Pre-Analytical Factors that Affect Metabolite Stability in Human Urine, Plasma, and Serum: A Review
Abstract
:1. Introduction
2. Results
2.1. Blood Samples
2.2. Blood Sample Collection
2.3. Blood Processing
2.4. Post-Processing
2.5. Storage Conditions
2.6. Urine
2.7. Urine Sample Collection
2.8. Urine Processing
2.9. Storage Conditions
3. Discussion
4. Materials and Methods
4.1. Search Strategy and Selection Criteria
4.2. Data Extraction
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rattray, N.J.W.; Deziel, N.C.; Wallach, J.D.; Khan, S.A.; Vasiliou, V.; Ioannidis, J.P.A.; Johnson, C.H. Beyond genomics: understanding exposotypes through metabolomics. Hum. Genom. 2018, 12, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erben, V.; Bhardwaj, M.; Schrotz-King, P.; Brenner, H. Metabolomics biomarkers for detection of colorectal neoplasms: A systematic review. Cancers 2018, 10, 246. [Google Scholar] [CrossRef] [PubMed]
- Newgard, C.B. Metabolomics and metabolic diseases: Where do we stand? Cell Metab. 2017, 25, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Canela, M.; Hruby, A.; Clish, C.B.; Liang, L.; Martinez-Gonzalez, M.A.; Hu, F.B. Comprehensive metabolomic profiling and incident cardiovascular disease: A systematic review. J. Am. Heart Assoc. 2017, 6. [Google Scholar] [CrossRef] [PubMed]
- Yin, P.; Lehmann, R.; Xu, G. Effects of pre-analytical processes on blood samples used in metabolomics studies. Anal. Bioanal. Chem. 2015, 407, 4879–4892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandes, V.V.; Barbas, C.; Dudzik, D. A review of blood sample handling and pre-processing for metabolomics studies. Electrophoresis 2017, 38, 2232–2241. [Google Scholar] [CrossRef] [PubMed]
- Dudzik, D.; Barbas-Bernardos, C.; Garcia, A.; Barbas, C. Quality assurance procedures for mass spectrometry untargeted metabolomics. A review. J. Pharm. Biomed. Anal. 2018, 147, 149–173. [Google Scholar] [CrossRef] [PubMed]
- Kirwan, J.A.; Brennan, L.; Broadhurst, D.; Fiehn, O.; Cascante, M.; Dunn, W.B.; Schmidt, M.A.; Velagapudi, V. Preanalytical processing and biobanking procedures of biological samples for metabolomics research: A white paper, community perspective (for “Precision medicine and pharmacometabolomics task group”-The metabolomics society initiative). Clin. Chem 2018, 64, 1158–1182. [Google Scholar] [CrossRef] [PubMed]
- Teahan, O.; Gamble, S.; Holmes, E.; Waxman, J.; Nicholson, J.K.; Bevan, C.; Keun, H.C. Impact of analytical bias in metabonomic studies of human blood serum and plasma. Anal. Chem. 2006, 78, 4307–4318. [Google Scholar] [CrossRef] [PubMed]
- Nishiumi, S.; Suzuki, M.; Kobayashi, T.; Yoshida, M. Differences in metabolite profiles caused by pre-analytical blood processing procedures. J. Biosci. Bioeng. 2018, 125, 613–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paglia, G.; Del Greco, F.M.; Sigurdsson, B.B.; Rainer, J.; Volani, C.; Hicks, A.A.; Pramstaller, P.P.; Smarason, S.V. Influence of collection tubes during quantitative targeted metabolomics studies in human blood samples. Clin. Chim. Acta 2018, 486, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Wedge, D.C.; Allwood, J.W.; Dunn, W.; Vaughan, A.A.; Simpson, K.; Brown, M.; Priest, L.; Blackhall, F.H.; Whetton, A.D.; Dive, C.; et al. Is serum or plasma more appropriate for intersubject comparisons in metabolomic studies? An assessment in patients with small-cell lung cancer. Anal. Chem. 2011, 83, 6689–6697. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Kastenmuller, G.; He, Y.; Belcredi, P.; Moller, G.; Prehn, C.; Mendes, J.; Wahl, S.; Roemisch-Margl, W.; Ceglarek, U.; et al. Differences between human plasma and serum metabolite profiles. PLoS ONE 2011, 6, e21230. [Google Scholar] [CrossRef] [PubMed]
