIFT-MS of acetaldehyde released by lung cells in a 3D model. Analyst 2013, 138, 91–95. [Google Scholar] [CrossRef]
- Filipiak, W.; Sponring, A.; Mikoviny, T.; Ager, C.; Troppmair, J.; Schubert, J.; Miekisch, W.; Amann, A. Release of volatile organic compounds (VOCs) from the lung cancer cell line CALU-1 in vitro. Cancer Cell Int. 2008, 8, 17. [Google Scholar] [CrossRef]
- Sponring, A.; Filipiak, W.; Mikoviny, T. Release of Volatile Organic Compounds from the lung cancer cell line NCI-H2087 in vitro. Anticancer Res. 2009, 29, 419–426. [Google Scholar] [PubMed]
- Barash, O.; Peled, N.; Tisch, U.; Bunn, P.A.; Hirsch, F.R.; Haick, H. Classification of lung cancer histology by gold nanoparticle sensors. Nanomed. Nanotechnol. Biol. Med. 2012, 8, 580–589. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Zhang, H.; Ong, C.N.; Patra, A.; Lu, Y.; Lim, C.T.; Venkatesan, T. Detection of Lung Cancer: Concomitant Volatile Organic Compounds and Metabolomic Profiling of Six Cancer Cell Lines of Different Histological Origins. ACS Omega 2018, 3, 5131–5140. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xu, F.; Wang, Y.; Pan, Y.; Lu, D.; Wang, P.; Ying, K.; Chen, E.; Zhang, W. A study of the volatile organic compounds exhaled by lung cancer cells in vitro for breath diagnosis. Cancer 2007, 110, 835–844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunner, C.; Szymczak, W.; Höllriegl, V.; Mörtl, S.; Oelmez, H.; Bergner, A.; Huber, R.M.; Hoeschen, C.; Oeh, U. Discrimination of cancerous and non-cancerous cell lines by headspace-analysis with PTR-MS. Anal. Bioanal. Chem. 2010, 397, 2315–2324. [Google Scholar] [CrossRef] [PubMed]
- Hanai, Y.; Shimono, K.; Oka, H.; Baba, Y.; Yamazaki, K.; Beauchamp, G.K. Analysis of volatile organic compounds released from human lung cancer cells and from the urine of tumor-bearing mice. Cancer Cell Int. 2012, 12, 7. [Google Scholar] [CrossRef] [PubMed]
- Thriumani, R.; Zakaria, A.; Hashim, Y.Z.H.-Y.; Jeffree, A.I.; Helmy, K.M.; Kamarudin, L.M.; Omar, M.I.; Shakaff, A.Y.M.; Adom, A.H.; Persaud, K.C. A study on volatile organic compounds emitted by in-vitro lung cancer cultured cells using gas sensor array and SPME-GCMS. BMC Cancer 2018, 18, 362. [Google Scholar] [CrossRef] [PubMed]
- Serasanambati, M.; Broza, Y.Y.; Marmur, A.; Haick, H. Profiling Single Cancer Cells with Volatolomics Approach. IScience 2018, 11, 178–188. [Google Scholar] [CrossRef]
- Schallschmidt, K.; Becker, R.; Jung, C.; Rolff, J.; Fichtner, I.; Nehls, I. Investigation of cell culture volatilomes using solid phase micro extraction: Options and pitfalls exemplified with adenocarcinoma cell lines. J. Chromatogr. B Biomed. Sci. Appl. 2015, 1006, 158–166. [Google Scholar] [CrossRef]
- Filipiak, W.; Sponring, A.; Filipiak, A.; Ager, C.; Schubert, J.; Miekisch, W.; Amann, A.; Troppmair, J. TD-GC-MS Analysis of Volatile Metabolites of Human Lung Cancer and Normal Cells In vitro. Cancer Epidemiol. Biomark. Prev. 2010, 19, 182–195. [Google Scholar] [CrossRef] [Green Version]
- Schallschmidt, K.; Becker, R.; Zwaka, H.; Menzel, R.; Johnen, D.; Fischer-Tenhagen, C.; Rolff, J.; Nehls, I. In vitrocultured lung cancer cells are not suitable for animal-based breath biomarker detection. J. Breath Res. 2015, 9, 27103. [Google Scholar] [CrossRef] [PubMed]
- Kalluri, U.; Naiker, M.; A Myers, M. Cell culture metabolomics in the diagnosis of lung cancer-the influence of cell culture conditions. J. Breath Res. 2014, 8, 27109. [Google Scholar] [CrossRef] [PubMed]
- Lawal, O.; Knobel, H.; Weda, H.; Bos, L.D.; Nijsen, T.M.E.; Goodacre, R.; Fowler, S.J. Volatile organic compound signature from co-culture of lung epithelial cell line with Pseudomonas aeruginosa. Analyst 2018, 143, 3148–3155. [Google Scholar] [CrossRef] [PubMed]
