Covering Factor of the Dust-Driven Broad-Line Region Clouds
Abstract
:1. Introduction
2. FRADO Model
2.1. Cloud Parameters and the Outflow Net Flux
2.2. Differential and Total Covering Factor
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Antonucci, R. Unified models for active galactic nuclei and quasars. Annu. Rev. Astron. Astrophys. 1993, 31, 473–521. [Google Scholar] [CrossRef]
- Netzer, H. Revisiting the Unified Model of Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 2015, 53, 365–408. [Google Scholar] [CrossRef]
- Ramos Almeida, C.; Ricci, C. Nuclear obscuration in active galactic nuclei. Nat. Astron. 2017, 1, 679–689. [Google Scholar] [CrossRef]
- Lawrence, A.; Elvis, M. Misaligned Disks as Obscurers in Active Galaxies. Astrophys. J. 2010, 714, 561–570. [Google Scholar] [CrossRef]
- Granato, G.L.; Danese, L. Thick tori around active galactic nuclei: A comparison of model predictions with observations of the infrared continuum and silicate features. Mon. Not. R. Astron. Soc. 1994, 268, 235–252. [Google Scholar] [CrossRef]
- Elitzur, M. The toroidal obscuration of active galactic nuclei. New Astron. Rev. 2008, 52, 274–288. [Google Scholar] [CrossRef]
- Lanz, L.; Hickox, R.C.; Baloković, M.; Shimizu, T.; Ricci, C.; Goulding, A.D.; Ballantyne, D.R.; Bauer, F.E.; Chen, C.T.J.; del Moro, A.; et al. Investigating the Covering Fraction Distribution of Swift/BAT AGNs with X-Ray and Infrared Observations. Astrophys. J. 2019, 870, 26. [Google Scholar] [CrossRef]
- Ueda, Y.; Akiyama, M.; Ohta, K.; Miyaji, T. Cosmological Evolution of the Hard X-Ray Active Galactic Nucleus Luminosity Function and the Origin of the Hard X-Ray Background. Astrophys. J. 2003, 598, 886–908. [Google Scholar] [CrossRef]
- Ricci, C.; Ueda, Y.; Koss, M.J.; Trakhtenbrot, B.; Bauer, F.E.; Gandhi, P. Compton-thick Accretion in the Local Universe. Astrophys. J. Lett. 2015, 815, L13. [Google Scholar] [CrossRef]
- Netzer, H.; Laor, A. Dust in the Narrow-Line Region of Active Galactic Nuclei. Astrophys. J. Lett. 1993, 404, L51. [Google Scholar] [CrossRef]
- Ward, R.L.; Wadsley, J.; Sills, A. Evolving molecular cloud structure and the column density probability distribution function. Mon. Not. R. Astron. Soc. 2014, 445, 1575–1583. [Google Scholar] [CrossRef]
- Pancoast, A.; Brewer, B.J.; Treu, T. Modelling reverberation mapping data - I. Improved geometric and dynamical models and comparison with cross-correlation results. Mon. Not. R. Astron. Soc. 2014, 445, 3055–3072. [Google Scholar] [CrossRef]
- Adhikari, T.P.; Różańska, A.; Czerny, B.; Hryniewicz, K.; Ferland, G.J. The Intermediate-line Region in Active Galactic Nuclei. Astrophys. J. 2016, 831, 68. [Google Scholar] [CrossRef]
- Adhikari, T.P.; Hryniewicz, K.; Różańska, A.; Czerny, B.; Ferland, G.J. Intermediate-line Emission in AGNs: The Effect of Prescription of the Gas Density. Astrophys. J. 2018, 856, 78. [Google Scholar] [CrossRef]
- Czerny, B.; Hryniewicz, K. The origin of the broad line region in active galactic nuclei. Astron. Astrophys. 2011, 525, L8. [Google Scholar] [CrossRef]
- Czerny, B.; Modzelewska, J.; Petrogalli, F.; Pych, W.; Adhikari, T.P.; Życki, P.T.; Hryniewicz, K.; Krupa, M.; Świeţoń, A.; Nikołajuk, M. The dust origin of the Broad Line Region and the model consequences for AGN unification scheme. Adv. Space Res. 2015, 55, 1806–1815. [Google Scholar] [CrossRef]
- Czerny, B.; Du, P.; Wang, J.M.; Karas, V. A Test of the Formation Mechanism of the Broad Line Region in Active Galactic Nuclei. Astrophys. J. 2016, 832, 15. [Google Scholar] [CrossRef]
