Comparative Metabolomic Analysis of Rapeseeds from Three Countries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Materials
2.2. Sample Preparation
2.3. UPLC-Q-TOF/MS Analysis
2.4. Qualitative and Quantitative Analysis of Metabolites
2.5. Data Processing and Statistical Analysis of Metabolites
3. Results and Discussion
3.1. Metabolic Profiles of Rapeseeds Collected from China, Canada, and Mongolia
3.2. PCA of Rapeseeds from Three Countries
3.3. OPLS-DA of Rapeseeds Collected from Three Countries
3.4. Identification of Differential Metabolites of the Three Groups
3.5. Metabolic Pathway Analysis of Differential Metabolites Among the Three Groups
3.6. Significantly Differential Metabolites Between Canadian and Chinese Rapeseeds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Frolov, A.; Henning, A.; Bottcher, C.; Tissier, A.; Strack, D. An UPLC-MS/MS method for the simultaneous identification and quantitation of cell wall phenolics in Brassica napus seeds. J. Agric. Food Chem. 2013, 61, 1219–1227. [Google Scholar] [CrossRef] [PubMed]
- Flakelar, C.L.; Luckett, D.J.; Howitt, J.A.; Prenzler, P.D. Canola (Brassica napus) oil from Australian cultivars shows promising levels of tocopherols and carotenoids, along with good oxidative stability. J. Food Compos. Anal. 2015, 42, 179–186. [Google Scholar] [CrossRef]
- Sharma, V.P. Oilseed Production in India; Springer: New Delhi, India, 2017; pp. 81–106. [Google Scholar]
- Lin, L.; Allemekinders, H.; Dansby, A.; Campbell, L.; Durance-Tod, S.; Berger, A.; Jones, P.J. Evidence of health benefits of canola oil. Nutr. Rev. 2013, 71, 370–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomaa, W.; Mosaad, G.; Yu, P. On a Molecular Basis, Investigate Association of Molecular Structure with Bioactive Compounds, Anti-Nutritional Factors and Chemical and Nutrient Profiles of Canola Seeds and Co-Products from Canola Processing: Comparison Crusher Plants within Canada and within China as well as between Canada and China. Nutrients 2018, 10, 519. [Google Scholar] [Green Version]
- Tripathi, M.K.; Mishra, A.S. Glucosinolates in animal nutrition: A review. Anim. Feed. Sci. Technol. 2017, 132, 1–27. [Google Scholar] [CrossRef]
- Hu, Q.; Hua, W.; Yin, Y.; Zhang, X.; Liu, L.; Shi, J.; Zhao, Y.; Qin, L.; Chen, C.; Wang, H. Rapeseed research and production in China. Crop. J. 2017, 5, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Gunstone, F.D. Production and consumption of rapeseed oil on a global scale. Eur. J. Lipid Sci. Technol. 2001, 103, 447–449. [Google Scholar] [CrossRef]
- Bonjean, A.P.; Dequidt, C.; Sang, T.; Limagrain, G. Rapeseed in China. Oilseeds fats Crops Lipids 2016, 23, D605. [Google Scholar] [CrossRef] [Green Version]
- Nguemeni, C.; Delplanque, B.; Rovère, C.; Simon-Rousseau, N.; Gandin, C.; Agnani, G.; Nahon, J.L.; Heurteaux, C.; Blondeau, N. Dietary supplementation of alpha-linolenic acid in an enriched rapeseed oil diet protects from stroke. Pharmacol. Res. 2010, 61, 226–233. [Google Scholar] [CrossRef]
- Misra, B.B. Cataloging the Brassica napus seed metabolome. Cogent Food Agric. 2016, 2, 1254420. [Google Scholar] [CrossRef]
- Xu, J.; Zhou, X.; Deng, Q.; Huang, Q.; Yang, J.E.; Huang, F. Rapeseed oil fortified with micronutrients reduces atherosclerosis risk factors in rats fed a high-fat diet. Lipids Health Dis. 2011, 10, 96. [Google Scholar] [CrossRef]
