Foundational Issues in Dynamical Casimir Effect and Analogue Features in Cosmological Particle Creation
Abstract
:1. Introduction
1.1. Three Kinds of Quantum Field Processes
1.2. Seven Issues of Interest
2. Setup: Requisite Conditions for the Validation of the Analogies
2.1. Quantum Fields in and Spaces: Boundary Conditions and Topology
2.2. Coupling Between Quantum Field and Spacetime
2.3. Factors in DCE and Cases in Cosmology with Finer Correspondences
2.3.1. Cosmology of and DCE in 3D Space
2.3.2. Imperfect Mirror
3. Mechanism, Dynamics, and Processes
3.1. Particle Creation Is a Nonadiabatic Process, Negligible Under Adiabatic Approximations
3.2. Enhancement at Finite Temperature Comes from Stimulated Emission, True Only for Bosons
4. Backreaction: Vacuum Viscosity, Quantum Lenz Law and Fluctuation–Dissipation Relation
4.1. Dissipation Due to the Backreaction of Particles Created by the Parametric Amplification of Quantum Fluctuations Has Memory
4.2. Quantum Lenz Law, Vacuum Viscosity, Energy Balance, Self-Consistency Condition and Fluctuation–Dissipation Relation
5. MOF Model for Moving Atoms or Mirrors and Analogous Models in Cosmology
5.1. Structure of the MOF Model for Quantum Optomechanics (QOM)
5.2. An Interlude: Cosmological Analogue in Preheating After Inflation
5.3. Developments and Applications of the MOF Theoretical Framework
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Birrell, N.D.; Davies, P.C.W. Quantum Fields in Curved Space; Cambridge University Press: Cambridge, UK, 1984. [Google Scholar]
- Parker, L.; Toms, D.J. Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Hu, B.-L.; Verdaguer, E. Semiclassical and Stochastic Gravity: Quantum Field Effects on Curved Spacetime; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Dodonov, V. Fifty years of the dynamical Casimir effect. Physics 2020, 2, 67–104. [Google Scholar] [CrossRef]
- Barcelo, C.; Liberati, S.; Visser, M. Analogue gravity. Liv. Rev. Rel. 2011, 14, 1. [Google Scholar] [CrossRef]
- Xie, Y.; Hsiang, J.-T.; Hu, B.L. Dynamical vacuum compressibility of space. Phys. Rev. D 2024, 109, 065027. [Google Scholar] [CrossRef]
- Casimir, H.B.G. On the attraction between two perfectly conducting plates. Kon. Ned. Akad. Wetensch. Proc. 1948, 51, 793. [Google Scholar]
- Milton, K.A. The Casimir Effect: Physical Manifestations of Zero-Point Energy; World Scientific: Singapore, 2001. [Google Scholar]
- Bordag, M.; Mohideen, U.; Mostepanenko, V.M. New developments in the Casimir effect. Phys. Rep. 2001, 353, 1–205. [Google Scholar] [CrossRef]
- Klimchitskaya, G.L.; Mohideen, U.; Mostepanenko, V.M. The Casimir force between real materials: Experiment and theory. Rev. Mod. Phys. 2009, 81, 1827. [Google Scholar] [CrossRef]
- Dalvit, D.; Milonni, P.; Roberts, D.; Rosa, F.D. Lecture Notes in Physics, Vol. 834: Casimir Physics; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Ford, L.H. Quantum vacuum energy in general relativity. Phys. Rev. D 1975, 11, 3370. [Google Scholar] [CrossRef]
- Parker, L. Quantized fields and particle creation in expanding universes. Phys. Rev. 1969, 183, 1057. [Google Scholar] [CrossRef]
- Zel’dovich, Y.B. Particle production in cosmology. JETP Lett. 1970, 12, 307. [Google Scholar]
- Capper, D.M.; Duff, M.J. Trace anomalies in dimensional regularization. Nuovo Cim. A 1974, 23, 173–183. [Google Scholar] [CrossRef]
- Duff, M.J. Twenty years of the Weyl anomaly. Class. Quant. Grav. 1994, 11, 1387. [Google Scholar] [CrossRef]
- Hawking, S.W. Particle creation by black holes. Comm. Math. Phys. 1975, 43, 199–220. [Google Scholar] [CrossRef]
- Christensen, S.M.; Fulling, S.A. Trace anomalies and the Hawking effect. Phys. Rev. D 1977, 15, 2088. [Google Scholar] [CrossRef]
- Fischetti, M.V.; Hartle, J.B.; Hu, B.L. Quantum effects in the early universe. I. Influence of trace anomalies on homogeneous, isotropic, classical geometries. Phys. Rev. D 1979, 20, 1757. [Google Scholar] [CrossRef]