- Czerny, B.; Li, Y.R.; Hryniewicz, K.; Panda, S.; Wildy, C.; Sniegowska, M.; Wang, J.M.; Sredzinska, J.; Karas, V. Failed Radiatively Accelerated Dusty Outflow Model of the Broad Line Region in Active Galactic Nuclei. I. Analytical Solution. Astrophys. J. 2017, 846, 154. [Google Scholar] [CrossRef]
- Shakura, N.I.; Sunyaev, R.A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 1973, 500, 33–51. [Google Scholar]
- Mineshige, S.; Kusnose, M.; Matsumoto, R. Low-State Disks and Low-Beta Disks. Astrophys. J. Lett. 1995, 445, L43. [Google Scholar] [CrossRef]
- Esin, A.A.; McClintock, J.E.; Narayan, R. Advection-Dominated Accretion and the Spectral States of Black Hole X-Ray Binaries: Application to Nova Muscae 1991. Astrophys. J. 1997, 489, 865–889. [Google Scholar] [CrossRef]
- Esin, A.A.; Narayan, R.; Cui, W.; Grove, J.E.; Zhang, S.N. Spectral Transitions in Cygnus X-1 and Other Black Hole X-Ray Binaries. Astrophys. J. 1998, 505, 854–868. [Google Scholar] [CrossRef]
- Rees, M.J.; Silk, J.I.; Werner, M.W.; Wickramasinghe, N.C. Infrared Radiation from Dust in Seyfert Galaxies. Nature 1969, 223, 788–791. [Google Scholar] [CrossRef]
- Dong, X.; Wang, T.; Wang, J.; Yuan, W.; Zhou, H.; Dai, H.; Zhang, K. Broad-line Balmer decrements in blue active galactic nuclei. Mon. Not. R. Astron. Soc. 2008, 383, 581–592. [Google Scholar] [CrossRef]
- Naddaf, M.H.; Czerny, B.; Szczerba, R. The Picture of BLR in 2.5D FRADO: Dynamics and Geometry. Astrophys. J. 2021, 920, 30. [Google Scholar] [CrossRef]
- Müller, A.L.; Naddaf, M.H.; Zajaček, M.; Czerny, B.; Araudo, A.; Karas, V. Nonthermal Emission from Fall-back Clouds in the Broad-line Region of Active Galactic Nuclei. Astrophys. J. 2022, 931, 39. [Google Scholar] [CrossRef]
- Naddaf, M.H.; Martinez-Aldama, M.L.; Marziani, P.; Panda, S.; Sniegowska, M.; Czerny, B. Dust-driven wind as a model of broad absorption line quasars. Astron. Astrophys. 2023, 675, A43. [Google Scholar] [CrossRef]
- Kubota, A.; Done, C. A physical model of the broad-band continuum of AGN and its implications for the UV/X relation and optical variability. Mon. Not. R. Astron. Soc. 2018, 480, 1247–1262. [Google Scholar] [CrossRef]
- Różańska, A.; Czerny, B.; Życki, P.T.; Pojmański, G. Vertical structure of accretion discs with hot coronae in active galactic nuclei. Mon. Not. R. Astron. Soc. 1999, 305, 481–491. [Google Scholar] [CrossRef]
- Risaliti, G.; Elvis, M. A non-hydrodynamical model for acceleration of line-driven winds in active galactic nuclei. Astron. Astrophys. 2010, 516, A89. [Google Scholar] [CrossRef]
- Mathis, J.S.; Rumpl, W.; Nordsieck, K.H. The size distribution of interstellar grains. Astrophys. J. 1977, 217, 425–433. [Google Scholar] [CrossRef]
- Naddaf, M.H.; Czerny, B. Radiation pressure on dust explains the Low Ionized Broad Emission Lines in Active Galactic Nuclei. arXiv 2021, arXiv:2111.14963. [Google Scholar]
- Krolik, J.H.; McKee, C.F.; Tarter, C.B. Two-phase models of quasar emission line regions. Astrophys. J. 1981, 249, 422–442. [Google Scholar] [CrossRef]
- Begelman, M.C.; McKee, C.F. Global Effects of Thermal Conduction on Two-Phase Media. Astrophys. J. 1990, 358, 375. [Google Scholar] [CrossRef]
- Panda, S.; Czerny, B.; Adhikari, T.P.; Hryniewicz, K.; Wildy, C.; Kuraszkiewicz, J.; Śniegowska, M. Modeling of the Quasar Main Sequence in the Optical Plane. Astrophys. J. 2018, 866, 115. [Google Scholar] [CrossRef]
- Baskin, A.; Laor, A. Dust inflated accretion disc as the origin of the broad line region in active galactic nuclei. Mon. Not. R. Astron. Soc. 2018, 474, 1970–1994. [Google Scholar] [CrossRef]
