Testing Primordial Black Hole Dark Matter with Atacama Large Millimeter Array Observations of the Gravitational Lens B1422+231
Abstract
:1. Introduction
2. ALMA Observations of B1422+231
Flux Density Ratio of Image Components
3. Lens and Source Model of B1422+231
3.1. Lens Model
3.2. Source Model
3.3. Joint Modeling
4. Primordial Black Hole Microlensing Simulation
5. Simulation Results and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALMA | Atacama Large Millimeter Array |
PBH | Primordial black hole |
DMS | Dark matter substructure |
IMBH | Intermediate-mass black hole |
CASA | Common Astronomy Software Applications |
AGN | Active galactic nucleus |
References
- Bird, S.; Cholis, I.; Muñoz, J.B.; Ali-Haïmoud, Y.; Kamionkowski, M.; Kovetz, E.D.; Raccanelli, A.; Riess, A.G. Did LIGO Detect Dark Matter? Phys. Rev. Lett. 2016, 116, 201301. [Google Scholar] [CrossRef] [PubMed]
- Carr, B.; Kühnel, F.; Sandstad, M. Primordial black holes as dark matter. Phys. Rev. D 2016, 94, 083504. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. Astrophys. J. Lett. 2019, 882, L24. [Google Scholar] [CrossRef]
- Green, A.M. Microlensing and dynamical constraints on primordial black hole dark matter with an extended mass function. Phys. Rev. D 2016, 94, 063530. [Google Scholar] [CrossRef]
- Mediavilla, E.; Jiménez-Vicente, J.; Muñoz, J.A.; Vives-Arias, H.; Calderón-Infante, J. Limits on the Mass and Abundance of Primordial Black Holes from Quasar Gravitational Microlensing. Astrophys. J. Lett. 2017, 836, L18. [Google Scholar] [CrossRef]
- Brandt, T.D. Constraints on MACHO Dark Matter from Compact Stellar Systems in Ultra-faint Dwarf Galaxies. Astrophys. J. Lett. 2016, 824, L31. [Google Scholar] [CrossRef]
- Koushiappas, S.M.; Loeb, A. Dynamics of Dwarf Galaxies Disfavor Stellar-Mass Black Holes as Dark Matter. Phys. Rev. Lett. 2017, 119, 041102. [Google Scholar] [CrossRef]
- Zhu, Q.; Vasiliev, E.; Li, Y.; Jing, Y. Primordial black holes as dark matter: Constraints from compact ultra-faint dwarfs. Mon. Not. R. Astron. Soc. 2018, 476, 2–11. [Google Scholar] [CrossRef]
- Quinn, D.P.; Wilkinson, M.I.; Irwin, M.J.; Marshall, J.; Koch, A.; Belokurov, V. On the reported death of the MACHO era. Mon. Not. R. Astron. Soc. 2009, 396, L11–L15. [Google Scholar] [CrossRef]
- Yoo, J.; Chanamé, J.; Gould, A. The End of the MACHO Era: Limits on Halo Dark Matter from Stellar Halo Wide Binaries. Astrophys. J. 2004, 601, 311–318. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Agathos, M.; et al. GW190521: A Binary Black Hole Merger with a Total Mass of 150 M⊙. Phys. Rev. Lett. 2020, 125, 101102. [Google Scholar] [CrossRef] [PubMed]
- Carr, B.; Kühnel, F. Primordial Black Holes as Dark Matter: Recent Developments. Annu. Rev. Nucl. Part. Sci. 2020, 70, 355–394. [Google Scholar] [CrossRef]
- Carr, B.; Clesse, S.; García-Bellido, J.; Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Univ. 2021, 31, 100755. [Google Scholar] [CrossRef]
- Carr, B.; Kohri, K.; Sendouda, Y.; Yokoyama, J. Constraints on primordial black holes. Rep. Prog. Phys. 2021, 84, 116902. [Google Scholar] [CrossRef]
- Miller, M.C.; Colbert, E.J.M. Intermediate-Mass Black Holes. Int. J. Mod. Phys. D 2004, 13, 1–64. [Google Scholar] [CrossRef]