- Breier, M.; Wahl, S.; Prehn, C.; Fugmann, M.; Ferrari, U.; Weise, M.; Banning, F.; Seissler, J.; Grallert, H.; Adamski, J.; et al. Targeted metabolomics identifies reliable and stable metabolites in human serum and plasma samples. PLoS ONE 2014, 9, e89728. [Google Scholar] [CrossRef] [PubMed]
- Denery, J.R.; Nunes, A.A.; Dickerson, T.J. Characterization of differences between blood sample matrices in untargeted metabolomics. Anal. Chem. 2011, 83, 1040–1047. [Google Scholar] [CrossRef] [PubMed]
- Benini, Z.L.; Camilloni, M.A.; Scordato, C.; Lezzi, G.; Savia, G.; Oriani, G.; Bertoli, S.; Balzola, F.; Liuzzi, A.; Petroni, M.L. Contribution of weight cycling to serum leptin in human obesity. Int. J. Obes. 2001, 25, 721–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirayama, A.; Sugimoto, M.; Suzuki, A.; Hatakeyama, Y.; Enomoto, A.; Harada, S.; Soga, T.; Tomita, M.; Takebayashi, T. Effects of processing and storage conditions on charged metabolomic profiles in blood. Electrophoresis 2015, 36, 2148–2155. [Google Scholar] [CrossRef]
- Kamlage, B.; Neuber, S.; Bethan, B.; Gonzalez Maldonado, S.; Wagner-Golbs, A.; Peter, E.; Schmitz, O.; Schatz, P. Impact of prolonged blood incubation and extended serum storage at room temperature on the human serum metabolome. Metabolites 2018, 8, 6. [Google Scholar] [CrossRef]
- Bernini, P.; Bertini, I.; Luchinat, C.; Nincheri, P.; Staderini, S.; Turano, P. Standard operating procedures for pre-analytical handling of blood and urine for metabolomic studies and biobanks. J. Biomol. NMR 2011, 49, 231–243. [Google Scholar] [CrossRef]
- Pinto, J.; Domingues, M.R.; Galhano, E.; Pita, C.; Almeida Mdo, C.; Carreira, I.M.; Gil, A.M. Human plasma stability during handling and storage: impact on NMR metabolomics. Analyst 2014, 139, 1168–1177. [Google Scholar] [CrossRef]
- Townsend, M.K.; Clish, C.B.; Kraft, P.; Wu, C.; Souza, A.L.; Deik, A.A.; Tworoger, S.S.; Wolpin, B.M. Reproducibility of metabolomic profiles among men and women in 2 large cohort studies. Clin. Chem. 2013, 59, 1657–1667. [Google Scholar] [CrossRef] [PubMed]
- Midttun, O.; Townsend, M.K.; Nygard, O.; Tworoger, S.S.; Brennan, P.; Johansson, M.; Ueland, P.M. Most blood biomarkers related to vitamin status, one-carbon metabolism, and the kynurenine pathway show adequate preanalytical stability and within-person reproducibility to allow assessment of exposure or nutritional status in healthy women and cardiovascular patients. J. Nutr. 2014, 144, 784–790. [Google Scholar] [PubMed]
- Bervoets, L.; Louis, E.; Reekmans, G.; Mesotten, L.; Thomeer, M.; Adriaensens, P.; Linsen, L. Influence of preanalytical sampling conditions on the 1H NMR metabolic profile of human blood plasma and introduction of the Standard PREanalytical Code used in biobanking. Metabolomics 2015, 11, 1197–1207. [Google Scholar] [CrossRef]
- Hebels, D.G.; Georgiadis, P.; Keun, H.C.; Athersuch, T.J.; Vineis, P.; Vermeulen, R.; Portengen, L.; Bergdahl, I.A.; Hallmans, G.; Palli, D.; et al. Performance in omics analyses of blood samples in long-term storage: opportunities for the exploitation of existing biobanks in environmental health research. Environ. Health Perspect. 2013, 121, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Yin, P.; Peter, A.; Franken, H.; Zhao, X.; Neukamm, S.S.; Rosenbaum, L.; Lucio, M.; Zell, A.; Haring, H.U.; Xu, G.; et al. Preanalytical aspects and sample quality assessment in metabolomics studies of human blood. Clin. Chem. 2013, 59, 833–845. [Google Scholar] [CrossRef] [PubMed]