- Starobinsky, A.A. A new type of isotropic cosmological models without singularity. Phys. Lett. B 1980, 91, 99–102. [Google Scholar] [CrossRef]
- Anderson, P. Effects of quantum fields on singularities and particle horizons in the early universe. Phys. Rev. D 1983, 28, 271. [Google Scholar] [CrossRef]
- Nagatani, Y.; Shigetomi, K. Effective theoretical approach to back reaction of the dynamical Casimir effect in 1 + 1 dimensions. Phys. Rev. A 2000, 62, 022117. [Google Scholar] [CrossRef]
- Xie, Y.; Butera, S.; Hu, B.L. Optomechanical Backreaction of Quantum field processes in Dynamical Casimir effect. Compt. Rend. Phys. 2024, 25, 1–22. [Google Scholar] [CrossRef]
- Kippenberg, T.J.; Vahala, K.J. Cavity opto-mechanics. Opt. Exp. 2007, 15, 17172–17205. [Google Scholar] [CrossRef]
- Genes, C.; Mari, A.; Vitali, D.; Tombesi, P. Quantum effects in optomechanical systems. Adv. Atom. Mol. Opt. Phys. 2009, 57, 33. [Google Scholar]
- Milburn, G.J.; Woolley, M.J. An introduction to quantum optomechanics. Acta Phys. Slov. 2011, 61, 483. [Google Scholar] [CrossRef]
- Nation, P.D.; Johansson, J.R.; Blencowe, M.P.; Nori, F. Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits. Rev. Mod. Phys. 2012, 84, 1. [Google Scholar] [CrossRef]
- Aspelmeyer, M.; Meystre, P.; Schwab, K. Quantum optomechanics. Phys. Today 2012, 65, 29–35. [Google Scholar] [CrossRef]
- Meystre, P. A short walk through quantum optomechanics. Ann. Phys. 2013, 525, 215–233. [Google Scholar] [CrossRef]
- Aspelmeyer, M.; Kippenberg, T.J.; Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 2014, 86, 1391. [Google Scholar] [CrossRef]
- Bowen, W.P.; Milburn, G.J. Quantum Optomechanics; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Barzanjeh, S.; Xuereb, A.; Gröblacher, S.; Paternostro, M.; Regal, C.A.; Weig, E.M. Optomechanics for quantum technologies. Nat. Phys. 2022, 18, 15–24. [Google Scholar] [CrossRef]
- Macrì, V.; Ridolfo, A.; Stefano, O.D.; Kockum, A.F.; Nori, F.; Savasta, S. Nonperturbative Dynamical Casimir effect in optomechanical systems: Vacuum Casimir-Rabi splittings. Phys. Rev. X 2018, 8, 011031. [Google Scholar] [CrossRef]
- Ryan, M.P.; Shepley, L.C. Homogeneous Relativistic Cosmologies; Princeton University Press: Princeton, NJ, USA, 2015. [Google Scholar]
- Rego, A.L.C.; Braga, A.N.; Silva, J.D.L.; Alves, D.T. Dynamical Casimir effect enhanced by decreasing the mirror reflectivity. Phys. Rev. D 2022, 105, 025013. [Google Scholar] [CrossRef]
- Gibbons, G.W.; Hawking, S.W. Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D 1977, 15, 2738. [Google Scholar] [CrossRef]
- Casimir, H.B.G.; Polder, D. The Influence of retardation on the London-van der Waals forces. Phys. Rev. 1948, 73, 360. [Google Scholar] [CrossRef]
- Moore, G.T. Quantum theory of the electromagnetic field in a variable-length one-dimensional cavity. J. Math. Phys. 1970, 11, 2679–2691. [Google Scholar] [CrossRef]
- Davies, P.C.W.; Fulling, S.A. Radiation from moving mirrors and from black holes. Proc. Roy. Soc. Lond. A 1977, 356, 237. [Google Scholar]
- Fulling, S.A.; Davies, P.C.W. Radiation from a moving mirror in two dimensional space-time: Conformal anomaly. Proc. R. Soc. Lond. A 1976, 348, 393. [Google Scholar]
- Unruh, W.G. Notes on black-hole evaporation. Phys. Rev. D 1976, 14, 870. [Google Scholar] [CrossRef]
- Guth, A.H. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 1981, 23, 347. [Google Scholar] [CrossRef]
- Albrecht, A.; Steinhardt, P.J. Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett. 1982, 48, 1220. [Google Scholar] [CrossRef]
- Linde, A. Inflationary Cosmology in Inflationary Cosmology; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Fulling, S.A. Aspects of Quantum Field Theory in Curved Spacetime; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Wald, R.M. Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics; University of Chicago Press: Chicago, IL, USA, 1994. [Google Scholar]
- Mukhanov, V.; Winitzki, S. Introduction to Quantum Effects in Gravity; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Ford, L.H. Cosmological particle production: A review, Rep. Prog. Phys. 2021, 84, 116901. [Google Scholar] [CrossRef]
