Role of Intestinal Microbiota in Metabolism of Gastrodin In Vitro and In Vivo
Abstract
:1. Introduction
2. Results
2.1. Method Development and Validation
2.2. In Vitro Metabolism of Gastrodin in Vehicle- and Antibiotics-Treated Rats
2.3. Pharmacokinetics of Gastrodin in Rats
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Animals
4.3. Animal Treatment
4.4. Analytical Conditions
4.5. Analytical Validation
4.6. Assays of β-Glucuronidase, Sulfatase, and β-Glucosidase Activities
4.7. In Vitro Metabolism of Gastrodin
4.8. Pharmacokinetic Study of Gastrodin
4.9. Pharmacokinetic Parameters and Statistical Analysis
Author Contributions
Funding
Conflicts of Interest
References
- Cummings, J.H.; Macfarlane, G.T. Role of intestinal bacteria in nutrient metabolism. J. Parenter. Enteral Nutr. 1997, 21, 357–365. [Google Scholar]
- Lin, L.; Zhang, J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol. 2017, 18, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Wilson, I.D.; Nicholson, J.K. Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Transl. Res. 2017, 179, 204–222. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gao, J.; Peng, M.; Meng, H.; Ma, H.; Cai, P.; Xu, Y.; Zhao, Q.; Si, G. A review on central nervous system effects of gastrodin. Front. Pharmacol. 2018, 9, 1–18. [Google Scholar]
- Lin, L.C.; Chen, Y.F.; Tsai, T.R.; Tsai, T.H. Analysis of brain distribution and biliary excretion of a nutrient supplement, gastrodin, in rat. Anal. Chim. Acta 2007, 590, 173–179. [Google Scholar] [CrossRef]
- Hsieh, M.T.; Wu, C.R.; Chen, C.F. Gastrodin and p-hydroxybenzyl alcohol facilitate memory consolidation and retrieval, but not acquisition, on the passive avoidance task in rats. J. Ethnopharmacol. 1997, 56, 45–54. [Google Scholar] [CrossRef]
- Jeong, H.G.; Kang, M.J.; Kim, H.G.; Oh, D.G.; Kim, J.S.; Lee, S.K.; Jeong, T.C. Role of intestinal microflora in xenobiotic-induced toxicity. Mol. Nutr. Food Res. 2013, 57, 84–99. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Li, X.; Xie, H.; Shen, J.; Luo, J.; Wang, J.; Wang, K.D.; Liu, Q.; Kong, L. Analysis and pharmacokinetics studies of gastrodin and p-hydroxybenzyl alcohol in dogs using ultra fast liquid chromatography-tandem mass spectrometry method. J. Pharm. Biomed. Anal. 2014, 99, 83–88. [Google Scholar] [CrossRef]
- Lin, L.C.; Chen, Y.F.; Lee, W.C.; Wu, Y.T.; Tsai, T.H. Pharmacokinetics of gastrodin and its metabolite p-hydroxybenzyl alcohol in rat blood, brain and bile by microdialysis coupled to LC-MS/MS. J. Pharm. Biomed. Anal. 2008, 48, 909–917. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Chen, G.; Zeng, S. Distribution and metabolism of gastrodin in rat brain. J. Pharm. Biomed. Anal. 2008, 46, 399–404. [Google Scholar] [CrossRef]
- Kang, M.J.; Ko, G.S.; Oh, D.G.; Kim, J.S.; Noh, K.; Kang, W.; Yoon, W.K.; Kim, H.C.; Jeong, H.G.; Jeong, T.C. Role of metabolism by intestinal microbiota in pharmacokinetics of oral baicalin. Arch. Pharm. Res. 2014, 37, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Wang, L.; Li, J.; Liu, X.; Cheng, M.; Xiao, H. Analysis of the metabolic profile of parishin by ultra-performance liquid chromatography/quadrupole-time of flight mass spectrometry. Biomed. Chromatogr. 2015, 29, 1913–1920. [Google Scholar] [CrossRef]
- Ong, E.S.; Heng, M.Y.; Tan, S.N.; Hong Yong, J.W.; Koh, H.; Teo, C.C.; Hew, C.S. Determination of gastrodin and vanillyl alcohol in Gastrodia elata Blume by pressurized liquid extraction at room temperature. J. Sep. Sci. 2007, 30, 2130–2137. [Google Scholar] [CrossRef]