- Malm, L.; Tybring, G.; Moritz, T.; Landin, B.; Galli, J. Metabolomic quality assessment of EDTA plasma and serum samples. Biopreserv. Biobank. 2016, 14, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Ammerlaan, W.; Trezzi, J.P.; Lescuyer, P.; Mathay, C.; Hiller, K.; Betsou, F. Method validation for preparing serum and plasma samples from human blood for downstream proteomic, metabolomic, and circulating nucleic acid-based applications. Biopreserv. Biobank. 2014, 12, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Ang, J.E.; Revell, V.; Mann, A.; Mantele, S.; Otway, D.T.; Johnston, J.D.; Thumser, A.E.; Skene, D.J.; Raynaud, F. Identification of human plasma metabolites exhibiting time-of-day variation using an untargeted liquid chromatography-mass spectrometry metabolomic approach. Chronobiol. Int. 2012, 29, 868–881. [Google Scholar] [CrossRef] [PubMed]
- Anton, G.; Wilson, R.; Yu, Z.H.; Prehn, C.; Zukunft, S.; Adamski, J.; Heier, M.; Meisinger, C.; Romisch-Margl, W.; Wang-Sattler, R.; et al. Pre-analytical sample quality: metabolite ratios as an intrinsic marker for prolonged room temperature exposure of serum samples. PLoS ONE 2015, 10, e0121495. [Google Scholar] [CrossRef]
- Barton, R.H.; Nicholson, J.K.; Elliott, P.; Holmes, E. High-throughput 1H NMR-based metabolic analysis of human serum and urine for large-scale epidemiological studies: validation study. Int. J. Epidemiol. 2008, 37, i31–i40. [Google Scholar] [CrossRef]
- Brunius, C.; Pedersen, A.; Malmodin, D.; Karlsson, B.G.; Andersson, L.I.; Tybring, G.; Landberg, R. Prediction and modeling of pre-analytical sampling errors as a strategy to improve plasma NMR metabolomics data. Bioinformatics 2017, 33, 3567–3574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carayol, M.; Licaj, I.; Achaintre, D.; Sacerdote, C.; Vineis, P.; Key, T.J.; Onland Moret, N.C.; Scalbert, A.; Rinaldi, S.; Ferrari, P. Reliability of serum metabolites over a two-year period: A targeted metabolomic approach in fasting and non-fasting samples from EPIC. PLoS ONE 2015, 10, e0135437. [Google Scholar] [CrossRef]
- Dunn, W.B.; Broadhurst, D.; Ellis, D.I.; Brown, M.; Halsall, A.; O’Hagan, S.; Spasic, I.; Tseng, A.; Kell, D.B. A GC-TOF-MS study of the stability of serum and urine metabolomes during the UK Biobank sample collection and preparation protocols. Int. J. Epidemiol. 2008, 37, i23–i30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fliniaux, O.; Gaillard, G.; Lion, A.; Cailleu, D.; Mesnard, F.; Betsou, F. Influence of common preanalytical variations on the metabolic profile of serum samples in biobanks. J. Biomol. NMR 2011, 51, 457–465. [Google Scholar] [CrossRef]
- Haid, M.; Muschet, C.; Wahl, S.; Romisch-Margl, W.; Prehn, C.; Moller, G.; Adamski, J. Long-term stability of human plasma metabolites during storage at −80 degrees C. J. Proteome Res. 2018, 17, 203–211. [Google Scholar] [CrossRef]
- Jain, M.; Kennedy, A.D.; Elsea, S.H.; Miller, M.J. Analytes related to erythrocyte metabolism are reliable biomarkers for preanalytical error due to delayed plasma processing in metabolomics studies. Clin. Chim. Acta 2017, 466, 105–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jobard, E.; Tredan, O.; Postoly, D.; Andre, F.; Martin, A.L.; Elena-Herrmann, B.; Boyault, S. A systematic evaluation of blood serum and plasma pre-analytics for metabolomics cohort studies. Int. J. Mol. Sci. 2016, 17, 2035. [Google Scholar] [CrossRef]