- Yang, M.; Zheng, C.; Zhou, Q.; Huang, F.; Liu, C.; Wang, H. Minor components and oxidative stability of cold-pressed oil from rapeseed cultivars in China. J. Food Compos. Anal. 2013, 29, 1–9. [Google Scholar] [CrossRef]
- Mckevith, B. Nutritional aspects of oilseeds. Nutition Bull. 2005, 30, 13–26. [Google Scholar] [CrossRef]
- Khakimov, B.; Mongi, R.J.; Sørensen, K.M.; Ndabikunze, B.K.; Chove, B.E.; Engelsen, S.B. A comprehensive and comparative GC–MS metabolomics study of non-volatiles in Tanzanian grown mango, pineapple, jackfruit, baobab and tamarind fruits. Food Chem. 2016, 213, 691–699. [Google Scholar] [CrossRef]
- Yan, N.; Du, Y.; Liu, X.; Chu, M.; Shi, J.; Zhang, H.; Liu, Y.; Zhang, Z. A comparative UHPLC-QqQ-MS-based metabolomics approach for evaluating Chinese and North American wild rice. Food Chem. 2019, 275, 618–627. [Google Scholar] [CrossRef]
- Farag, M.A.; Sharaf Eldin, M.G.; Kassem, H.; Abou el Fetouh, M. Metabolome classification of Brassica napus L. organs via UPLC-QTOF-PDA-MS and their anti-oxidant potential. Phytochem. Anal. 2013, 24, 277–287. [Google Scholar] [CrossRef]
- Kortesniemi, M.; Vuorinen, A.L.; Sinkkonen, J.; Yang, B.; Rajala, A.; Kallio, H. NMR metabolomics of ripened and developing oilseed rape (Brassica napus) and turnip rape (Brassica rapa). Food Chem. 2015, 172, 63–70. [Google Scholar] [CrossRef]
- Cubero-Leon, E.; Rudder, O.D.; Maquet, A. Metabolomics for organic food authentication: Results from a long-term field study in carrots. Food Chem. 2018, 239, 760–770. [Google Scholar] [CrossRef]
- Mais, E.; Alolga, R.N.; Wang, S.L.; Linus, L.O.; Yin, X.; Qi, L.W. A Comparative UPLC-Q/TOF-MS-based Metabolomics approach for distinguishing Zingiber officinale Roscoe of two geographical origins. Food Chem. 2018, 240, 239–244. [Google Scholar] [CrossRef]
- Lu, Y.; Lam, H.; Pi, E.; Zhan, Q.; Tsai, S.; Wang, C.; Kwan, Y.; Ngai, S. Comparative metabolomics in Glycine max and Glycine soja under salt stress to reveal the phenotypes of their offspring. J. Agric. Food Chem. 2013, 61, 8711–8721. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, L.; Huang, X.; Wang, X.; Yang, R.; Mao, J.; Wang, X.; Wang, X.; Zhang, Q.; Li, P. Identification of Nutritional Components in Black Sesame Determined by Widely Targeted Metabolomics and Traditional Chinese Medicines. Molecules 2018, 23, 1180. [Google Scholar] [CrossRef]
- Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D.S.; Xia, J. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018, 46, W486–W494. [Google Scholar] [CrossRef] [Green Version]
- Wiklund, S.; Johansson, E.; Sjostrom, L.; Mellerowicz, E.J.; Edlund, U.; Shockcor, J.P.; Johan, G.; Thomas, M.; Trygg, J. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal. Chem. 2008, 80, 115–122. [Google Scholar] [CrossRef]
- Asaduzzaman, M.; Pratley, J.E.; An, M.; Luckett, D.J.; Lemerle, D. Metabolomics differentiation of canola genotypes: toward an understanding of canola allelochemicals. Front. Plant Sci. 2015, 5, 765. [Google Scholar] [CrossRef]
- Chen, C. Sinapic Acid and Its Derivatives as Medicine in Oxidative Stress-Induced Diseases and Aging. Oxidative Med. Cell. Longev. 2016, 2016, 1–10. [Google Scholar] [CrossRef]
- Harbaum-Piayda, B.; Oehlke, K.; Sönnichsen, F.D.; Zacchi, P.; Eggers, R.; Schwarz, K. New polyphenolic compounds in commercial deodistillate and rapeseed oils. Food Chem. 2010, 123, 607–615. [Google Scholar] [CrossRef]