- Naddaf, M.H.; Czerny, B. Mass loss rate of accretion disk in FRADO. In Proceedings of the XL Polish Astronomical Society Meeting, Szczecin, Poland, 13–17 September 2022; Szuszkiewicz, E., Majczyna, A., Małek, K., Ratajczak, M., Niemczura, E., Bąk-Stęślicka, U., Poleski, R., Bilicki, M., Wyrzykowski, Ł., Eds.; University of Szczecin: Szczecin, Poland, 2022; Volume 12, pp. 69–72. [Google Scholar] [CrossRef]
- Naddaf, M.H.; Czerny, B.; Zajaček, M. The Wind Dynamics of Super-Eddington Sources in FRADO. Dynamics 2022, 2, 295–305. [Google Scholar] [CrossRef]
- Markowitz, A.G.; Krumpe, M.; Nikutta, R. First X-ray-based statistical tests for clumpy-torus models: Eclipse events from 230 years of monitoring of Seyfert AGN. Mon. Not. R. Astron. Soc. 2014, 439, 1403–1458. [Google Scholar] [CrossRef]
- Wittkowski, M.; Kervella, P.; Arsenault, R.; Paresce, F.; Beckert, T.; Weigelt, G. VLTI/VINCI observations of the nucleus of NGC 1068 using the adaptive optics system MACAO. Astron. Astrophys. 2004, 418, L39–L42. [Google Scholar] [CrossRef]
- García-Bernete, I.; Ramos Almeida, C.; Alonso-Herrero, A.; Ward, M.J.; Acosta-Pulido, J.A.; Pereira-Santaella, M.; Hernán-Caballero, A.; Asensio Ramos, A.; González-Martín, O.; Levenson, N.A.; et al. Torus model properties of an ultra-hard X-ray selected sample of Seyfert galaxies. Mon. Not. R. Astron. Soc. 2019, 486, 4917–4935. [Google Scholar] [CrossRef]
- Toba, Y.; Ueda, Y.; Gandhi, P.; Ricci, C.; Burgarella, D.; Buat, V.; Nagao, T.; Oyabu, S.; Matsuhara, H.; Hsieh, B.C. How Does the Polar Dust Affect the Correlation between Dust Covering Factor and Eddington Ratio in Type 1 Quasars Selected from the Sloan Digital Sky Survey Data Release 16? Astrophys. J. 2021, 912, 91. [Google Scholar] [CrossRef]
- Nikołajuk, M.; Walter, R. The environment of weak emission-line quasars. Mon. Not. R. Astron. Soc. 2012, 420, 2518–2525. [Google Scholar] [CrossRef]
- Elitzur, M.; Ho, L.C.; Trump, J.R. Evolution of broad-line emission from active galactic nuclei. Mon. Not. R. Astron. Soc. 2014, 438, 3340–3351. [Google Scholar] [CrossRef]
- Fiore, F.; Feruglio, C.; Shankar, F.; Bischetti, M.; Bongiorno, A.; Brusa, M.; Carniani, S.; Cicone, C.; Duras, F.; Lamastra, A.; et al. AGN wind scaling relations and the co-evolution of black holes and galaxies. Astron. Astrophys. 2017, 601, A143. [Google Scholar] [CrossRef]
- Tadhunter, C.; Holden, L.; Ramos Almeida, C.; Batcheldor, D. Quantifying the AGN-driven outflows in ULIRGs (QUADROS) IV: HST/STIS spectroscopy of the sub-kpc warm outflow in F14394 + 5332. Mon. Not. R. Astron. Soc. 2019, 488, 1813–1821. [Google Scholar] [CrossRef]
- Davies, R.L.; Belli, S.; Park, M.; Mendel, J.T.; Johnson, B.D.; Conroy, C.; Benton, C.; Bugiani, L.; Emami, R.; Leja, J.; et al. JWST Reveals Widespread AGN-Driven Neutral Gas Outflows in Massive z ~2 Galaxies. arXiv 2023, arXiv:2310.17939. [Google Scholar] [CrossRef]
- Elvis, M. A Structure for Quasars. Astrophys. J. 2000, 545, 63–76. [Google Scholar] [CrossRef]
- Elvis, M. The Quasar Continuum. In Proceedings of the Co-Evolution of Central Black Holes and Galaxies, Rio de Janeiro, Brazil, 10–14 August 2010; Peterson, B.M., Somerville, R.S., Storchi-Bergmann, T., Eds.; Cambridge University Press: Cambridge, UK, 2010; Volume 267, pp. 55–64. [Google Scholar] [CrossRef]
- Chen, Z.F.; Gu, Q.S.; Chen, Y.M. Catalog of Narrow Mg II Absorption Lines in the Baryon Oscillation Spectroscopic Survey. Astrophys. J. 2015, 221, 32. [Google Scholar] [CrossRef]