- Kamlage, B.; Maldonado, S.G.; Bethan, B.; Peter, E.; Schmitz, O.; Liebenberg, V.; Schatz, P. Quality markers addressing preanalytical variations of blood and plasma processing identified by broad and targeted metabolite profiling. Clin. Chem. 2014, 60, 399–412. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Mall, C.; Taylor, S.L.; Hitchcock, S.; Zhang, C.; Wettersten, H.I.; Jones, A.D.; Chapman, A.; Weiss, R.H. Mealtime, temporal, and daily variability of the human urinary and plasma metabolomes in a tightly controlled environment. PLoS ONE 2014, 9, e86223. [Google Scholar] [CrossRef]
- Lesche, D.; Geyer, R.; Lienhard, D.; Nakas, C.T.; Diserens, G.; Vermathen, P.; Leichtle, A.B. Does centrifugation matter? Centrifugal force and spinning time alter the plasma metabolome. Metabolomics 2016, 12, 159. [Google Scholar] [CrossRef] [Green Version]
- Moriya, T.; Satomi, Y.; Kobayashi, H. Intensive determination of storage condition effects on human plasam metabolomics. Metabolomics 2016, 12, 179. [Google Scholar] [CrossRef]
- Sampson, J.N.; Boca, S.M.; Shu, X.O.; Stolzenberg-Solomon, R.Z.; Matthews, C.E.; Hsing, A.W.; Tan, Y.T.; Ji, B.T.; Chow, W.H.; Cai, Q.; et al. Metabolomics in epidemiology: sources of variability in metabolite measurements and implications. Cancer Epidemiol. Biomark. Prev. 2013, 22, 631–640. [Google Scholar] [CrossRef] [PubMed]
- Thompson, D.K.; Sloane, R.; Bain, J.R.; Stevens, R.D.; Newgard, C.B.; Pieper, C.F.; Kraus, V.B. Daily variation of serum acylcarnitines and amino acids. Metabolomics 2012, 8, 556–565. [Google Scholar] [CrossRef] [PubMed]
- Townsend, M.K.; Bao, Y.; Poole, E.M.; Bertrand, K.A.; Kraft, P.; Wolpin, B.M.; Clish, C.B.; Tworoger, S.S. Impact of pre-analytic blood sample collection factors on metabolomics. Cancer Epidemiol. Biomarkers Prev. 2016, 25, 823–829. [Google Scholar] [CrossRef] [PubMed]
- Trezzi, J.P.; Bulla, A.; Bellora, C.; Rose, M.; Lescuyer, P.; Kiehntopf, M.; Hiller, K.; Betsou, F. LacaScore: A novel plasma sample quality control tool based on ascorbic acid and lactic acid. Metabolomics 2016, 12, 96. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Carter, B.D.; Gapstur, S.M.; McCullough, M.L.; Gaudet, M.M.; Stevens, V.L. Reproducibility of non-fasting plasma metabolomics measurements across processing delays. Metabolomics 2018, 18, 129. [Google Scholar] [CrossRef]
- Wood, J.T.; Williams, J.S.; Pandarinathan, L.; Courville, A.; Keplinger, M.R.; Janero, D.R.; Vouros, P.; Makriyannis, A.; Lammi-Keefe, C.J. Comprehensive profiling of the human circulating endocannabinoid metabolome: clinical sampling and sample storage parameters. Clin. Chem. Lab. Med. 2008, 46, 1289–1295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, W.; Chen, Y.; Xi, C.; Zhang, R.; Song, Y.; Zhan, Q.; Bi, X.; Abliz, Z. Liquid chromatography-tandem mass spectrometry-based plasma metabonomics delineate the effect of metabolites’ stability on reliability of potential biomarkers. Anal. Chem. 2013, 85, 2606–2610. [Google Scholar] [CrossRef]
- Ammerlaan, W.; Trezzi, J.P.; Mathay, C.; Hiller, K.; Betsou, F. Method validation for preparing urine samples for downstream proteomic and metabolomic applications. Biopreserv. Biobank. 2014, 12, 351–357. [Google Scholar] [CrossRef]
- Saude, E.J.; Sykes, B.D. Urine stability for metabolomic studies: effects of preparation and storage. Metabolomics 2007, 3, 19–27. [Google Scholar] [CrossRef]