- Khattab, R.; Eskin, M.; Aliani, M.; Thiyam, U. Determination of Sinapic Acid Derivatives in Canola Extracts Using High-Performance Liquid Chromatography. J. Am. Oil Chem. Soc. 2010, 87, 147–155. [Google Scholar] [CrossRef]
- Kajla, S.; Mukhopadhyay, A.; Pradhan, A.K. Development of transgenic Brassica juncea lines for reduced seed sinapine content by perturbing phenylpropanoid pathway genes. PLoS ONE 2017, 12, e0182747. [Google Scholar] [CrossRef]
- Yang, M.; Zheng, C.; Zhou, Q.; Liu, C.; Li, W.; Huang, F. Influence of microwavestreatment of rapeseed on phenolic compounds and canolol content. J. Agric. Food Chem. 2014, 62, 1956–1963. [Google Scholar] [CrossRef]
- Spielmeyer, A.; Wagner, A.; Jahreis, G. Influence of thermal treatment of rapeseed on the canolol content. Food Chem. 2009, 112, 944–948. [Google Scholar] [CrossRef]
- Galano, A.; Francisco-Marquez, M.; Alvarez-Idaboy, J.R. Canolol: A Promising Chemical Agent against Oxidative Stress. J. Phys. Chem. B 2011, 115, 8590–8596. [Google Scholar] [CrossRef]
- Zago, E.; Lecomte, J.; Barouh, N.; Aouf, C.; Carré, P.; Fine, F.; Villeneuve, P. Influence of rapeseed meal treatments on its total phenolic content and composition in sinapine, sinapic acid and canolol. Ind. Crops Prod. 2015, 76, 1061–1070. [Google Scholar] [CrossRef]
- Moreau, R.A.; Nyström, L.; Whitaker, B.D.; Winkler-Moser, J.K.; Baer, D.J.; Gebauer, S.K.; Hicks, K.B. Phytosterols and their derivatives: Structural diversity, distribution, metabolism, analysis, and health-promoting uses. Prog. Lipid Res. 2018, 70, 35–61. [Google Scholar] [CrossRef]
- He, W.S.; Zhu, H.; Chen, Z.Y. Plant Sterols: Chemical and Enzymatic Structural Modifications and Effects on Their Cholesterol-Lowering Activity. J. Agric. Food Chem. 2018, 66, 3047–3062. [Google Scholar] [CrossRef]
- Gül, M.K.; Egesel, C.Ö.; Tayyar, S.; Kahrıman, F. Changes in Phytosterols in Rapeseed (Brassica napus L.) and Their Interaction with Nitrogen Fertilization. Int. J. Agric. Biol. 2007, 9, 250–253. [Google Scholar]
- Racette, S.B.; Xiaobo, L.; Michael, L.; Catherine Anderson, S.; Most, M.M.; Lina, M.; Ostlund, R.E. Dose effects of dietary phytosterols on cholesterol metabolism: a controlled feeding study. Am. J. Clin. Nutr. 2009, 91, 32–38. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, R.; Deng, L.; Zhang, L.; Yue, X.; Mao, J.; Ma, F.; Wang, X.; Zhang, Q.; Zhang, W.; Li, P. Comparative Metabolomic Analysis of Rapeseeds from Three Countries. Metabolites 2019, 9, 161. https://doi.org/10.3390/metabo9080161
Yang R, Deng L, Zhang L, Yue X, Mao J, Ma F, Wang X, Zhang Q, Zhang W, Li P. Comparative Metabolomic Analysis of Rapeseeds from Three Countries. Metabolites. 2019; 9(8):161. https://doi.org/10.3390/metabo9080161
Chicago/Turabian StyleYang, Ruinan, Ligang Deng, Liangxiao Zhang, Xiaofeng Yue, Jin Mao, Fei Ma, Xiupin Wang, Qi Zhang, Wen Zhang, and Peiwu Li. 2019. "Comparative Metabolomic Analysis of Rapeseeds from Three Countries" Metabolites 9, no. 8: 161. https://doi.org/10.3390/metabo9080161
APA StyleYang, R., Deng, L., Zhang, L., Yue, X., Mao, J., Ma, F., Wang, X., Zhang, Q., Zhang, W., & Li, P. (2019). Comparative Metabolomic Analysis of Rapeseeds from Three Countries. Metabolites, 9(8), 161. https://doi.org/10.3390/metabo9080161