- Clowe, D.; Bradač, M.; Gonzalez, A.H.; Markevitch, M.; Randall, S.W.; Jones, C.; Zaritsky, D. A Direct Empirical Proof of the Existence of Dark Matter. Astrophys. J. Lett. 2006, 648, L109–L113. [Google Scholar] [CrossRef]
- Schneider, P.; Ehlers, J.; Falco, E.E. Gravitational Lenses; Springer: New York, NY, USA, 1992. [Google Scholar] [CrossRef]
- Kochanek, C.S. Part 2: Strong gravitational lensing. In Saas-Fee Advanced Course 33: Gravitational Lensing: Strong, Weak and Micro; Meylan, G., Jetzer, P., North, P., Schneider, P., Kochanek, C.S., Wambsganss, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 91–268. [Google Scholar]
- Klypin, A.; Kravtsov, A.V.; Valenzuela, O.; Prada, F. Where Are the Missing Galactic Satellites? Astrophys. J. 1999, 522, 82–92. [Google Scholar] [CrossRef]
- Moore, B.; Ghigna, S.; Governato, F.; Lake, G.; Quinn, T.; Stadel, J.; Tozzi, P. Dark Matter Substructure within Galactic Halos. Astrophys. J. Lett. 1999, 524, L19–L22. [Google Scholar] [CrossRef]
- Bullock, J.S. Notes on the Missing Satellites Problem. arXiv 2010, arXiv:1009.4505. [Google Scholar]
- Bullock, J.S.; Boylan-Kolchin, M. Small-Scale Challenges to the ΛCDM Paradigm. Annu. Rev. Astron. Astrophys. 2017, 55, 343–387. [Google Scholar] [CrossRef]
- Nadler, E.O.; Drlica-Wagner, A.; Bechtol, K.; Mau, S.; Wechsler, R.H.; Gluscevic, V.; Boddy, K.; Pace, A.B.; Li, T.S.; McNanna, M.; et al. Constraints on Dark Matter Properties from Observations of Milky Way Satellite Galaxies. Phys. Rev. Lett. 2021, 126, 091101. [Google Scholar] [CrossRef] [PubMed]
- Vegetti, S.; Koopmans, L.V.E. Bayesian strong gravitational-lens modelling on adaptive grids: Objective detection of mass substructure in Galaxies. Mon. Not. R. Astron. Soc. 2009, 392, 945–963. [Google Scholar] [CrossRef]
- Vegetti, S.; Lagattuta, D.J.; McKean, J.P.; Auger, M.W.; Fassnacht, C.D.; Koopmans, L.V.E. Gravitational detection of a low-mass dark satellite galaxy at cosmological distance. Nature 2012, 481, 341–343. [Google Scholar] [CrossRef] [PubMed]
- Hezaveh, Y.; Dalal, N.; Holder, G.; Kuhlen, M.; Marrone, D.; Murray, N.; Vieira, J. Dark Matter Substructure Detection Using Spatially Resolved Spectroscopy of Lensed Dusty Galaxies. Astrophys. J. 2013, 767, 9. [Google Scholar] [CrossRef]
- MacLeod, C.L.; Jones, R.; Agol, E.; Kochanek, C.S. Detection of Substructure in the Gravitationally Lensed Quasar MG0414+0534 Using Mid-infrared and Radio VLBI Observations. Astrophys. J. 2013, 773, 35. [Google Scholar] [CrossRef]
- Nierenberg, A.M.; Treu, T.; Wright, S.A.; Fassnacht, C.D.; Auger, M.W. Detection of substructure with adaptive optics integral field spectroscopy of the gravitational lens B1422+231. Mon. Not. R. Astron. Soc. 2014, 442, 2434–2445. [Google Scholar] [CrossRef]
- Hezaveh, Y.D.; Dalal, N.; Marrone, D.P.; Mao, Y.Y.; Morningstar, W.; Wen, D.; Blandford, R.D.; Carlstrom, J.E.; Fassnacht, C.D.; Holder, G.P.; et al. Detection of Lensing Substructure Using ALMA Observations of the Dusty Galaxy SDP.81. Astrophys. J. 2016, 823, 37. [Google Scholar] [CrossRef]
- Hezaveh, Y.; Dalal, N.; Holder, G.; Kisner, T.; Kuhlen, M.; Perreault Levasseur, L. Measuring the power spectrum of dark matter substructure using strong gravitational lensing. J. Cosmol. Astro-Part. Phys. 2016, 2016, 048. [Google Scholar] [CrossRef]
- Cyr-Racine, F.Y.; Keeton, C.R.; Moustakas, L.A. Beyond subhalos: Probing the collective effect of the Universe’s small-scale structure with gravitational lensing. Phys. Rev. D 2019, 100, 023013. [Google Scholar] [CrossRef]