- Weinfurtner, S.; Tedford, E.W.; Penrice, M.C.; Unruh, W.G.; Lawrence, G.A. Measurement of stimulated Hawking emission in an analogue system Phys. Rev. Lett. 2011, 106, 021302. [Google Scholar] [CrossRef]
- Steinhauer, J. Analogue cosmological particle creation in an ultracold quantum fluid of light. Nat. Comm. 2022, 13, 2890. [Google Scholar] [CrossRef]
- DeWitt, B.S. Quantum field theory in curved spacetime. Phys. Rep. 1975, 19, 295–357. [Google Scholar] [CrossRef]
- Walker, W.R. Particle and energy creation by moving mirrors. Phys. Rev. D 1985, 31, 767. [Google Scholar] [CrossRef] [PubMed]
- Carlitz, R.D.; Willey, R.S. Reflections on moving mirrors. Phys. Rev. D 1987, 36, 2327. [Google Scholar] [CrossRef] [PubMed]
- Chung, T.D.; Verlinde, H. Dynamical moving mirrors and black holes. Nucl. Phys. B 1994, 418, 305–336. [Google Scholar] [CrossRef]
- Obadia, N.; Parentani, R. Notes on moving mirrors. Phys. Rev. D 2001, 64, 044019. [Google Scholar] [CrossRef]
- Obadia, N.; Parentani, R. Uniformly accelerated mirrors. I. Mean fluxes. Phys. Rev. D 2003, 67, 024021, Erratum in Phys. Rev. D 2003, 67, 024022. [Google Scholar] [CrossRef]
- Good, M.R.; Linder, E.V.; Wilczek, F. Moving mirror model for quasithermal radiation fields. Phys. Rev. D 2020, 101, 025012. [Google Scholar] [CrossRef]
- Hu, B.L. Hawking-Unruh thermal radiance as relativistic exponential scaling of quantum noise. In Proceedings of the 4th International Workshop on Thermal Field Theory and Applications, Dalian, China, 5–10 August 1995; Gui, Y.X., Khanna, F.C., Eds.; World Scientific: Singapore, 1996. [Google Scholar]
- Koks, D.; Hu, B.L.; Matacz, A.; Raval, A. Thermal particle creation in cosmological spacetimes: A stochastic approach. Phys. Rev. D 1997, 56, 4905. [Google Scholar] [CrossRef]
- Galley, C.R.; Behunin, R.O.; Hu, B.L. Oscillator-field model of moving mirrors in quantum optomechanics. Phys. Rev. A 2013, 87, 043832. [Google Scholar] [CrossRef]
- Sinha, K.; Lin, S.-Y.; Hu, B.L. Mirror-field entanglement in a microscopic model for quantum optomechanics. Phys. Rev. A 2015, 92, 023852. [Google Scholar] [CrossRef]
- Behunin, R.O.; Hu, B.L. Nonequilibrium forces between two neutral atoms mediated by a quantum field. Phys. Rev. A 2010, 82, 022507. [Google Scholar] [CrossRef]
- Behunin, R.O.; Hu, B.L. Nonequilibrium atom-dielectric forces mediated by a quantum field. Phys. Rev. A 2011, 84, 012902. [Google Scholar] [CrossRef]
- Hu, B.L. Coarse graining and back reaction in inflationary and minisuperspace cosmology. In Proceedings of the Seventh International Latin-American Symposium on General Relativity (SILARG VII)–Proceeding in Relativity and Gravitation: Classical and Quantum, Cocoyoc, Mexico, 2–7 December 1990; D’Olivio, J., Nahmad-Achar, E., Rosenbaum, M., Ryan, M.P., Urrutia, L.F., Zertuche, F., Eds.; World Scientific: Singapore, 1991. [Google Scholar]
- Calzetta, E.A.; Hu, B.L.; Mazzitelli, F.D. Coarse-grained effective action and renormalization group theory in semiclassical gravity and cosmology. Phys. Rep. 2001, 352, 459–520. [Google Scholar] [CrossRef]
- Johnson, P.R.; Hu, B.L. Stochastic theory of relativistic particles moving in a quantum field: Scalar Abraham-Lorentz-Dirac-Langevin equation, radiation reaction and vacuum fluctuations. Phys. Rev. D 2002, 65, 065015. [Google Scholar] [CrossRef]
- Golestanian, R.; Kardar, M. Path-integral approach to the dynamic Casimir effect with fluctuating boundaries. Phys. Rev. A 1998, 58, 1713. [Google Scholar] [CrossRef]
- Wu, C.-H.; Lee, D.S. Nonequilibrium dynamics of moving mirrors in quantum fields: Influence functional and the Langevin equation. Phys. Rev. D 2005, 71, 125005. [Google Scholar] [CrossRef]
- Hsiang, J.-T.; Lee, D.S.; Wu, C.-H. Nonequilibrium backreaction on a moving charge and mirror in quantum fields. J. Kor. Phys. Soc. 2006, 49, 742. [Google Scholar]