- Feinberg, T.; Herbig, J.; Kohl, I.; Las, G.; Cancilla, J.C.; Torrecilla, J.S.; Ilouze, M.; Haick, H.; Peled, N. Cancer metabolism: The volatile signature of glycolysis—In vitro model in lung cancer cells. J. Breath Res. 2017, 11, 16008. [Google Scholar] [CrossRef] [PubMed]
Breath Sampling | Study Design |
---|---|
|
|
First Author | Cancer Cell | Normal Cell | Analytical Technique | VOC-Increased Concentration | VOC-Decreased Concentration |
---|---|---|---|---|---|
David [91] | SK-MES and CALU-1 | SIFT-MS | acetaldehyde | ||
Chen [98] | primary tissues | SPME-GC-MS | styrene, decane, isoprene and benzene | ||
Filipiak [94] | CALU-1 | GC-MS | 2,3,3-trimethylpentane, 2,3,5-trimethylhexane, 2,4-dimethylheptane, 4-methyloctane | acetaldehyde, 3-methylbutanal, n-butyl acetate, acetonitrile, acrolein, methacrolein, 2-methylpropanal, 2-butanone, 2-methoxy-2-methylpropane, 2-ethoxy-2-methylpropane, hexanal | |
Sule-Suso [92] | CALU-1 | NL20 and 35FL121 Tel+ | SIFT-MS | acetaldehyde | |
Sponring [95] | NCI-H2087 | GC-MS | 2-ethyl-1-hexanol and 2-methylpenthane | acetaldehyde, 2-methylpropanal, 3-methylbutanal, 2-methylbutanal, hexanal, n-butyl acetate | |
Brunner [99] | A549 | PTR-MS | 2-pentanone, 2-methyl-1-pentene, 2,4-dimethyl-1-heptene, acetone, ethanol, isobutene, n-octane, tert-butyl methyl ether, tert-butyl ethyl ether | n-butyl acetate, 3-methylbutanal, 2-methylpropanal, methacrolein, 2-methyl-2-butenal, 2-ethylacrolein, pyrrole | |
Hanai [100] | A549 | SPME-GC-MS | dimethyl succinate, 2-pentanone, phenol, 2-methylpyrazine, 2-hexanone and acetophenone | benzophenone, maltol, dimethyl disulfide, methanethiol, 1-butanol, acetonitrile, cyclohexanone, tributyl phosphate, 2-methyl-1-propanal, benzyl alcohol, styrene | |
Rutter [93] | CALU-1 | NL20 | SIFT-MS | acetaldehyde | |
Barash [96] | H1650, H820, A549, H1975, H4006, H1435, CALU-3, H2009, HCC95, HCC15, H226, NE18, H774, H69, H187, H526 | Minna 3KT | GC-MS | decanal | |
Wang [45] | A549, NCI-H446, SK-MES-1 | BEAS-2B | GC-MS | 2-pentadecanone, nonadecane and eicosane | |
Jia [97] | A549, HCC827, H226, H520, H460, H526 | SAEC | SPME-GC-MS | benzaldehyde, 2-ehtyl-1-hexanol, 2,4-decadien-1-ol | |
Thriumani [101] | A549, Calu-3 | WI38VA13 | SPME-GC-MS | decane, ethylbenzene, n-propyl benzene, 1-ethyl-2-methylbenzene, styrene, dodecane, cyclohexanol, decanal, nonanal, 1,3-Di-tert-butylbenzene, tetradecane, 2-ethyl-1-dodecanol, 2-ethylhexanol, benzaldehyde, acetophenone, 2-Ethyl-m-xylene, 1-methyl-2-pyrrolidinone, heneicosane | ethanedioic acid |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Z.; Patra, A.; Kutty, V.K.; Venkatesan, T. Critical Review of Volatile Organic Compound Analysis in Breath and In Vitro Cell Culture for Detection of Lung Cancer. Metabolites 2019, 9, 52. https://doi.org/10.3390/metabo9030052
Jia Z, Patra A, Kutty VK, Venkatesan T. Critical Review of Volatile Organic Compound Analysis in Breath and In Vitro Cell Culture for Detection of Lung Cancer. Metabolites. 2019; 9(3):52. https://doi.org/10.3390/metabo9030052
Chicago/Turabian StyleJia, Zhunan, Abhijeet Patra, Viknish Krishnan Kutty, and Thirumalai Venkatesan. 2019. "Critical Review of Volatile Organic Compound Analysis in Breath and In Vitro Cell Culture for Detection of Lung Cancer" Metabolites 9, no. 3: 52. https://doi.org/10.3390/metabo9030052
APA StyleJia, Z., Patra, A., Kutty, V. K., & Venkatesan, T. (2019). Critical Review of Volatile Organic Compound Analysis in Breath and In Vitro Cell Culture for Detection of Lung Cancer. Metabolites, 9(3), 52. https://doi.org/10.3390/metabo9030052