- Gilman, D.; Birrer, S.; Nierenberg, A.; Treu, T.; Du, X.; Benson, A. Warm dark matter chills out: Constraints on the halo mass function and the free-streaming length of dark matter with eight quadruple-image strong gravitational lenses. Mon. Not. R. Astron. Soc. 2020, 491, 6077–6101. [Google Scholar] [CrossRef]
- Ostdiek, B.; Diaz Rivero, A.; Dvorkin, C. Extracting the Subhalo Mass Function from Strong Lens Images with Image Segmentation. Astrophys. J. 2022, 927, 83. [Google Scholar] [CrossRef]
- Dalal, N.; Kochanek, C.S. Direct Detection of Cold Dark Matter Substructure. Astrophys. J. 2002, 572, 25–33. [Google Scholar] [CrossRef]
- Chen, J.; Kravtsov, A.V.; Keeton, C.R. Lensing Optical Depths for Substructure and Isolated Dark Matter Halos. Astrophys. J. 2003, 592, 24–31. [Google Scholar] [CrossRef]
- Metcalf, R.B. The Importance of Intergalactic Structure to Gravitationally Lensed Quasars. Astrophys. J. 2005, 629, 673–679. [Google Scholar] [CrossRef]
- Wambsganss, J.; Bode, P.; Ostriker, J.P. Gravitational Lensing in a Concordance ΛCDM Universe: The Importance of Secondary Matter along the Line of Sight. Astrophys. J. Lett. 2005, 635, L1–L4. [Google Scholar] [CrossRef]
- Xu, D.D.; Mao, S.; Cooper, A.P.; Gao, L.; Frenk, C.S.; Angulo, R.E.; Helly, J. On the effects of line-of-sight structures on lensing flux-ratio anomalies in a ΛCDM universe. Mon. Not. R. Astron. Soc. 2012, 421, 2553–2567. [Google Scholar] [CrossRef]
- Schechter, P.L.; Wambsganss, J. Quasar Microlensing at High Magnification and the Role of Dark Matter: Enhanced Fluctuations and Suppressed Saddle Points. Astrophys. J. 2002, 580, 685–695. [Google Scholar] [CrossRef]
- Schechter, P.L.; Wambsganss, J.; Lewis, G.F. Qualitative Aspects of Quasar Microlensing with Two Mass Components: Magnification Patterns and Probability Distributions. Astrophys. J. 2004, 613, 77–85. [Google Scholar] [CrossRef]
- Wambsganss, J. Part 4: Gravitational microlensing. In Saas-Fee Advanced Course 33: Gravitational Lensing: Strong, Weak and Micro; Meylan, G., Jetzer, P., North, P., Schneider, P., Kochanek, C.S., Wambsganss, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 453–540. [Google Scholar]
- Barvainis, R.; Ivison, R. A Submillimeter Survey of Gravitationally Lensed Quasars. Astrophys. J. 2002, 571, 712–720. [Google Scholar] [CrossRef]
- Xu, D.; Sluse, D.; Gao, L.; Wang, J.; Frenk, C.; Mao, S.; Schneider, P.; Springel, V. How well can cold dark matter substructures account for the observed radio flux-ratio anomalies. Mon. Not. R. Astron. Soc. 2015, 447, 3189–3206. [Google Scholar] [CrossRef]
- Dike, V.; Gilman, D.; Treu, T. Strong lensing constraints on primordial black holes as a dark matter candidate. Mon. Not. R. Astron. Soc. 2023, 522, 5434–5441. [Google Scholar] [CrossRef]
- McMullin, J.P.; Waters, B.; Schiebel, D.; Young, W.; Golap, K. CASA Architecture and Applications. In Astronomical Data Analysis Software and Systems XVI; Shaw, R.A., Hill, F., Bell, D.J., Eds.; Astronomical Society of the Pacific Conference Series; ASP: San Francisco, CA, USA, 2007; Volume 376, p. 127. [Google Scholar]
- Keating, G.K.; (Center for Astrophysics, Harvard & Smithsonian, Cambridge, MA, USA). Private Communication, 2018.