- Fosco, C.D.; Lombardo, F.C.; Mazzitelli, F.D. Quantum dissipative effects in moving mirrors: A functional approach. Phys. Rev. D 2007, 76, 085007. [Google Scholar] [CrossRef]
- Lombardo, F.C.; Mazzitelli, F.D. The quantum open systems approach to the dynamical Casimir effect. Phys. Scr. 2010, 82, 038113. [Google Scholar] [CrossRef]
- Farías, M.B.; Fosco, C.D.; Lombardo, F.C.; Mazzitelli, F.D.; López, A.E.R. Functional approach to quantum friction: Effective action and dissipative force. Phys. Rev. D 2015, 91, 105020. [Google Scholar] [CrossRef]
- Pendry, J.B. Shearing the vacuum—Quantum friction. J. Phys. Cond. Matt. 1997, 9, 10301. [Google Scholar] [CrossRef]
- Pendry, J.B. Can sheared surfaces emit light? J. Mod. Opt. 1998, 45, 2389–2408. [Google Scholar] [CrossRef]
- Pendry, J.B. Quantum friction—Fact or fiction? New J. Phys. 2010, 12, 033028. [Google Scholar] [CrossRef]
- Pendry, J.B. Reply to comment on “Quantum friction—Fact or friction?”. New J. Phys. 2010, 12, 068002. [Google Scholar] [CrossRef]
- Barton, G. On van der Waals friction: I. Between two atoms. New J. Phys. 2010, 12, 113044. [Google Scholar] [CrossRef]
- Barton, G. On van der Waals friction. II: Between atom and half-space. New J. Phys. 2010, 12, 113045. [Google Scholar] [CrossRef]
- Kardar, M.; Golestanian, R. The “friction” of vacuum, and other fluctuation-induced forces. Rev. Mod. Phys. 1999, 71, 1233. [Google Scholar] [CrossRef]
- Volokitin, A.I.; Persson, B.N.J. Near-field radiative heat transfer and noncontact friction. Rev. Mod. Phys. 2007, 79, 1291. [Google Scholar] [CrossRef]
- Milton, K.A.; Høye, J.S.; Brevik, I. The Reality of Casimir Friction. Symmetry 2016, 8, 29. [Google Scholar] [CrossRef]
- Shresta, S.; Hu, B.L.; Phillips, N.G. Moving atom-field interaction: Correction to the Casimir-Polder effect from coherent backaction. Phys. Rev. A 2003, 68, 062101. [Google Scholar] [CrossRef]
- Dalvit, D.A.R.; Neto, P.A.M. Decoherence via the Dynamical Casimir Effect. Phys. Rev. Lett. 2000, 84, 798. [Google Scholar] [CrossRef]
- Neto, P.A.M.; Dalvit, D.A.R. Radiation pressure as a source of decoherence. Phys. Rev. A 2000, 62, 042103. [Google Scholar] [CrossRef]
- Shresta, S.; Hu, B.L. Moving atom-field interaction: Quantum motional decoherence and relaxation. Phys. Rev. A 2003, 68, 012110. [Google Scholar] [CrossRef]
- Busch, X.; Parentani, R. Dynamical Casimir effect in dissipative media: When is the final state nonseparable? Phys. Rev. D 2013, 88, 045023. [Google Scholar] [CrossRef]
- Busch, X.; Parentani, R.; Robertson, S. Quantum entanglement due to modulated dynamical Casimir effect. Phys. Rev. A 2014, 89, 063606. [Google Scholar] [CrossRef]
- Romualdo, I.; Hackl, L.; Yokomizo, N. Entanglement production in the dynamical Casimir effect at parametric resonance. Phys. Rev. D 2019, 100, 065022. [Google Scholar] [CrossRef]
- Brun, T.A.; Mlodinow, L. Decoherence by coupling to internal vibrational modes. Phys. Rev. A 2016, 94, 052123. [Google Scholar] [CrossRef]
- Carney, D.; Stamp, P.C.E.; Taylor, J.M. Tabletop experiments for quantum gravity: A user’s manual. Class. Quant. Grav. 2019, 36, 034001. [Google Scholar] [CrossRef]
- Coradeschi, F.; Frassino, A.M.; Guerreiro, T.; West, J.R.; Schioppa, E.J. Can we detect the quantum nature of weak gravitational fields? Universe 2021, 7, 414. [Google Scholar] [CrossRef]
- Schnabel, R.; Korobko, M. Macroscopic quantum mechanics in gravitational-wave observatories and beyond. AVS Quantum Sci. 2022, 4, 014701. [Google Scholar] [CrossRef]
- Abrahão, L.; Coradeschi, F.; Frassino, A.M.; Guerreiro, T.; West, J.R.; Schioppa, E.J. The quantum optics of gravitational waves. Class. Quant. Grav. 2024, 41, 015029. [Google Scholar] [CrossRef]
- McClelland, D.E.; Mavalvala, N.; Chen, Y.; Schnabel, R. Advanced interferometry, quantum optics and optomechanics in gravitational wave detectors. Las. Photon. Rev. 2011, 5, 677–696. [Google Scholar] [CrossRef]
- Danilishin, S.L.; Khalili, F.Y. Quantum measurement theory in gravitational-wave detectors. Liv. Rev. Rel. 2012, 15, 1. [Google Scholar] [CrossRef] [PubMed]