- Budde, K.; Gok, O.N.; Pietzner, M.; Meisinger, C.; Leitzmann, M.; Nauck, M.; Kottgen, A.; Friedrich, N. Quality assurance in the pre-analytical phase of human urine samples by (1)H NMR spectroscopy. Arch. Biochem. Biophys. 2016, 589, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Chetwynd, A.J.; Abdul-Sada, A.; Holt, S.G.; Hill, E.M. Use of a pre-analysis osmolality normalisation method to correct for variable urine concentrations and for improved metabolomic analyses. J. Chromatogr. A 2016, 1431, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Edmands, W.M.; Ferrari, P.; Scalbert, A. Normalization to specific gravity prior to analysis improves information recovery from high resolution mass spectrometry metabolomic profiles of human urine. Anal. Chem. 2014, 86, 10925–10931. [Google Scholar] [CrossRef] [PubMed]
- Gagnebin, Y.; Tonoli, D.; Lescuyer, P.; Ponte, B.; de Seigneux, S.; Martin, P.Y.; Schappler, J.; Boccard, J.; Rudaz, S. Metabolomic analysis of urine samples by UHPLC-QTOF-MS: Impact of normalization strategies. Anal. Chim. Acta 2017, 955, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Gika, H.G.; Theodoridis, G.A.; Wingate, J.E.; Wilson, I.D. Within-day reproducibility of an HPLC-MS-based method for metabonomic analysis: Application to human urine. J. Proteome Res. 2007, 6, 3291–3303. [Google Scholar] [CrossRef] [PubMed]
- Lauridsen, M.; Hansen, S.H.; Jaroszewski, J.W.; Cornett, C. Human urine as test material in 1H NMR-based metabonomics: recommendations for sample preparation and storage. Anal. Chem. 2007, 79, 1181–1186. [Google Scholar] [CrossRef] [PubMed]
- Rotter, M.; Brandmaier, S.; Prehn, C.; Adam, J.; Sylvia, R.; Gawrych, K.; Bruning, T.; Illig, T.; Lickert, H.; Adamski, J.; et al. Stability of targeted metabolite profiles of urine samples under different storage conditions. Metabolomics 2017, 13, 4. [Google Scholar] [CrossRef]
- Roux, A.; Thevenot, E.A.; Seguin, F.; Olivier, M.-F.; Junot, C. Impact of collection conditions on the metabolite content of human urine samples as analyzed by liquid chromatography coupled to mass spectrometry and nuclear magnetic resonance spectroscopy. Metabolomics 2015, 11, 1095–1105. [Google Scholar] [CrossRef]
- Andersson, C.; Johnson, A.D.; Benjamin, E.J.; Levy, D.; Vasan, R.S. 70-year legacy of the Framingham Heart Study. Nat. Rev. Cardiol. 2019. [Google Scholar] [CrossRef]
Publication | Blood Fraction | Platform | Approach | Sample-Related | Sample Processing | Post-Processing | Sample Storage |
---|---|---|---|---|---|---|---|
Ammerlaan 2014 [27] | Serum and Plasma | MS-Based | Untargeted | Centrifugation Conditions | |||
Ang 2012 [28] | Plasma | MS-Based | Untargeted | Collection Time | |||
Anton 2015 [29] | Serum | MS-Based | Targeted | Time Delay Temperature | Freeze/Thaw Cycles | ||
Barton 2008 [30] | Serum | NMR | Untargeted | Time Delay | |||
Bernini 2011 [19] | Serum and Plasma | NMR | Untargeted | Time Delay (PreC) Temperature (PreC) | Time Delay | ||
Bervoets 2015 [23] | Plasma | NMR | Untargeted | Hemolysis Oxygenation Tube Additives | Centrifugation Conditions Time Delay (PreC) Temperature (PreC) | Temperature | Storage time |
Breier 2014 [14] | Serum and Plasma | MS-Based | Targeted | Tube Additives | Time Delay (PreC) Temperature (PreC) | Freeze/Thaw Cycles | |
Brunius 2017 [31] | Plasma | NMR | Untargeted | Time Delay (PreC) Temperature (PreC) | |||
Carayol 2015 [32] | Serum | MS-Based | Targeted | Fasting Status | |||
Denery 2011 [15] | Serum and Plasma | MS-Based | Untargeted | Serum vs. Plasma Tube Additives | |||
Dunn 2008 [33] | Serum | MS-Based | Untargeted | Time Delay (PreC) | |||
Fliniaux 2011 [34] | Serum | NMR | Untargeted | Time Delay (PreC) Temperature (PreC) | Freeze/Thaw Cycles | ||
Haid 2018 [35] | Plasma | MS-Based | Targeted | Storage time | |||
Hebels 2013 [24] | Plasma | MS-Based | Untargeted | Tube Additives | Time Delay (PreC) | Storage Time | |