- Tinti, S.; Dallacasa, D.; de Zotti, G.; Celotti, A.; Stanghellini, C. High Frequency Peakers: Young radio sources or flaring blazars? Astron. Astrophys. 2005, 432, 31–43. [Google Scholar] [CrossRef]
- Stacey, H.R.; McKean, J.P.; Robertson, N.C.; Ivison, R.J.; Isaak, K.G.; Schleicher, D.R.G.; van der Werf, P.P.; Baan, W.A.; Berciano Alba, A.; Garrett, M.A.; et al. Gravitational lensing reveals extreme dust-obscured star formation in quasar host galaxies. Mon. Not. R. Astron. Soc. 2018, 476, 5075–5114. [Google Scholar] [CrossRef]
- Urry, C.M.; Padovani, P. Unified Schemes for Radio-Loud Active Galactic Nuclei. Publ. Astron. Soc. Pac. 1995, 107, 803. [Google Scholar] [CrossRef]
- Patnaik, A.R.; Browne, I.W.A.; Walsh, D.; Chaffee, F.H.; Foltz, C.B. B 1422+231: A new gravitationally lensed system at Z = 3.62. Mon. Not. R. Astron. Soc. 1992, 259, 1P–4P. [Google Scholar] [CrossRef]
- Lawrence, C.R.; Neugebauer, G.; Weir, N.; Matthews, K.; Patnaik, A.R. Infrared observations of the gravitational lens system B 1422+231. Mon. Not. R. Astron. Soc. 1992, 259, 5P–7P. [Google Scholar] [CrossRef]
- Impey, C.D.; Foltz, C.B.; Petry, C.E.; Browne, I.W.A.; Patnaik, A.R. Hubble Space Telescope Observations of the Gravitational Lens System B1422+231. Astrophys. J. Lett. 1996, 462, L53. [Google Scholar] [CrossRef]
- Condon, J.J. Errors in Elliptical Gaussian Fits. Publ. Astron. Soc. Pac. 1997, 109, 166–172. [Google Scholar] [CrossRef]
- Chiba, M.; Minezaki, T.; Kashikawa, N.; Kataza, H.; Inoue, K.T. Subaru Mid-Infrared Imaging of the Quadruple Lenses PG 1115+080 and B1422+231: Limits on Substructure Lensing. Astrophys. J. 2005, 627, 53–61. [Google Scholar] [CrossRef]
- Sluse, D.; Chantry, V.; Magain, P.; Courbin, F.; Meylan, G. COSMOGRAIL: The COSmological MOnitoring of GRAvItational Lenses. X. Modeling based on high-precision astrometry of a sample of 25 lensed quasars: Consequences for ellipticity, shear, and astrometric anomalies. Astron. Astrophys. 2012, 538, A99. [Google Scholar] [CrossRef]
- Pooley, D.; Rappaport, S.; Blackburne, J.A.; Schechter, P.L.; Wambsganss, J. X-Ray and Optical Flux Ratio Anomalies in Quadruply Lensed Quasars. II. Mapping the Dark Matter Content in Elliptical Galaxies. Astrophys. J. 2012, 744, 111. [Google Scholar] [CrossRef]
- Schechter, P.L.; Pooley, D.; Blackburne, J.A.; Wambsganss, J. A Calibration of the Stellar Mass Fundamental Plane at z ~0.5 Using the Micro-lensing-induced Flux Ratio Anomalies of Macro-lensed Quasars. Astrophys. J. 2014, 793, 96. [Google Scholar] [CrossRef]
- Kundic, T.; Hogg, D.W.; Blandford, R.D.; Cohen, J.G.; Lubin, L.M.; Larkin, J.E. The External Shear Acting on Gravitational Lens B1422+231. Astron. J. 1997, 114, 2276. [Google Scholar] [CrossRef]
- Tonry, J.L. Redshifts of the Gravitational Lenses B1422+231 and PG 1115+080. Astron. J. 1998, 115, 1–5. [Google Scholar] [CrossRef]
- Ade, P.A.R. et al. [Planck Collaboration] Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 2016, 594, A13. [Google Scholar] [CrossRef]
- Oguri, M. The Mass Distribution of SDSS J1004+4112 Revisited. Publ. Astron. Soc. Jpn. 2010, 62, 1017. [Google Scholar] [CrossRef]