- Zhang, Z.; Ma, P.; Xu, Y.; Zhan, M.; Zhang, Y.; Yao, S.; Zhang, S. Preventive effect of gastrodin on cognitive decline after cardiac surgery with cardiopulmonary bypass: A double-blind, randomized controlled study. J. Huazhong Univ. Sci. Technolog. Med. Sci. 2011, 31, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Du, F.; Wang, X.; Shang, B.; Fang, J.; Xi, Y.; Li, A.; Diao, Y. Gastrodin ameliorates spinal cord injury via antioxidant and anti-inflammatory effects. Acta Biochim. Pol. 2016, 63, 589–593. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.L.; Xing, G.H.; Hong, B.; Li, X.M.; Zou, Y.; Zhang, X.J.; Dong, M.X. Gastrodin prevents motor deficits and oxidative stress in the MPTP mouse model of Parkinson’s disease: Involvement of ERK1/2-Nrf2 signaling pathway. Life Sci. 2014, 114, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Kumar, H.; Kim, I.S.; More, S.V.; Kim, B.W.; Bahk, Y.Y.; Choi, D.K. Gastrodin protects apoptotic dopaminergic neurons in a toxin-induced Parkinson’s disease model. Evid. Based Complement. Alternat. Med. 2013, 2013, 514095. [Google Scholar] [CrossRef] [PubMed]
- Kren, V.; Rezanka, T. Sweet antibiotics—The role of glycosidic residues in antibiotic and antitumor activity and their randomization. FEMS Microbiol. Rev. 2008, 32, 858–889. [Google Scholar] [CrossRef] [PubMed]
- Appelt, H.R.; Oliveira, J.S.; Santos, R.C.V.; Rodrigues, O.E.D.; Santos, M.Z.; Heck, E.F.; Rosa, L.C. Synthesis and antimicrobial activity of carbohydrate based schiff bases: Importance of sugar moiety. Int. J. Carbohydr. Chem. 2013, 2013, 320892. [Google Scholar] [CrossRef]
- Utzschneider, K.M.; Kratz, M.; Damman, C.J.; Hullarg, M. Mechanisms linking the gut microbiome and glucose metabolism. J. Clin. Endocrinol. Metab. 2016, 101, 1445–1454. [Google Scholar] [CrossRef] [PubMed]
- Hertz, F.B.; Løbner-Olesen, A.; Frimodt-Møller, N. Antibiotic selection of Escherichia coli sequence type 131 in a mouse intestinal colonization model. Antimicrob. Agents Chemother. 2014, 58, 6139–6144. [Google Scholar] [CrossRef] [PubMed]
- Yoo, D.H.; Kim, I.S.; Van Le, T.K.; Jung, I.H.; Yoo, H.H.; Kim, D.H. Gut microbiota-mediated drug interactions between lovastatin and antibiotics. Drug Metab. Dispos. 2014, 42, 1508–1513. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wu, B.; Tang, C.; Zhao, J. Analytical techniques and pharmacokinetics of Gastrodia elata Blume and its constituents. Molecules 2017, 22, 1–18. [Google Scholar]
- Cai, Z.; Huang, J.; Luo, H.; Lei, X.; Yang, Z.; Mai, Y.; Liu, Z. Role of glucose transporters in the intestinal absorption of gastrodin, a highly water-soluble drug with good oral bioavailability. J. Drug Target. 2013, 21, 574–580. [Google Scholar] [CrossRef]
- Kang, M.J.; Khanal, T.; Kim, H.G.; Lee, D.H.; Yeo, H.K.; Lee, Y.S.; Ahn, Y.T.; Kim, D.H.; Jeong, H.G.; Jeong, T.C. Role of metabolism by human intestinal microflora in geniposide-induced toxicity in HepG2 cells. Arch. Pharm. Res. 2012, 35, 733–738. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Ko, G. Effect of metformin on metabolic improvement and gut microbiota. Appl. Environ. Microbiol. 2014, 80, 5935–5943. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; He, J.; Jia, W. The influence of gut microbiota on drug metabolism and toxicity. Expert Opin. Drug Metab. Toxicol. 2016, 12, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Tanca, A.; Palomba, A.; Pisanu, S.; Addis, M.F.; Uzzau, S. A human gut metaproteomic dataset from stool samples pretreated or not by differential centrifugation. Data Brief. 2015, 4, 559–562. [Google Scholar] [CrossRef]
- USFDA. Guidance for Industry on Bioanalytical Method Validation. Available online: https:// www.fda.gov/ucm/groups/fdagov-public/@fdagov-drugs-gen/documents/document/ucm368107.pdf (accessed on 7 April 2019).