- Pang, B.; Chen, Y. Quantum interactions between a laser interferometer and gravitational waves. Phys. Rev. D 2018, 98, 124006. [Google Scholar] [CrossRef]
- Pang, B.; Chen, Y. Fundamental relations between measurement, radiation, and decoherence in gravitational wave laser interferometer detectors. Phys. Rev. D 2019, 99, 124016. [Google Scholar] [CrossRef]
- Zhou, R.; Behunin, R.; Lin, S.Y.; Hu, B.L. Boundary effects on quantum entanglement and its dynamics in a detector-field system. J. High Energy Phys. 2013, 8, 40. [Google Scholar] [CrossRef]
- Isham, C.J. Twisted quantum Fields in a curved space-time. Proc. Roy. Soc. Lond. A 1978, 362, 383. [Google Scholar]
- Avis, S.J.; Isham, C.J. Vacuum solutions for a twisted scalar Field. Proc. Roy. Soc. Lond. A 1978, 363, 581. [Google Scholar]
- Dowker, J.S.; Banach, R. Quantum Field theory on Clifford-Klein space-times. The effective Lagrangian and vacuum stress energy tensor. J. Phys. A 1978, 11, 2255. [Google Scholar] [CrossRef]
- DeWitt, B.S.; Hart, C.F.; Isham, C.J. Topology and quantum field theory. Phys. A 1979, 96, 197–211. [Google Scholar] [CrossRef]
- Lin, S.Y.; Chou, C.H.; Hu, B.L. Entanglement dynamics of detectors in an Einstein cylinder. J. High Energy Phys. 2016, 3, 47. [Google Scholar] [CrossRef]
- Crocce, M.; Dalvit, D.A.R.; Mazzitelli, F.D. Resonant photon creation in a three-dimensional oscillating cavity. Phys. Rev. A 2001, 64, 013808. [Google Scholar] [CrossRef]
- Crocce, M.; Dalvit, D.A.R.; Mazzitelli, F.D. Quantum electromagnetic field in a three-dimensional oscillating cavity. Phys. Rev. A 2002, 66, 033811. [Google Scholar] [CrossRef]
- Fedotov, A.M.; Lozovik, Y.E.; Narozhny, N.B.; Petrosyan, A.N. Dynamical Casimir effect in a one-dimensional uniformly contracting cavity. Phys. Rev. A 2006, 74, 013806. [Google Scholar] [CrossRef]
- Bialynicki-Birula, I.; Bialynicki-Birula, Z. Dynamical Casimir effect in oscillating media. Phys. Rev. A 2008, 78, 042109. [Google Scholar] [CrossRef]
- Calzetta, E.A.; Hu, B.L. Nonequilibrium Quantum Field Theory; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Lo, L.; Fong, P.T.; Law, C.K. Dynamical Casimir effect in resonance fluorescence. Phys. Rev. A 2020, 102, 033703. [Google Scholar] [CrossRef]
- Callan, C.G., Jr.; Coleman, S.; Jackiw, R. A new improved energy-momentum tensor. Ann. Phys. 1970, 59, 42–73. [Google Scholar] [CrossRef]
- Thorne, K.S.; Price, R.H.; MacDonald, D.A. Black Holes: The Membrane Paradigm; Yale University Press: New Haven, CT, USA, 1986. [Google Scholar]
- Lock, M.P.E.; Fuentes, I. Dynamical Casimir effect in curved spacetime. New J. Phys. 2017, 19, 073005. [Google Scholar] [CrossRef]
- Calzetta, E.; Hu, B.L. Bose-Einstein condensate collapse and dynamical squeezing of vacuum fluctuations. Phys. Rev. A 2003, 68, 043625. [Google Scholar] [CrossRef]
- Calzetta, E.; Hu, B.L. Early universe quantum processes in BEC collapse experiments. Int. J. Theor. Phys. 2005, 44, 1691–1704. [Google Scholar] [CrossRef]
- Eckel, S.; Kumar, A.; Jacobson, T.; Spielman, I.B.; Campbell, G.K. A rapidly expanding Bose-Einstein condensate: An expanding universe in the lab. Phys. Rev. X 2018, 8, 021021. [Google Scholar] [CrossRef]
- Carusotto, I.; Balbinot, R.; Fabbri, A.; Recati, A. Density correlations and dynamical Casimir emission of Bogoliubov phonons in modulated atomic Bose-Einstein condensates. Eur. Phys. J. D 2010, 56, 391–404. [Google Scholar] [CrossRef]
- Motazedifard, A.; Dalafi, A.; Naderi, M.H.; Roknizadeh, R. Controllable generation of photons and phonons in a coupled Bose-Einstein condensate-optomechanical cavity via the parametric dynamical Casimir effect. Ann. Phys. 2018, 396, 202–219. [Google Scholar] [CrossRef]
- Michael, M.H.; Schmiedmayer, J.; Demler, E. From the moving piston to the dynamical Casimir effect: Explorations with shaken condensates. Phys. Rev. A 2019, 99, 053615. [Google Scholar] [CrossRef]
- Lin, S.-Y. Unruh-DeWitt detectors as mirrors: Dynamical reflectivity and Casimir effect. Phys. Rev. D 2018, 98, 105010. [Google Scholar] [CrossRef]