- Hezaveh, Y.D.; Marrone, D.P.; Fassnacht, C.D.; Spilker, J.S.; Vieira, J.D.; Aguirre, J.E.; Aird, K.A.; Aravena, M.; Ashby, M.L.N.; Bayliss, M.; et al. ALMA Observations of SPT-discovered, Strongly Lensed, Dusty, Star-forming Galaxies. Astrophys. J. 2013, 767, 132. [Google Scholar] [CrossRef]
- Spilker, J.S.; Marrone, D.P.; Aravena, M.; Béthermin, M.; Bothwell, M.S.; Carlstrom, J.E.; Chapman, S.C.; Crawford, T.M.; de Breuck, C.; Fassnacht, C.D.; et al. ALMA Imaging and Gravitational Lens Models of South Pole Telescope—Selected Dusty, Star-Forming Galaxies at High Redshifts. Astrophys. J. 2016, 826, 112. [Google Scholar] [CrossRef]
- Sérsic, J.L. Influence of the atmospheric and instrumental dispersion on the brightness distribution in a galaxy. Bol. Asoc. Argent. Astron. Plata Argent. 1963, 6, 41–43. [Google Scholar]
- Feroz, F.; Hobson, M.P. Multimodal nested sampling: An efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses. Mon. Not. R. Astron. Soc. 2008, 384, 449–463. [Google Scholar] [CrossRef]
- Feroz, F.; Hobson, M.P.; Bridges, M. MULTINEST: An efficient and robust Bayesian inference tool for cosmology and particle physics. Mon. Not. R. Astron. Soc. 2009, 398, 1601–1614. [Google Scholar] [CrossRef]
- Feroz, F.; Hobson, M.P.; Cameron, E.; Pettitt, A.N. Importance Nested Sampling and the MultiNest Algorithm. Open J. Astrophys. 2019, 2, 10. [Google Scholar] [CrossRef]
- Buchner, J.; Georgakakis, A.; Nandra, K.; Hsu, L.; Rangel, C.; Brightman, M.; Merloni, A.; Salvato, M.; Donley, J.; Kocevski, D. X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue. Astron. Astrophys. 2014, 564, A125. [Google Scholar] [CrossRef]
- Thompson, A.R.; Moran, J.M.; Swenson, G.W., Jr. Interferometry and Synthesis in Radio Astronomy, 3rd ed.; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Kormann, R.; Schneider, P.; Bartelmann, M. A gravitational lens model for B1422+231. Astron. Astrophys. 1994, 286, 357–364. [Google Scholar]
- Bradač, M.; Schneider, P.; Steinmetz, M.; Lombardi, M.; King, L.J.; Porcas, R. B1422+231: The influence of mass substructure on strong lensing. Astron. Astrophys. 2002, 388, 373–382. [Google Scholar] [CrossRef]
- Chiba, M. Probing Dark Matter Substructure in Lens Galaxies. Astrophys. J. 2002, 565, 17–23. [Google Scholar] [CrossRef]
- Thompson, A.C.; Fluke, C.J.; Barnes, D.G.; Barsdell, B.R. Teraflop per second gravitational lensing ray-shooting using graphics processing units. New Astron. 2010, 15, 16–23. [Google Scholar] [CrossRef]
- Bate, N.F.; Fluke, C.J.; Barsdell, B.R.; Garsden, H.; Lewis, G.F. Computational advances in gravitational microlensing: A comparison of CPU, GPU, and parallel, large data codes. New Astron. 2010, 15, 726–734. [Google Scholar] [CrossRef]
- Vernardos, G.; Fluke, C.J. Adventures in the microlensing cloud: Large datasets, eResearch tools, and GPUs. Astron. Comput. 2014, 6, 1–18. [Google Scholar] [CrossRef]
- Mediavilla, E.; Muñoz, J.A.; Falco, E.; Motta, V.; Guerras, E.; Canovas, H.; Jean, C.; Oscoz, A.; Mosquera, A.M. Microlensing-based Estimate of the Mass Fraction in Compact Objects in Lens Galaxies. Astrophys. J. 2009, 706, 1451–1462. [Google Scholar] [CrossRef]