- Baldwin, J.A. Luminosity Indicators in the Spectra of Quasi-Stellar Objects. Astrophys. J. 1977, 214, 679–684. [Google Scholar] [CrossRef]
- Prandini, E.; Ghisellini, G. The Blazar Sequence and Its Physical Understanding. Galaxies 2022, 10, 35. [Google Scholar] [CrossRef]
- Cavaliere, A.; D’Elia, V. The Blazar Main Sequence. Astrophys. J. 2002, 571, 226–233. [Google Scholar] [CrossRef]
- Márquez, I.; Masegosa, J.; González-Martin, O.; Hernández-Garcia, L.; Pović, M.; Netzer, H.; Cazzoli, S.; del Olmo, A. The AGN nature of LINER nuclear sources. Front. Astron. Space Sci. 2017, 4, 34. [Google Scholar] [CrossRef]
- Ricci, C.; Trakhtenbrot, B. Changing-look active galactic nuclei. Nat. Astron. 2023, 7, 1282–1294. [Google Scholar] [CrossRef]
- Panda, S.; Śniegowska, M. Changing-Look AGNs – I. Tracking the transition on the main sequence of quasars. arXiv 2022, arXiv:2206.10056. [Google Scholar] [CrossRef]
- Risaliti, G.; Miniutti, G.; Elvis, M.; Fabbiano, G.; Salvati, M.; Baldi, A.; Braito, V.; Bianchi, S.; Matt, G.; Reeves, J.; et al. Variable Partial Covering and A Relativistic Iron Line in NGC 1365. Astrophys. J. 2009, 696, 160–171. [Google Scholar] [CrossRef]
- Risaliti, G.; Nardini, E.; Elvis, M.; Brenneman, L.; Salvati, M. Probing general relativistic effects during active galactic nuclei X-ray eclipses. Mon. Not. R. Astron. Soc. 2011, 417, 178–183. [Google Scholar] [CrossRef]
- De Marco, B.; Adhikari, T.P.; Ponti, G.; Bianchi, S.; Kriss, G.A.; Arav, N.; Behar, E.; Branduardi-Raymont, G.; Cappi, M.; Costantini, E.; et al. Incoherent fast variability of X-ray obscurers. The case of NGC 3783. Astron. Astrophys. 2020, 634, A65. [Google Scholar] [CrossRef]
- Mao, J.; Kaastra, J.S.; Mehdipour, M.; Kriss, G.A.; Wang, Y.; Grafton-Waters, S.; Branduardi-Raymont, G.; Pinto, C.; Landt, H.; Walton, D.J.; et al. Transient obscuration event captured in NGC 3227. III. Photoionization modeling of the X-ray obscuration event in 2019. Astron. Astrophys. 2022, 665, A72. [Google Scholar] [CrossRef]
- Risaliti, G.; Bianchi, S.; Matt, G.; Baldi, A.; Elvis, M.; Fabbiano, G.; Zezas, A. Highly Ionized Iron Absorption Lines from Outflowing Gas in the X-Ray Spectrum of NGC 1365. Astrophys. J. 2005, 630, L129–L132. [Google Scholar] [CrossRef]
- Sniegowska, M.; Czerny, B.; Bon, E.; Bon, N. Possible mechanism for multiple changing-look phenomena in active galactic nuclei. Astron. Astrophys. 2020, 641, A167. [Google Scholar] [CrossRef]
- Lyu, B.; Wu, Q.; Yan, Z.; Yu, W.; Liu, H. WISE View of Changing-look Active Galactic Nuclei: Evidence for a Transitional Stage of AGNs. Astrophys. J. 2022, 927, 227. [Google Scholar] [CrossRef]
Z | |||||
---|---|---|---|---|---|
[ ] | deg | deg | |||
8.0 | 1.0 | 1.0 | 72 | 75 | 0.26 |
8.0 | 1.0 | 5.0 | 59 | 59 | 0.51 |
8.0 | 0.1 | 1.0 | 85 | 85 | 0.087 |
8.0 | 0.1 | 5.0 | 72 | 73 | 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naddaf, M.-H.; Czerny, B. Covering Factor of the Dust-Driven Broad-Line Region Clouds. Universe 2024, 10, 29. https://doi.org/10.3390/universe10010029
Naddaf M-H, Czerny B. Covering Factor of the Dust-Driven Broad-Line Region Clouds. Universe. 2024; 10(1):29. https://doi.org/10.3390/universe10010029
Chicago/Turabian StyleNaddaf, Mohammad-Hassan, and Bożena Czerny. 2024. "Covering Factor of the Dust-Driven Broad-Line Region Clouds" Universe 10, no. 1: 29. https://doi.org/10.3390/universe10010029
APA StyleNaddaf, M. -H., & Czerny, B. (2024). Covering Factor of the Dust-Driven Broad-Line Region Clouds. Universe, 10(1), 29. https://doi.org/10.3390/universe10010029