- Hu, B.L. Scalar waves in the mixmaster universe. II. Particle creation. Phys. Rev. D 1974, 9, 3263. [Google Scholar] [CrossRef]
- Schwinger, J. Casimir light: A glimpse. Proc. Natl. Acad. Sci. USA 1993, 90, 958–959. [Google Scholar] [CrossRef]
- Schwinger, J. Casimir light: The source. Proc. Natl. Acad. Sci. USA 1993, 90, 2105–2106. [Google Scholar] [CrossRef]
- Schwinger, J. Casimir light: Photon pairs. Proc. Natl. Acad. Sci. USA 1993, 90, 4505–4507. [Google Scholar] [CrossRef]
- Schwinger, J. Casimir light: Pieces of the action. Proc. Natl. Acad. Sci. USA 1993, 90, 7285–7287. [Google Scholar] [CrossRef]
- Schwinger, J. Casimir light: Field pressure. Proc. Natl. Acad. Sci. USA 1994, 91, 6473–6475. [Google Scholar] [CrossRef]
- Eberlein, C. Sonoluminescence as quantum vacuum radiation. Phys. Rev. Lett. 1996, 76, 3842. [Google Scholar] [CrossRef] [PubMed]
- Eberlein, C. Theory of quantum radiation observed as sonoluminescence. Phys. Rev. A 1996, 53, 2772. [Google Scholar] [CrossRef] [PubMed]
- Lambrecht, A.; Jaekel, M.-T.; Reynaud, S. Comment on “Sonoluminescence as quantum vacuum radiation”. Phys. Rev. Lett. 1997, 78, 2267. [Google Scholar] [CrossRef]
- Unnikrishnan, C.S.; Mukhopadhyay, S. Comment on “Sonoluminescence as quantum vacuum radiation”. Phys. Rev. Lett. 1996, 77, 4690. [Google Scholar] [CrossRef] [PubMed]
- Milton, K.A.; Ng, Y.J. Casimir energy for a spherical cavity in a dielectric: Applications to sonoluminescence. Phys. Rev. E 1997, 55, 4207. [Google Scholar] [CrossRef]
- Milton, K.A.; Ng, Y.J. Observability of the bulk Casimir effect: Can the dynamical Casimir effect be relevant to sonoluminescence? Phys. Rev. E 1998, 57, 5504. [Google Scholar] [CrossRef]
- Brevik, I.; Marachevsky, V.N.; Milton, K.A. Identity of the van der Waals force and the Casimir effect and the irrelevance of these phenomena to sonoluminescence. Phys. Rev. Lett. 1999, 82, 3948. [Google Scholar] [CrossRef]
- Belgiorno, F.; Liberati, S.; Visser, M.; Sciama, D.W. Sonoluminescence: Two-photon correlations as a test of thermality. Phys. Lett. A 2000, 271, 308–313. [Google Scholar] [CrossRef]
- Karmakar, R.; Maity, D. Sonoluminescence-Photon production in time dependent analog system. Phys. Rev. D 2024, 109, 105016. [Google Scholar] [CrossRef]
- Zel’dovich, Y.B.; Starobinsky, A.A. Particle production and vacuum polarization in an anisotropic gravitational field. Zh. Eksp. Teor. Fiz. 1971, 61, 2161. [Google Scholar]
- Parker, L.; Fulling, S.A. Adiabatic regularization of the energy-momentum tensor of a quantized field in homogeneous spaces. Phys. Rev. D 1974, 9, 341. [Google Scholar] [CrossRef]
- Fulling, S.A.; Parker, L. Renormalization in the theory of a quantized scalar field interacting with a robertson-walker spacetime. Ann. Phys. 1974, 87, 176–204. [Google Scholar] [CrossRef]
- Fulling, S.A.; Parker, L.; Hu, B.L. Conformal energy-momentum tensor in curved spacetime: Adiabatic regularization and renormalization. Phys. Rev. D 1974, 10, 3905. [Google Scholar] [CrossRef]
- Hu, B.L. Calculation of the trace anomaly of the conformal energy-momentum tensor in Kasner spacetime by adiabatic regularization. Phys. Rev. D 1978, 18, 4460. [Google Scholar] [CrossRef]
- Hu, B.L. Trace anomaly of the energy-momentum tensor of quantized scalar fields in Robertson-Walker spacetime. Phys. Lett. A 1979, 71, 169–173. [Google Scholar] [CrossRef]
- Anderson, P.R.; Parker, L. Adiabatic regularization in closed Robertson-Walker universes. Phys. Rev. D 1987, 36, 2963. [Google Scholar] [CrossRef]
- Plunien, G.; Schützhold, R.; Soff, G. Dynamical Casimir effect at finite temperature. Phys. Rev. Lett. 2000, 84, 1882. [Google Scholar] [CrossRef]
- Parker, L. Quantized fields and particle creation in expanding universes. II. Phys. Rev. D 1971, 3, 346. [Google Scholar] [CrossRef]
- Busch, T.; Anglin, J.R.; Cirac, J.I.; Zoller, P. Inhibition of spontaneous emission in Fermi gases. EPL 1988, 44, 1. [Google Scholar] [CrossRef]