- Jin, M.J.; Kim, U.; Kim, I.S.; Kim, Y.; Kim, D.-H.; Han, S.B.; Kim, D.-H.; Kwon, O.-S.; Yoo, H.H. Effects of gut microflora on pharmacokinetics of hesperidin: A study on non-antibiotic and pseudo-germ-free rats. J. Toxicol. Environ. Health A 2010, 73, 1441–1450. [Google Scholar] [CrossRef]
- Noh, K.; Nepal, M.R.; Jeong, K.S.; Kim, S.A.; Um, Y.J.; Seo, C.S.; Kang, M.J.; Park, P.H.; Kang, W.; Jeong, H.G. Effects of baicalin on oral pharmacokinetics of caffeine in rats. Biomol. Ther. 2015, 23, 201–206. [Google Scholar] [CrossRef]
Spiked Concentrations (µg/mL) | Intra-day (n = 5) | Inter-day (n = 5) | |||
---|---|---|---|---|---|
Accuracy % | CV % | Accuracy % | CV % | ||
Gastrodin | 0.01 | 97.0 ± 10.5 | 10.8 | 106.6 ± 13.2 | 12.4 |
0.1 | 94.3 ± 4.5 | 4.8 | 93.4 ± 6.1 | 6.6 | |
1 | 101.6 ± 4.8 | 4.7 | 98.5 ± 3.8 | 3.9 | |
20 | 93.5 ± 5.8 | 6.2 | 94.6 ± 3.1 | 3.3 | |
4-HBA | 0.1 | 106.0 ± 7.8 | 7.4 | 115.0 ± 2.8 | 2.5 |
1 | 102.7 ± 1.5 | 1.5 | 99.0 ± 4.2 | 4.3 | |
5 | 105.0 ± 8.3 | 7.9 | 94.1 ± 4.4 | 4.6 | |
10 | 109.7 ± 8.4 | 7.6 | 112.2 ± 3.3 | 3.0 |
Measured Concentrations (% of control) | ||||||
---|---|---|---|---|---|---|
Gastrodin (µg/mL) | 4-HBA (µg/mL) | |||||
0.01 | 1 | 20 | 0.1 | 1 | 10 | |
Short-term at 25 °C | 100.2 ± 4.0 | 102 ± 0.0 | 101 ± 2.8 | 111 ± 5.7 | 101 ± 0.0 | 105 ± 5.7 |
Short-term at +4 °C | 94.5 ± 4.7 | 102.5 ± 3.5 | 98.5 ± 1.4 | 111 ± 7.1 | 103 ± 1.4 | 112 ± 8.5 |
Long-term at −20 °C | 102.2 ± 6.8 | 99.7 ± 0.5 | 100 ± 1.4 | 110.5 ± 3.5 | 102 ± 0.0 | 102 ± 0.0 |
Freeze−thaw (−20 °C to 25 °C) | 93.8 ± 2.1 | 99.7 ± 0.5 | 98.3 ± 1.1 | 102.5 ± 0.7 | 97.3 ± 2.7 | 100.2 ± 12.4 |
Parameters | Gastrodin | 4-HBA | ||
---|---|---|---|---|
Vehicle-treated | Antibiotics-treated | Vehicle-treated | Antibiotics-treated | |
Tmax (h) | 0.3 ± 0.1 | 0.3 ± 0.1 | 0.7 ± 0.2 | 0.6 ± 0.1 |
Cmax (µg/mL) | 26.9 ± 5.3 | 22.9 ± 5.5 | 4.2 ± 1.0 | 2.5 ± 0.8* |
t1/2 (h) | 0.6 ± 0.0 | 0.6 ± 0.2 | 0.9 ± 0.3 | 1.1 ± 0.3 |
AUC (µg·h/mL) | 21.8 ± 2.3 | 21.9 ± 1.4 | 7 ± 1.4 | 4.6 ± 1.0* |
Vd (L/kg) | 1.1 ± 0.2 | 1.6 ± 0.4 | 7.4 ± 1.0 | 14.8 ± 6.6* |
CL (L/h/kg) | 1.9 ± 0.2 | 1.8 ± 0.1 | 5.8 ± 1.4 | 9.0 ± 2.0* |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nepal, M.R.; Jeong, K.S.; Kim, G.H.; Cha, D.H.; Kang, M.J.; Kim, J.S.; Kim, J.-H.; Jeong, T.C. Role of Intestinal Microbiota in Metabolism of Gastrodin In Vitro and In Vivo. Metabolites 2019, 9, 69. https://doi.org/10.3390/metabo9040069
Nepal MR, Jeong KS, Kim GH, Cha DH, Kang MJ, Kim JS, Kim J-H, Jeong TC. Role of Intestinal Microbiota in Metabolism of Gastrodin In Vitro and In Vivo. Metabolites. 2019; 9(4):69. https://doi.org/10.3390/metabo9040069
Chicago/Turabian StyleNepal, Mahesh Raj, Ki Sun Jeong, Geon Ho Kim, Dong Ho Cha, Mi Jeong Kang, Jin Sung Kim, Ju-Hyun Kim, and Tae Cheon Jeong. 2019. "Role of Intestinal Microbiota in Metabolism of Gastrodin In Vitro and In Vivo" Metabolites 9, no. 4: 69. https://doi.org/10.3390/metabo9040069
APA StyleNepal, M. R., Jeong, K. S., Kim, G. H., Cha, D. H., Kang, M. J., Kim, J. S., Kim, J. -H., & Jeong, T. C. (2019). Role of Intestinal Microbiota in Metabolism of Gastrodin In Vitro and In Vivo. Metabolites, 9(4), 69. https://doi.org/10.3390/metabo9040069