Hirayama 2015 [17] | Serum and Plasma | MS-Based | Targeted | Time Delay (PreC) | Time Delay Temperature | Freeze/Thaw Cycles | |
Jain 2017 [36] | Plasma | MS-Based | Untargeted | Time Delay (PreC) | |||
Jobard 2016 [37] | Serum and Plasma | NMR | Untargeted | Centrifugation Conditions Time Delay (PreC) Temperature (PreC) | Time Delay | Storage time | |
Kamlage 2014 [38] | Plasma | MS-Based | Untargeted and Targeted | Hemolysis | Time Delay (PreC) Temperature (PreC) Buffy Coat Contamination | Time Delay Temperature | |
Kamlage 2018 [18] | Serum and Plasma | MS-Based | Untargeted | Time Delay (PreC) | Time Delay | ||
Kim 2014 [39] | Plasma | MS-Based | Untargeted | Collection Time Fasting Status | |||
Lesche 2016 [40] | Plasma | NMR and MS-Based | Untargeted | Centrifugation Conditions | |||
Malm 2016 [26] | Serum and Plasma | MS-Based | Untargeted | Tube Additives | Time Delay (PreC, PreS) Temperature (PreC, PreS) | ||
Midttun 2014 [22] | Plasma | MS-Based | Targeted | Tube Additives | Time Delay (PreC) | ||
Moriya 2016 [41] | Plasma | MS-Based | Untargeted | Time Delay Temperature | |||
Nishiumi 2018 [10] | Serum and Plasma | MS-Based | Untargeted | Serum vs. Plasma | Time Delay (PreC) Temperature (PreC) | ||
Paglia 2018 [11] | Serum and Plasma | MS-Based | Targeted | Serum vs. Plasma Tube Additives | |||
Pinto 2014 [20] | Plasma | NMR | Untargeted | Tube additives Fasting | Temperature | Freeze/Thaw Cycles Storage Time | |
Sampson 2013 [42] | Serum and Plasma | MS-Based | Targeted | Fasting status | |||
Teahan 2006 [9] | Serum and Plasma | NMR | Untargeted | Serum vs. Plasma | Time Delay (PreC) Temperature (PreC) | Freeze/Thaw Cycles | |
Thompson 2012 [43] | Serum | MS-Based | Targeted | Fasting Status | |||
Townsend 2013 [21] | Plasma | MS-Based | Untargeted | Fasting Status Tube Additives | Time Delay (PreC) | ||
Townsend 2016 [44] | Plasma | MS-Based | Untargeted | Fasting Status Collection Season Collection Time | |||
Trezzi 2016 [45] | Plasma | MS-Based | Targeted | Time Delay (PreC) Temperature (PreC) | |||
Wang 2018 [46] | Plasma | MS-Based | Untargeted | Time Delay (PreC) | |||
Wedge 2011 [12] | Serum and Plasma | MS-Based | Untargeted | Serum vs. Plasma | |||
Wood 2008 [47] | Plasma | MS-Based | Targeted | Time Delay (PreC) | Freeze/Thaw Cycles | ||
Yang 2013 [48] | Plasma | MS-Based | Untargeted | Storage Time | |||
Yin 2013 [25] | Serum and Plasma | MS-Based | Untargeted | Tube Additives Hemolysis | Time Delay (PreC) Temperature (PreC) | Freeze/Thaw Cycles | |
Yu 2011 [13] | Plasma and Serum | MS-Based | Targeted | Serum vs. Plasma |
Publication | Platform | Approach | Sample-Related | Sample Processing | Sample Storage |
---|---|---|---|---|---|
Ammerlaan 2014 [49] | MS-Based | Untargeted | Centrifugation Conditions | ||
Barton 2008 [30] | NMR | Untargeted | Time Delay | ||
Bernini 2011 [19] | NMR | Untargeted | Additives Centrifugation Conditions Filtration | Storage Time Storage Temperature | |
Budde 2016 [51] | NMR | Targeted | Time Delay Temperature | Storage Time | |
Chetwynd 2016 [52] | MS-Based | Untargeted | Osmolarity and Sample Volume | ||
Dunn 2008 [33] | MS-Based | Untargeted | Time Delay | ||
Edmands 2014 [53] | MS-Based | Untargeted | Osmolarity and Sample Volume | ||
Gagnebin 2017 [54] | MS-Based | Untargeted | Osmolarity and Sample Volume | ||
Gika 2007 [55] | MS-Based | Untargeted | Storage Time Storage Temperature Freeze/Thaw Cycles | ||
Kim 2014 [39] | MS-Based | Untargeted | Collection Time Fasting Status | ||
Lauridsen 2007 [56] | NMR | Untargeted | Additives | Storage Temperature Storage Time | |
Rotter 2017 [57] | MS-Based | Targeted | Time Delay Temperature | Freeze/Thaw Cycles | |