- Carr, B.; Raidal, M.; Tenkanen, T.; Vaskonen, V.; Veermäe, H. Primordial black hole constraints for extended mass functions. Phys. Rev. D 2017, 96, 023514. [Google Scholar] [CrossRef]
- Robitaille, T.P. et al. [Astropy Collaboration] Astropy: A community Python package for astronomy. Astron. Astrophys. 2013, 558, A33. [Google Scholar] [CrossRef]
- Price-Whelan, A.M. et al. [Astropy Collaboration] The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package. Astron. J. 2018, 156, 123. [Google Scholar] [CrossRef]
Image | Right Ascen. (h m s) | Declination (° ) | (arcsec) | (arcsec) | Flux Density (mJy) | Flux Density Ratio | Major Axis (mas) | Minor Axis (mas) | PA (deg) |
---|---|---|---|---|---|---|---|---|---|
A | 14:24:38.118 | +22:56:00.890 | +0.017 | +0.715 | 2.338 ± 0.019 | 0.912 ± 0.011 | 5.87 ± 0.97 | 2.62 ± 1.48 | 35 ± 14 |
B | 14:24:38.090 | +22:56:00.570 | −0.370 | +0.395 | 2.565 ± 0.023 | 1 | 8.53 ± 0.70 | 0.76 ± 1.25 | 23.9 ± 4.3 |
C | 14:24:38.066 | +22:55:59.823 | −0.702 | −0.355 | 1.339 ± 0.022 | 0.522 ± 0.010 | 7.8 ± 1.3 | 1.2 ± 1.3 | 16.5 ± 8.7 |
D | 14:24:38.158 | +22:55:59.762 | +0.569 | −0.415 | 0.063 ± 0.018 | 0.025 ± 0.007 | - | - | - |
Model | (arcsec) | (arcsec) | (arcsec) | (arcsec) | (arcsec) | e | (deg) | (deg) | |
---|---|---|---|---|---|---|---|---|---|
SIE ( ) | −0.071 | −0.070 | −0.355 | −0.264 | 0.7755 | 0.285 | 127.3 | 0.172 | 125.0 |
SIE ( ) | −0.066 | −0.068 | −0.423 | −0.310 | 0.7996 | 0.477 | 126.6 | 0.117 | 125.0 |
SIE ([OIII]) | - | - | −0.3896 | −0.2404 | 0.771 | 0.16 | 123 | 0.22 | 126 |
Lens | logZ | |||||||
---|---|---|---|---|---|---|---|---|
Model | (arcsec) | (arcsec) | (Jy) | (mas) | (deg) | |||
SIE () | 0 | |||||||
SIE ([O III]) | −2589 |
Flux | ||||||||
---|---|---|---|---|---|---|---|---|
Density | ||||||||
Ratio | p-Value | CI | p-Value | CI | p-Value | CI | p-Value | CI |
A/B | 0 | - | 0.0627 | 1.5322 | 4.373 × | 3.9230 | 0.2414 | 0.7017 |
C/B | 0.3579 | 0.3640 | 0.4829 | 0.04276 | 0.4250 | 0.1891 | 0.4936 | 0.01612 |
(A+C)/B | 2.000 × | 5.4909 | 0.1425 | 1.0691 | 0.002989 | 2.7490 | 0.3154 | 0.4806 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, D.; Kemball, A.J. Testing Primordial Black Hole Dark Matter with Atacama Large Millimeter Array Observations of the Gravitational Lens B1422+231. Universe 2024, 10, 37. https://doi.org/10.3390/universe10010037
Wen D, Kemball AJ. Testing Primordial Black Hole Dark Matter with Atacama Large Millimeter Array Observations of the Gravitational Lens B1422+231. Universe. 2024; 10(1):37. https://doi.org/10.3390/universe10010037
Chicago/Turabian StyleWen, Di, and Athol J. Kemball. 2024. "Testing Primordial Black Hole Dark Matter with Atacama Large Millimeter Array Observations of the Gravitational Lens B1422+231" Universe 10, no. 1: 37. https://doi.org/10.3390/universe10010037
APA StyleWen, D., & Kemball, A. J. (2024). Testing Primordial Black Hole Dark Matter with Atacama Large Millimeter Array Observations of the Gravitational Lens B1422+231. Universe, 10(1), 37. https://doi.org/10.3390/universe10010037