- Sanner, C.; Sonderhouse, L.; Hutson, R.B.; Yan, L.; Milner, W.R.; Yeh, J. Pauli blocking of atom-light scattering. Science 2021, 374, 979–983. [Google Scholar] [CrossRef]
- Margalit, Y.; Lu, Y.-K.; Top, F.C.; Ketterle, W. Pauli blocking of light scattering in degenerate fermions. Science 2021, 374, 976–979. [Google Scholar] [CrossRef] [PubMed]
- Jannin, R.; Werf, Y.v.; Steinebach, K.; Bethlem, H.L.; Eikema, K.S.E. Pauli blocking of stimulated emission in a degenerate Fermi gas. Nat. Comm. 2022, 13, 6479. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.L. Finite temperature quantum fields in expanding universes. Phys. Lett. B 1982, 108, 19–25. [Google Scholar] [CrossRef]
- Hu, B.L. Quantum dissipative processes and gravitational entropy of the universe. Phys. Lett. A 1983, 97, 368–374. [Google Scholar] [CrossRef]
- Landi, G.T.; Paternostro, M. Irreversible entropy production, from quantum to classical. Rev. Mod. Phys. 2021, 93, 035008. [Google Scholar] [CrossRef]
- Hsiang, J.-T.; Hu, B.L. Intrinsic entropy of squeezed quantum fields and nonequilibrium quantum dynamics of cosmological perturbations. Entropy 2021, 23, 1544. [Google Scholar] [CrossRef]
- Kippenberg, T.J.; Vahala, K.J. Cavity optomechanics: Back-action at the mesoscale. Science 2008, 321, 1172–1176. [Google Scholar] [CrossRef]
- Butera, S.; Carusotto, I. Mechanical backreaction effect of the dynamical Casimir emission. Phys. Rev. A 2019, 99, 053815. [Google Scholar] [CrossRef]
- Butera, S.; Carusotto, I. Quantum fluctuations of the friction force induced by the dynamical Casimir emission. EPL B 2020, 128, 24002. [Google Scholar] [CrossRef]
- Carusotto, I.; Liberato, S.D.; Gerace, D.; Ciuti, C. Back-reaction effects of quantum vacuum in cavity quantum electrodynamics. Phys. Rev. A 2012, 85, 023805. [Google Scholar] [CrossRef]
- Hu, B.L.; Parker, L. Anisotropy damping through quantum effects in the early universe. Phys. Rev. D 1978, 17, 933. [Google Scholar] [CrossRef]
- Hartle, J.B.; Hu, B.L. Quantum effects in the early universe. II. Effective action for scalar fields in homogeneous cosmologies with small anisotropy. Phys. Rev. D 1979, 20, 1772. [Google Scholar] [CrossRef]
- Hartle, J.B.; Hu, B.L. Quantum effects in the early universe. III. Dissipation of anisotropy by scalar particle production. Phys. Rev. D 1980, 21, 2756. [Google Scholar] [CrossRef]
- Schwinger, J. Brownian motion of a quantum oscillator. J. Math. Phys. 1961, 2, 407–432. [Google Scholar] [CrossRef]
- Keldysh, L.V. Diagram technique for nonequilibrium processes. Sov. Phys. JETP 1965, 20, 1018. [Google Scholar]
- Calzetta, E.; Hu, B.L. Closed-time-path functional formalism in curved spacetime: Application to cosmological back-reaction problems. Phys. Rev. D 1987, 35, 495. [Google Scholar] [CrossRef]
- Feynman, R.P.; Vernon, F.L. The theory of a general quantum system interacting with a linear dissipative system. Ann. Phys. 1963, 24, 118–173. [Google Scholar] [CrossRef]
- Hu, B.L.; Sinha, S. Fluctuation-dissipation relation for semiclassical cosmology. Phys. Rev. D 1995, 51, 1587. [Google Scholar] [CrossRef]
- Parker, L. Cosmological constant and absence of particle creation. Phys. Rev. Lett. 1983, 50, 1009. [Google Scholar] [CrossRef]
- Campos, A.; Verdaguer, E. Semiclassical equations for weakly inhomogeneous cosmologies. Phys. Rev. D 1994, 49, 1861. [Google Scholar] [CrossRef]
- Campos, A.; Verdaguer, E. Stochastic semiclassical equations for weakly inhomogeneous cosmologies. Phys. Rev. D 1996, 53, 1927. [Google Scholar] [CrossRef]
- Hu, B.L. Vacuum viscosity description of quantum processes in the early universe. Phys. Lett. A 1982, 90, 375–380. [Google Scholar] [CrossRef]
- Dalvit, D.A.R.; Neto, P.A.M.; Mazzitelli, F.D. Fluctuations, dissipation and the dynamical Casimir effect. In Lecture Notes in Physics, Vol. 834—Casimir Physics; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Butera, S.; Hsiang, J.-T.; Hu, B.L. Fluctuation-dissipation relation in dynamical Casimir effect, manuscript in preparation.