Roux 2015 [58] | NMR and MS-Based | Targeted | Additives Time Delay Temperature | ||
Saude and Skyes 2007 [50] | NMR | Targeted | Centrifugation Conditions Filtration Additives | Storage Times Storage Temperature Freeze/Thaw Cycles |
Analytic Factor | Summary of Findings/Conclusions |
---|---|
Blood Samples | |
Serum vs. plasma | Plasma samples appear to tolerate short processing delays better than serum samples. Serum samples may provide higher sensitivity. Findings regarding which fraction provides better reproducibility are mixed. |
Tube additives | Does not significantly affect metabolomic profiles. |
Fasting status | Some metabolites may be affected. |
Hemolysis | MS-based analyses may be affected by hemolysis. |
Oxygenation | Does not significantly affect metabolomic profiles. |
Collection time of day and season | These variables may affect some metabolites. |
Pre-centrifugation time delay and temperature | Metabolites are more sensitive to delays at room temperature than at 0–4 °C. Room temperature delays of any length and more than a few hours at 0–4 °C affect some metabolites. |
Centrifugation conditions | Does not significantly affect metabolomic profiles. |
Post-centrifugation time delay and temperature | Delays longer than 3 h at any temperature may affect some metabolites. |
Buffy-coat contamination | Does not significantly affect metabolomic profiles. |
Post-processing time delay and temperature | Most metabolites are unaffected by delays of <2 h at room temperature and up to 24 h at 0–4 °C. |
Storage time | Metabolites are unaffected by storage at −80 °C for up to 30 months. Studies of longer storage times are needed. |
Freeze/thaw cycles | Multiple freeze/thaw cycles alter many metabolites. |
Urine Samples | |
Collection time and fasting | These variables may affect some metabolites. |
Centrifugation conditions | Pre-centrifugation may be useful for removing bacterial and cellular debris. Metabolites were unaffected by variation in speed, temperatures and time. |
Filtration and additives | Filtration and treatment with sodium azide reduce bacterial contamination of samples. |
Time delay and temperature | Metabolites are unaffected by short delays at room temperature and longer delays at 0–4 °C. |
Osmolarity and Sample Volume | Pre-analytical normalization may be better than post-analytic normalization. |
Storage time and temperature | Metabolites are unaffected by storage at <−25 °C for up to 26 months. Studies of longer storage times are needed. |
Freeze/thaw cycles | Results are mixed but multiple freeze/thaw cycles may affect some metabolites. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stevens, V.L.; Hoover, E.; Wang, Y.; Zanetti, K.A. Pre-Analytical Factors that Affect Metabolite Stability in Human Urine, Plasma, and Serum: A Review. Metabolites 2019, 9, 156. https://doi.org/10.3390/metabo9080156
Stevens VL, Hoover E, Wang Y, Zanetti KA. Pre-Analytical Factors that Affect Metabolite Stability in Human Urine, Plasma, and Serum: A Review. Metabolites. 2019; 9(8):156. https://doi.org/10.3390/metabo9080156
Chicago/Turabian StyleStevens, Victoria L., Elise Hoover, Ying Wang, and Krista A. Zanetti. 2019. "Pre-Analytical Factors that Affect Metabolite Stability in Human Urine, Plasma, and Serum: A Review" Metabolites 9, no. 8: 156. https://doi.org/10.3390/metabo9080156
APA StyleStevens, V. L., Hoover, E., Wang, Y., & Zanetti, K. A. (2019). Pre-Analytical Factors that Affect Metabolite Stability in Human Urine, Plasma, and Serum: A Review. Metabolites, 9(8), 156. https://doi.org/10.3390/metabo9080156