- Mottola, E. Quantum fluctuation-dissipation theorem for general relativity. Phys. Rev. D 1986, 33, 2136. [Google Scholar] [CrossRef]
- Huttner, B.; Barnett, S.M. Quantization of the electromagnetic field in dielectrics. Phys. Rev. A 1992, 46, 4306. [Google Scholar] [CrossRef]
- Buhmann, S.Y. Dispersion Forces I: Macroscopic Quantum Electrodynamics and Ground-State Casimir, Casimir–Polder and van der Waals Forces; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Buhmann, S.Y. Dispersion Forces II: Many-Body Effects, Excited Atoms, Finite Temperature and Quantum Friction; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Raine, D.J.; Sciama, D.W.; Grove, P.G. Does a uniformly accelerated quantum oscillator radiate? Proc. R. Soc. Lond. A 1991, 435, 205. [Google Scholar]
- Raval, A.; Hu, B.L.; Anglin, J. Stochastic theory of accelerated detectors in a quantum field. Phys. Rev. D 1996, 53, 7003. [Google Scholar] [CrossRef]
- Hsiang, J.-T.; Hu, B.L.; Lin, S.-Y. Fluctuation-dissipation and correlation-propagation relations from the non-equilibrium dynamics of detector-quantum field systems. Phys. Rev. D 2019, 100, 025019. [Google Scholar] [CrossRef]
- Hsiang, J.-T.; Hu, B.L.; Lin, S.-Y.; Yamamoto, K. Fluctuation-dissipation and correlation-propagation relations in 3+1 D for uniformly-accelerated detectors in a quantum field. Phys. Lett. B 2019, 795, 694–699. [Google Scholar] [CrossRef]
- Wang, Q.; Unruh, W.G. How the huge energy of quantum vacuum gravitates to drive the slow accelerating expansion of the Universe. Phys. Rev. D 2014, 89, 085009. [Google Scholar] [CrossRef]
- Barton, G.; Calogeracos, A. On the quantum electrodynamics of a dispersive mirror.: I. Mass shifts, radiation, and radiative reaction. Ann. Phys. 1995, 238, 227–267. [Google Scholar] [CrossRef]
- Calogeracos, A.; Barton, G. On the quantum electrodynamics of a dispersive mirror.: II. The boundary condition and the applied force via Dirac’s theory of constraints. Ann. Phys. 1995, 238, 268–285. [Google Scholar] [CrossRef]
- Ramsey, S.A.; Hu, B.L. Nonequilibrium inflaton dynamics and reheating: Back reaction of parametric particle creation and curved spacetime effects. Phys. Rev. D 1997, 56, 678. [Google Scholar] [CrossRef]
- Sinha, K.; López, A.E.R.; Subaşı, Y.S. Dissipative dynamics of a particle coupled to a field via internal degrees of freedom. Phys. Rev. D 2021, 103, 056023. [Google Scholar] [CrossRef]
- Hu, B.L.; Paz, J.P.; Zhang, Y. Quantum Brownian motion in a general environment. II. Nonlinear coupling and perturbative approach. Phys. Rev. D 1993, 47, 1576. [Google Scholar] [CrossRef]
- Butera, S. Influence functional for two mirrors interacting via radiation pressure. Phys. Rev. D 2022, 105, 016023. [Google Scholar] [CrossRef]
- Law, C.K. Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation. Phys. Rev. A 1995, 51, 2537. [Google Scholar] [CrossRef]
- Butera, S. Noise and dissipation on a moving mirror induced by the dynamical Casimir emission. J. Phys. Photon. 2023, 5, 045003. [Google Scholar] [CrossRef]
- Hsiang, J.-T.; Hu, B.L. Atom-field-medium interactions, I: Graded influence action and covariance matrix for N harmonic atoms in a dielectric-altered quantum field. arXiv 2024, arXiv:2408.03580. [Google Scholar]
- Intravaia, F.; Behunin, R.O.; Dalvit, D.A.R. Quantum friction and fluctuation theorems. Phys. Rev. A 2014, 89, 050101. [Google Scholar] [CrossRef]
- Intravaia, F.; Behunin, R.O.; Henkel, C.; Busch, K.; Dalvit, D.A.R. Failure of local thermal equilibrium in quantum friction. Phys. Rev. Lett. 2016, 117, 100402. [Google Scholar] [CrossRef]
- Reiche, D.; Intravaia, F.; Hsiang, J.-T.; Busch, K.; Hu, B.L. Nonequilibrium thermodynamics of quantum friction. Phys. Rev. A 2020, 102, 050203. [Google Scholar] [CrossRef]
- Oelschläger, M.; Reiche, D.; Egerland, C.H.; Busch, K.; Intravaia, F. Electromagnetic viscosity in complex structured environments: From blackbody to quantum friction. Phys. Rev. A 2022, 106, 052205. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsiang, J.-T.; Hu, B.-L. Foundational Issues in Dynamical Casimir Effect and Analogue Features in Cosmological Particle Creation. Universe 2024, 10, 418. https://doi.org/10.3390/universe10110418
Hsiang J-T, Hu B-L. Foundational Issues in Dynamical Casimir Effect and Analogue Features in Cosmological Particle Creation. Universe. 2024; 10(11):418. https://doi.org/10.3390/universe10110418
Chicago/Turabian StyleHsiang, Jen-Tsung, and Bei-Lok Hu. 2024. "Foundational Issues in Dynamical Casimir Effect and Analogue Features in Cosmological Particle Creation" Universe 10, no. 11: 418. https://doi.org/10.3390/universe10110418
APA StyleHsiang, J. -T., & Hu, B. -L. (2024). Foundational Issues in Dynamical Casimir Effect and Analogue Features in Cosmological Particle Creation. Universe, 10(11), 418. https://doi.org/10.3390/universe10110418